尹 潔,趙艷玲,徐 莜,高子平,崔冠男,王景安,劉仲齊*(1.天津市動(dòng)植物抗性重點(diǎn)實(shí)驗(yàn)室,天津師范大學(xué)生命科學(xué)學(xué)院,天津300387;.農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所農(nóng)業(yè)環(huán)境污染修復(fù)研究中心,天津300191)
?
鋅對(duì)粳稻幼苗鎘吸收轉(zhuǎn)運(yùn)特性的影響
尹潔1,2,趙艷玲2,徐莜2,高子平2,崔冠男2,王景安1*,劉仲齊1,2*
(1.天津市動(dòng)植物抗性重點(diǎn)實(shí)驗(yàn)室,天津師范大學(xué)生命科學(xué)學(xué)院,天津300387;2.農(nóng)業(yè)部環(huán)境保護(hù)科研監(jiān)測(cè)所農(nóng)業(yè)環(huán)境污染修復(fù)研究中心,天津300191)
摘要:采用水培實(shí)驗(yàn),研究了鎘脅迫下粳稻幼苗的生長(zhǎng)發(fā)育特征及鎘和鋅的吸收轉(zhuǎn)運(yùn)特性。結(jié)果表明,施加1.2 mmol·L-1及1.4 mmol·L-1鋅能顯著增加根尖數(shù)目和根系及地上部的生物量,并使根系中的鎘積累量分別下降86.4%和97.5%,地上部鎘積累量分別下降62.6%和73.3%。根系和地上部的鎘主要分布在細(xì)胞壁(F1)和胞液(F3)中,細(xì)胞器(F2)中的鎘含量很少,只占根系鎘總量的5.4%和地上部鎘總量的9.4%。鋅降低了各亞細(xì)胞組分中鎘的含量,提高了鎘在F3中的分配比例。當(dāng)鋅使根系F3中的鎘濃度降低到12.8 mg·kg-1FW以下時(shí),鎘從根系F3中向地上部轉(zhuǎn)運(yùn)的比率顯著增加,但轉(zhuǎn)運(yùn)量只有2.7 μmol·L-1Cd2(+無(wú)鋅添加)處理組的26.9%~46.1%。
關(guān)鍵詞:粳稻;鋅;鎘;積累;轉(zhuǎn)運(yùn);亞細(xì)胞分布
尹潔,趙艷玲,高子平,等.鋅對(duì)粳稻幼苗鎘吸收轉(zhuǎn)運(yùn)特性的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35(5):834-841.
YIN Jie, ZHAO Yan-ling, GAO Zi-ping, et al. Effects of zinc supply on absorption and translocation of cadmium in rice seedlings[J]. Journal of Agro-Environment Science, 2016, 35(5):834-841.
近年來(lái)環(huán)境中重金屬污染物逐年增多,Cd作為一種具有高遷移率及對(duì)生物高度毒性的非必需元素,影響作物水分代謝和光合作用、降低營(yíng)養(yǎng)元素吸收及生物量等[1-4]。作為中國(guó)及日本等亞洲人群的主要糧食作物[5-6],水稻對(duì)Cd具有較強(qiáng)的吸收富集能力,通過(guò)食用稻米間接攝入過(guò)量Cd2+成為影響人體健康的危險(xiǎn)因子之一,因而急需一種合理的方法降低稻米中Cd2+的積累量。我國(guó)水稻品種繁多,Cd2+在不同種間及基因型間的積累、分布存在顯著差異[7-9]。粳稻(japonica rice)作為水稻亞種之一[10],因其品質(zhì)好、產(chǎn)量高,而被廣泛栽培,有研究表明在相同栽培條件下粳稻較秈稻Cd2+積累少[7]。
Zn作為作物生長(zhǎng)所必需的微量元素,是許多酶的組成成分[11],參與蛋白代謝、基因表達(dá)、染色體構(gòu)建等多種細(xì)胞生物學(xué)過(guò)程[12-13],可維持及保護(hù)生物膜穩(wěn)定性、防止氧化脅迫及過(guò)氧化損傷[14]。Zn作為Cd的同系物,由于相似的化學(xué)性質(zhì),均能以二價(jià)陽(yáng)離子形式被植物體吸收。廣泛存在于植物體內(nèi)的鋅鐵轉(zhuǎn)運(yùn)蛋白(ZIP)、自然抗巨噬細(xì)胞蛋白(Nramps)、ABC轉(zhuǎn)運(yùn)蛋白(ATP-binding cassette)等對(duì)Zn2+和Cd2+都具有較高的親和性,能同時(shí)進(jìn)行Zn2+、Cd2+等離子的轉(zhuǎn)運(yùn)[7,15-18]。但Zn2+與Cd2+之間的互作機(jī)理至今仍沒(méi)有一致的結(jié)論。多項(xiàng)研究表明Zn2+、Cd2+共存對(duì)于植物Cd吸收既表現(xiàn)協(xié)同作用也表現(xiàn)拮抗作用,如Zn可降低水稻、大豆等對(duì)Cd的積累,卻提高了洋甘菊及柔毛委陵菜的Cd轉(zhuǎn)運(yùn)率[19-22],但Zn2+對(duì)粳稻Cd積累特性的影響還未見(jiàn)報(bào)道。本研究以粳稻幼苗為材料,從亞細(xì)胞水平分析Zn2+和Cd2+的吸收轉(zhuǎn)運(yùn)特性,對(duì)Zn2+和Cd2+的互作機(jī)理進(jìn)行了初步探討。
1.1試驗(yàn)材料及培養(yǎng)方法
本試驗(yàn)選用的粳稻品系14ZS17由天津市農(nóng)作物研究所提供。選取飽滿(mǎn)均一的種子,在5%NaClO溶液中浸泡消毒15 min,去離子水潤(rùn)洗3次,放置于消過(guò)毒的培養(yǎng)皿中,恒溫箱(30±1)℃避光催芽48 h。將萌發(fā)的種子轉(zhuǎn)移至漂浮在去離子水箱中的塑料板上溫室培養(yǎng)一周,隨后將種子轉(zhuǎn)移至1/8營(yíng)養(yǎng)液中(pH5.5)培養(yǎng),一周后換用1/4營(yíng)養(yǎng)液繼續(xù)培養(yǎng)(pH5.5)。幼苗在光/暗為16 h/8 h、相應(yīng)溫度25℃/20℃、相對(duì)濕度60%~70%、光照強(qiáng)度240 μmol·m-2·s-1的人工生長(zhǎng)室中培養(yǎng),24 h連續(xù)通氣。實(shí)驗(yàn)用8 L的聚乙烯水培箱,每孔移栽?xún)芍昝纭?/p>
Hoagland全營(yíng)養(yǎng)液配方如下(1 L):
A液:Ca(NO3)294.5 g。
B液:KNO360.7 g、NH4H2PO411.5g、MgSO4·7H2O 49.3 g。
C液:H3BO32.86 g、MnCl2·4H2O 1.81 g、ZnSO4· 7H2O 0.22 g、CuSO4·5H2O 0.08 g、(NH4)6Mo7O24·4H2O 0.02 g。
D液:FeSO4·7H2O 5.57 g、Na-EDTA 7.45 g。
將四葉一心期粳稻幼苗轉(zhuǎn)移至去離子水箱中饑餓處理1 d,再分別轉(zhuǎn)移至含有0 μmol·L-1Cd2++0 mmol·L-1Zn2+、2.7 μmol·L-1Cd2+、1.2 mmol·L-1Zn2+、1.4 mmol·L-1Zn2+、2.7 μmol·L-1Cd2++1.2 mmol·L-1Zn2+、2.7 μmol·L-1Cd2++1.4 mmol·L-1Zn2+的1/8 Hoagland營(yíng)養(yǎng)液(缺Zn2+)中處理5 d,每處理重復(fù)3次,每次重復(fù)8株苗。Cd2+及Zn2+分別以CdCl2·2.5H2O及ZnSO4· 7H2O形式加入。參照文獻(xiàn)[23-24]的培養(yǎng)方法,營(yíng)養(yǎng)液及處理液每隔1 d更換一次,以保證溶液中離子濃度基本恒定。
1.2Cd、Zn含量測(cè)定
處理結(jié)束后,先將根系浸泡在5 mmol·L-1CaCl2溶液中20 min,以除去吸附在根系表面的離子,再用去離子水洗凈,用無(wú)塵濾紙吸凈根系表面殘留水分,分開(kāi)植株地上部分與根系。105℃殺青15 min,75℃下烘干至恒重。稱(chēng)量地上部分及根系干重,剪碎后置于消煮管內(nèi),用7 mL HNO3浸泡5 h,用ED54消煮儀消煮2.5 h,待冷卻后加入1 mL H2O2繼續(xù)消煮1.5 h,趕酸至體積為0.5 mL左右,將消煮液轉(zhuǎn)移至25 mL容量瓶中定容,用原子吸收分光光度計(jì)(AAS,ZEEnit 700,Analytikjena,Germany)測(cè)定Cd、Zn含量。
1.3亞細(xì)胞組分分離
參照文獻(xiàn)中方法[23-24],稱(chēng)取新鮮水稻根系0.5 g和地上部分1.0 g分別置于研缽,加入預(yù)冷的提取緩沖液,充分研磨成勻漿液。提取緩沖液組成為:250 mmol·L-1蔗糖,50 mmol·L-1Tris-HCl(pH7.5)和1 mmol·L-1二硫赤鮮糖醇。操作均在4℃下進(jìn)行。將勻漿液在3000 r·min-1下離心15 min,沉淀即為細(xì)胞壁組分(F1)。將上清液在15 000 r·min-1下離心30 min,沉淀為細(xì)胞器組分(F2),上清液為胞液組分(F3)。將各組分烘干、濃縮后用7 mL HNO3:1 mL H2O2法消解,用原子吸收分光光度計(jì)(AAS,ZEEnit700)測(cè)定樣品Zn、Cd含量。
1.4根系掃描分析
用根系掃描分析系統(tǒng)(EPSONSTD1600,WinRHIZOsystem V.4.0b)分別對(duì)處理前及處理后的根系進(jìn)行掃描分析,每處理掃描10株幼苗。
1.5數(shù)據(jù)分析
實(shí)驗(yàn)數(shù)據(jù)用SPSS進(jìn)行單因素方差分析(顯著性水平設(shè)置為0.05),采用Origin8.6作圖。
根尖數(shù)/根長(zhǎng)/根表面積/根體積相對(duì)增長(zhǎng)=處理后-處理前
根系胞液Cd分配比率=F3/(F1+F2+F3)×100%根系胞液轉(zhuǎn)運(yùn)率=地上部Cd總量/(根系胞液Cd總量+地上部Cd總量)×100%
其中:根系胞液Cd總量=根系Cd濃度·根系鮮重·根系胞液Cd分配比率;地上部Cd總量=地上部Cd濃度·地上部鮮重。
2.1Zn2+對(duì)Cd2+生理毒性的緩解效應(yīng)
營(yíng)養(yǎng)液中加入2.7 μmol·L-1Cd2+能顯著抑制粳稻幼苗生長(zhǎng),添加1.2 mmol·L-1和1.4 mmol·L-1的Zn2+有效緩解了Cd2+對(duì)根系生長(zhǎng)發(fā)育的抑制效應(yīng)(圖1A);添加1.2 mmol·L-1Zn2+顯著促進(jìn)了幼苗地上部的生長(zhǎng),但添加1.4 mmol·L-1Zn2+并沒(méi)有顯著促進(jìn)地上部的生長(zhǎng)(圖1B)。
在2.7 μmol·L-1Cd2+溶液中,添加1.2 mmol·L-1和1.4 mmol·L-1Zn2+與對(duì)照相比顯著提高相對(duì)根尖數(shù),且1.4 mmol·L-1Zn2+較1.2 mmol·L-1Zn2+促進(jìn)效應(yīng)顯著(圖2A)。Zn2+也可顯著促進(jìn)根長(zhǎng)、根系平均直徑、根系表面積和根系體積的生長(zhǎng),但1.2 mmol·L-1和1.4 mmol·L-1Zn2+促進(jìn)效應(yīng)差異不顯著(圖2B,圖2C,圖2D,圖2E)。
2.2Zn2+對(duì)幼苗Cd2+積累特性的影響
向含Cd2+營(yíng)養(yǎng)液中添加Zn2+能顯著降低幼苗根系及地上部對(duì)Cd2+的積累(圖3)。當(dāng)根際環(huán)境中Zn2+濃度為1.2 mmol·L-1時(shí),根系及地上部Cd2+積累量分別較對(duì)照降低86.4%和62.6%。當(dāng)根際環(huán)境中Zn2+濃度為1.4 mmol·L-1時(shí),根系及地上部Cd2+積累較對(duì)照組分別降低了97.5%和73.3%。
根際環(huán)境中Cd2+對(duì)幼苗Zn2+吸收轉(zhuǎn)運(yùn)特性也有顯著影響。與對(duì)照相比,2.7 μmol·L-1Cd2+處理顯著提高了根系中的Zn2+積累量(圖4A),卻顯著降低了地上部Zn2+的積累(圖4B)。向含Zn2+1.2 mmol·L-1及1.4 mmol·L-1的營(yíng)養(yǎng)液中加入2.7 μmol·L-1Cd2+,根系Zn含量分別為對(duì)照的1.7倍及1.2倍,地上部Zn含量較對(duì)照分別降低了17.0%及16.9%。
圖1 Zn2+對(duì)Cd2+脅迫環(huán)境中幼苗根系及地上部生物量的影響Figure 1 Effects of Zn2+supplies on biomass of roots and shoots of rice seedlings under Cd2+stresses
2.3Zn2+對(duì)幼苗Cd2+亞細(xì)胞分布的影響
幼苗根系細(xì)胞壁(F1)、細(xì)胞器(F2)和胞液(F3)組分中的Cd含量顯著大于地上部對(duì)應(yīng)組分Cd含量。Cd2+在幼苗根系及地上部的亞細(xì)胞分布分別表現(xiàn)為F1>F3>>F2和F1≈F3>>F2。隨著根際環(huán)境中Zn2+濃度的升高,根系和地上部各亞細(xì)胞組分中的Cd2+積累量顯著降低(圖5A、圖5B)。與2.7 μmol·L-1Cd2+相比,地上部細(xì)胞壁組分Cd含量下降了63.2%~72.3%,細(xì)胞器組分Cd含量下降了61.8%~81.0%,胞液組分Cd含量下降了47.4%~65.7%。根系細(xì)胞壁組分Cd含量下降了79.8%~84.9%,細(xì)胞器組分Cd含量下降了81.3%~94.2%,胞液組分Cd含量下降了70.7%~77.9%。Zn2+在顯著降低根系及地上部Cd含量的同時(shí),也改變了Cd2+在各亞細(xì)胞組分中的分配比例。根際環(huán)境中1.2~1.4 mmol·L-1Zn2+顯著降低了根系及地上部細(xì)胞壁中Cd2+的分配比率,提高了胞液組分Cd2+分配比率(圖5C、圖5D),細(xì)胞器組分中Cd2+分配比率隨著Zn2+濃度的增加而下降。環(huán)境中的Cd2+對(duì)幼苗體內(nèi)Zn2+的亞細(xì)胞分布也產(chǎn)生顯著影響。幼苗根系不同組分的Zn含量大于地上部各組分Zn含量,并隨著營(yíng)養(yǎng)液中Zn2+濃度的增加而提高(圖6A、圖6B)。Zn2+在幼苗根系及地上部的亞細(xì)胞分布規(guī)律均為F1>F3>>F2。在含1.2 mmol·L-1及1.4 mmol·L-1Zn2+的營(yíng)養(yǎng)液中,2.7 μmol·L-1的Cd2+顯著提高了根系各亞細(xì)胞組分中Zn含量,降低了地上部各亞細(xì)胞組分的Zn含量。根際環(huán)境中Cd2+未對(duì)Zn2+的亞細(xì)胞分配比率產(chǎn)生顯著影響(圖6C、圖6D)。
圖2 Zn2+對(duì)Cd2+脅迫環(huán)境中幼苗根尖數(shù)、根長(zhǎng)、根系平均直徑、根表面積和根體積相對(duì)增長(zhǎng)率的影響Figure 2 Effects of Zn2+supplies on root tip number,root length,average root diameter,root surface area and volume of rice seedlings under Cd2+stresses
圖3 Zn2+對(duì)Cd2+脅迫中幼苗根系及地上部Cd含量的影響Figure 3 Effects of Zn2+supplies on Cd concentrations in roots and shoots of rice seedlings under Cd2+stresses
圖4 Cd2+脅迫對(duì)幼苗根系及地上部Zn含量的影響Figure 4 Effects of exogenous Cd2+on Zn2+concentrations in roots and shoots of rice seedlings
圖5 Zn2+對(duì)Cd2+脅迫下幼苗根系和地上部亞細(xì)胞組分中Cd含量以及Cd2+分配比率的影響Figure 5 Effects of Zn2+supplies on Cd concentrations in subcellular fraction of roots and shoots as well as on Cd2+distribution in subcellular fractions of roots and shoots in rice seedlings under Cd2+stresses
2.4Zn2+對(duì)幼苗Cd2+轉(zhuǎn)運(yùn)率的影響
當(dāng)外源Zn2+大幅度降低幼苗根系中Cd2+積累量以后,根系胞液中的Cd2+進(jìn)入地上部的轉(zhuǎn)運(yùn)率顯著提高。根際環(huán)境中1.2 mmol·L-1及1.4 mmol·L-1的Zn2+使Cd2+的轉(zhuǎn)運(yùn)率較對(duì)照分別提高了0.3倍及0.4倍,但不同Zn2+濃度之間的Cd2+轉(zhuǎn)運(yùn)率無(wú)顯著差異(圖7A)。說(shuō)明Zn2+通過(guò)大幅度降低胞液中的Cd濃度而間接提高了Cd2+向地上部的轉(zhuǎn)運(yùn)率。
根系胞液中Zn2+向地上部的轉(zhuǎn)運(yùn)率既與環(huán)境中的Zn2+濃度有關(guān),也與Cd2+濃度有關(guān)。在無(wú)Cd2+環(huán)境中,Zn2+向地上部的轉(zhuǎn)運(yùn)率隨著環(huán)境中Zn2+濃度的增加而下降;增加2.7 μmol·L-1的Cd2+進(jìn)一步降低了Zn2+向地上部的轉(zhuǎn)運(yùn)率(圖7B)。說(shuō)明1.2 mmol·L-1Zn2+已經(jīng)使水稻幼苗Zn2+轉(zhuǎn)運(yùn)系統(tǒng)達(dá)到了飽和狀態(tài),在此基礎(chǔ)上無(wú)論是增加Zn2+濃度還是Cd2+濃度,都會(huì)顯著降低Zn2+向地上部的轉(zhuǎn)運(yùn)率。
圖6 Cd2+脅迫對(duì)幼苗根系和地上部亞細(xì)胞組分中Zn含量以及Zn2+分配比率的影響Figure 6 Effects of Cd2+on Zn concentrations in subcellular fractions of root and shoot as well as on Zn distribution in subcellular fractions of root and shoot in rice seedlings
圖7 Cd2+和Zn2+從幼苗根系胞液向地上部轉(zhuǎn)運(yùn)率的變化Figure 7 Changes of Cd2+and Zn2+translocation ratios from root cell sap to shoots
Zn作為植物生長(zhǎng)所必需的微量元素,是六大酶系的主要輔酶,參與多種生命活動(dòng)。Cd2+脅迫環(huán)境中添加1.2~1.4 mmol·L-1Zn2+能顯著促進(jìn)根尖發(fā)生和根系伸長(zhǎng)與加粗,使根系表面積和根系體積得到顯著增加,進(jìn)而增加根系及地上部的生物量??梢?jiàn),增加根際環(huán)境中的Zn2+濃度能有效緩解Cd2+對(duì)根系的生理毒害,促進(jìn)根系和地上部的生長(zhǎng)發(fā)育[25-27]。與單純Cd處理相比Zn、Cd共存條件下,幼苗體內(nèi)Zn含量升高而Cd含量顯著下降,表明幼苗根系對(duì)于Zn2+、Cd2+吸收具有拮抗作用(圖3A、圖4A)。Cd2+可通過(guò)Zn2+轉(zhuǎn)運(yùn)蛋白(如OsZIPs、OsMTPs、OsHMA等)參與幼苗體內(nèi)轉(zhuǎn)運(yùn)[28-30]。
水稻根系和地上部的Zn2+和Cd2+主要積累在細(xì)胞壁中(圖5A、圖5B;圖6A、圖6B)。細(xì)胞壁中有多種能與二價(jià)或三價(jià)離子結(jié)合的復(fù)合物,其中多糖組分在細(xì)胞壁沉積重金屬過(guò)程中發(fā)揮了重要作用[31]。有研究表明,Zn2+對(duì)低甲基化果膠質(zhì)的親和性大于Cd2+[32]。因此,當(dāng)水稻根際環(huán)境中的Zn2+濃度升高時(shí),細(xì)胞壁中更多的配基優(yōu)先與Zn2+形成復(fù)合物積累在細(xì)胞壁中,減少了細(xì)胞壁與Cd2+的結(jié)合位點(diǎn),降低了細(xì)胞壁對(duì)Cd2+的沉降作用(圖5C、圖5D)。Zn2+濃度對(duì)細(xì)胞壁中Cd積累的抑制作用顯著大于對(duì)其他細(xì)胞組分的影響。因此,施加Zn后根系細(xì)胞壁中Cd含量下降的幅度顯大于細(xì)胞器和胞液組分,胞液及細(xì)胞器組分中的Cd分配比率因Zn的增加而上升。
由于Zn是水稻生長(zhǎng)發(fā)育的必需元素,細(xì)胞膜上的載體蛋白優(yōu)先結(jié)合并轉(zhuǎn)運(yùn)Zn2+。隨著根際Zn2+濃度的升高,進(jìn)入幼苗體內(nèi)的Zn2+顯著增高,從而提高了Zn2+與載體蛋白的結(jié)合,使之與Cd2+結(jié)合的機(jī)會(huì)減少[17]。在幼苗根系中Zn2+濃度升高的情況下,幼苗對(duì)Cd2+的吸收積累量顯著下降。當(dāng)根系胞液中的Cd2+濃度低于12.8 mg·kg-1FW時(shí),少量Cd2+可通過(guò)非選擇性陽(yáng)離子通道及其他載體蛋白向地上部轉(zhuǎn)運(yùn)[33-34]。因此,施加高濃度的Zn2+顯著降低幼苗根系Cd的絕對(duì)含量,根系胞液中的Cd2+向地上部的轉(zhuǎn)運(yùn)率顯著升高,但轉(zhuǎn)運(yùn)量只有2.7 μmol·L-1Cd2+處理的26.9%~46.1%。
Cd2+脅迫能誘導(dǎo)某些基因的高效表達(dá),促進(jìn)金屬離子在根系中的積累。如水稻體內(nèi)過(guò)表達(dá)OsHMA3基因會(huì)顯著提高幼苗根系對(duì)Zn2+的積累[17],因而增加根際環(huán)境Cd2+濃度能顯著提高水稻幼苗根系中Zn2+含量。然而,幼苗體內(nèi)Zn2+穩(wěn)態(tài)在不同階段(包括吸收、轉(zhuǎn)運(yùn)以及分配)受到嚴(yán)格的調(diào)控[28,34-35],地上部相對(duì)穩(wěn)定的Zn2+濃度對(duì)于保證水稻正常的代謝至關(guān)重要。在根系Zn含量顯著增加的情況下,粳稻幼苗地上部Zn含量并沒(méi)有表現(xiàn)出極顯著升高趨勢(shì)(圖4B)。
(1)與缺Zn相比,添加1.2 mmol·L-1和1.4 mmol· L-1的Zn2+能顯著緩解2.7 μmol·L-1Cd2+對(duì)粳稻幼苗的毒害,促進(jìn)根尖分化和根系生長(zhǎng),提高根系及地上部生物量,并極顯著地降低幼苗根系和地上部Cd2+積累量。
(2)Zn能顯著降低粳稻幼苗根系細(xì)胞壁及細(xì)胞器中的Cd分配比例,提高胞液組分中Cd分配比例。當(dāng)增加根際Zn2+濃度使根系胞液中Cd2+濃度低于12.8 mg·kg-1FW時(shí),Cd向地上部轉(zhuǎn)運(yùn)的比率顯著提高。
(3)幼苗根系中的Zn含量隨根際Cd2+及Zn2+濃度升高而顯著升高,但外源Cd2+顯著降低了地上部Zn含量。因此,根際Cd2+顯著降低了根系胞液中的Zn向地上部的轉(zhuǎn)運(yùn)率。
參考文獻(xiàn)
[1]Cherif J, Derbel N, Nakkach M, et al. Analysis of in vivo chlorophyll fluorescence spectra to monitor physiological state of tomato plants growing under zinc stress[J]. Journal of Photochemistry and Photobiology B:Biology, 2010, 101:332-339.
[2]Nagajyoti P C, Lee K D, Sreekanth T V M. Heavy metals, occurrence and toxicity for plants:A review[J]. Environmental Chemistry Letters, 2010, 8(3):199-216.
[3]Lux A, Martinka M, Vaculík M, et al. Root responses to cadmium in the rhizosphere:A review[J]. Journal of Experimental Botany, 2011, 62(1):21-37.
[4]Gallego S M, Pena L B, Barcia R A, et al. Unravelling cadmium toxicity and tolerance in plants:Insight into regulatory mechanisms[J]. Environmental and Experimental Botany, 2012, 83:33-46.
[5]Cao F, Wang N, Zhang M, et al. Comparative study of alleviating effects of GSH, Se and Zn under combined contamination of cadmium and chromium in rice(Oryzasativa)[J]. Biometals, 2013, 26(2):297-308.
[6]Liu D, Wang J Y, Wang X X, et al. Genetic diversity and elite gene introgression reveal the japonica rice breeding in Northern China[J]. Journal of Integrative Agriculture, 2015, 14(5):811-822.
[7]Liu J G, Qu P, Zhang W, et al. Variations among rice cultivars in subcellular distribution of Cd:The relationship between translocation and grain accumulation[J]. Environmental and Experimental Botany, 2014, 107:25-31.
[8]溫娜,王景安,劉仲齊.利用AMMI模型分析稻米鎘含量的基因型與環(huán)境互作效應(yīng)[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015, 34(5):817-823. WEN Na, WANG Jing-an, LIU Zhong-qi. Analysis of genotypic and environmental effects on cadmium in rice by AMMI model[J]. Journal of Agro-Environment Science, 2015, 34(5):817-823.
[9]文志琦,趙艷玲,崔冠男,等.水稻營(yíng)養(yǎng)器官鎘積累特性對(duì)稻米鎘含量的影響[J].植物生理學(xué)報(bào), 2015, 51(8):1280-1286. WEN Zhi-qi, ZHAO Yan-ling, CUI Guan-nan, et al. Effects of cadmium accumulation characteristics in vegetative organs on cadmium content in grain of rice[J]. Plant Physiology Journal, 2015, 51(8):1280-1286.
[10]Yoshihara T, Goto F, Shoji K, et al. Cross relationships of Cu, Fe, Zn,Mn, and Cd accumulations in common japonica and indica rice cultivars in Japan[J]. Environmental and Experimental Botany, 2010, 68(2):180-187
[11]Broadley M R, White P J, Hammond J P, et al. Zinc in plants[J]. New Phytologist, 2007, 173(4):677-702
[12]Morrissey J, Guerinot M L. Iron uptake and transport in plants:The good, the bad, and the ionome[J]. Chemical Reviews, 2009, 109(10):4553-4567.
[13]Palmer C M, Guerinot M L. Facing the challenges of Cu, Fe and Zn homeostasis in plants[J]. Nature Chemical Biology, 2009, 5(5):333-340.
[14]Balen B, Tkalec M,?ikic′S, et al. Biochemical responses of Lemna minorexperimentallyexposedtocadmiumand zinc[J].Ecotoxicology,2011, 20(4):815-826.
[15]Wu F B, Dong J, Qian Q Q, et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes[J]. Chemosphere, 2005, 60(10):1437-1446.
[16]Takahashi R, Ishimaru Y, Shimo H, et al. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice[J]. Plant, Cell & Environment, 2012, 35(11):1948-1957.
[17]Sasaki A, Yamaji N, Ma J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice[J]. Journal of Experimental Botany, 2014, 65(20):6013-6021.
[18]Zeng X W, Qiu R L, Ying R R, et al. The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabispaniculata Franch. in response to Zn and Cd[J]. Chemosphere, 2011, 82(3):321-328.
[19]Kummerová M, Zezulka ?, Krá'ová K, et al. Effect of zinc and cadmium on physiological and production characteristics in Matricariarecutita[J]. Biologia Plantarum, 2010, 54(2):308-314.
[20]Liu H J, Zhang J L, Christie P, et al. Influence of external zinc and phosphorus supply on Cd uptake by rice(Oryza sativa L.)seedlings with root surface iron plaque[J]. Plant and Soil, 2007, 300(1/2):105-115.
[21]Chaoui A, Ghorbal M H, El Ferjani E. Effects of cadmium-zinc interactions on hydroponically grown bean(Phaseolus vulgaris L.)[J]. Plant Science, 1997, 126(1):21-28.
[22]Qiu R L, Thangavel P, Hu P J, et al. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentillagriffithii[J]. Journal of Hazardous Materials, 2011, 186 (2):1425-1430.
[23]Pellegrini M, Laugier A, Sergent M, et al. Interactions between the toxicity of the heavy metals cadmium, copper, zinc in combinations and the detoxifying role of calcium in the brown alga Cystoseirabarbata[J]. Journal of Applied Phycology, 1993, 5(3):351-361.
[24]Xie P P, Deng J W, Zhang H M, et al. Effects of cadmium on bioaccumulation and biochemical stress response in rice(Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2015, 122:392-398.
[25]Wang X, Liu Y G, Zeng G M, et al. Subcellular distribution and chemical forms of cadmium in Bechmerianivea(L.)Gaud[J]. Environmental and Experimental Botany, 2008, 62(3):389-395.
[26]Weigel H J, J?ger H J. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiology, 1980, 65(3):480-482.
[27]Bochicchio R, Sofo A, Terzano R, et al. Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes:A new screening technique for studying plant response to metals[J]. Plant Physiology and Biochemistry, 2015, 91:20-27.
[28]Lu Z W, Zhang Z, Su Y, et al. Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation[J]. Ecotoxicology and Environmental Safety, 2013, 91: 147-155.
[29]Li T, Yang X, Lu L, et al. Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions[J]. Journal of Hazardous Materials, 2009, 169(1):734-741.
[30]Lee S, Kim S A, Lee J, et al. Zinc deficiency-inducible OsZIP8 encodes a plasma membrane - localized zinc transporter in rice[J]. Molecules and Cells, 2010, 29(6):551-558.
[31]Yang X, Huang J, Jiang Y, et al. Cloning and functional identification of two members of the ZIP(Zrt, Irt-like protein)gene family in rice(O-ryzasativa L.)[J]. Molecular Biology Reports, 2009, 36(2):281-287.
[32]Chandel G, Banerjee S, Vasconcelos M, et al. Characterization of the root transcriptome for iron and zinc homeostasis-related genes in indica rice(Oryza sativa L.)[J]. Journal of Plant Biochemistry and Biotechnology, 2010, 19(2):145-152.
[33]Krzes?owska M. The cell wall in plant cell response to trace metals:Polysaccharide remodeling and its role in defense strategy[J]. Acta-Physiologiae Plantarum, 2011, 33(1):35-51.
[34]Fritz E. Measurement of cation exchange capacity(CEC)of plant cell walls by X-ray microanalysis(EDX)in the transmission electron microscope[J]. Microscopy and Microanalysis, 2007, 13(4):233-244.
[35]張參俊,尹潔,張長(zhǎng)波,等.非選擇性陽(yáng)離子通道對(duì)水稻幼苗鎘吸收轉(zhuǎn)運(yùn)特性的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015, 34(6):1028-1033. ZHANG Shen-jun, YIN Jie, ZHANG Chang-bo, et al. Effects of nonselective ction channels on accumulation and transfer of Cd in rice seedlings[J]. Journal of Agro-Environment Science, 2015, 34(6):1028-1033.
中圖分類(lèi)號(hào):X171.5
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-2043(2016)05-0834-08
doi:10.11654/jaes.2016.05.003
收稿日期:2015-11-14
基金項(xiàng)目:2015年中國(guó)農(nóng)科院科技創(chuàng)新工程項(xiàng)目(2015-cxgc-lzq);公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201403015)
作者簡(jiǎn)介:尹潔(1991—),女,四川資中人,碩士研究生,從事植物營(yíng)養(yǎng)學(xué)研究。E-mail:at19910503@163.com
*通信作者:王景安E-mali:jinganwang899@126.com;劉仲齊E-mail:liuzhongqi508@163.com
Effects of zinc supply on absorption and translocation of cadmium in rice seedlings
YIN Jie1,2, ZHAO Yan-ling2, XU You2, GAO Zi-ping2, CUI Guan-nan2, WANG Jing-an1*, LIU Zhong-qi2*
(1.Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; 2.Research Centre for Remediation of Agro-Environmental Pollution, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China)
Abstract:Plant nutrition may influence the uptake of heavy metals by plants. Deficiency or toxicity of metal cations in soils reduces plant growth, crop yield, and the quality of plant foodstuff. Zinc(Zn)is an essential micronutrient for plants. Controlling Zn content in plant tissues is critical to plant normal growth and development. Many transporters and channels in the plasma membranes of plant cells are thought to balance the concentrations of essential metals such as Zn, and to unselectively transport toxic elements, e.g. cadmium(Cd). However, the molecular bases of the interactions between Zn and Cd remains poorly understood. In this study, the effects of different Zn2+concentrations on the seedlings growth, the uptake and translocation of Cd2+and Zn2+by japonica rice seedlings under Cd2+stresses were studied in solution culture. Rice plants were grown for 5 days in nutrient solution containing two levels of Cd(0 μmol·L-1and 2.7 μmol·L-1)and three levels of Zn(0 mmol·L-1, 1.2 mmol·L-1, and 1.4 mmol·L-1). Results showed that supplying 1.2 mmol·L-1and 1.4 mmol·L-1Zn2+significantly increased the number of root tips as well as roots and shoots biomass of rice seedlings, which decreased root Cd2+by 86.4%and 97.5%, and shoot Cd2+by 62.6%and 73.3%, respectively. Most Cd2+was distributed in the cell wall(F1)and cell sap(F3)of roots and shoots. Cadmium in the organelle(F2)parts was only about 5.4%in roots and 9.4%in shoots. Adding Zn2+significantly reduced Cd concentrations in F1 and F3 of roots, but increased Cd2+distribution percentages in F3 of roots. Under exogenous Zn2+, Cd concentrations in root cell sap were lower than 12.8 mg·kg-1FW, whereas Cd2+translocation ratio from root cell sap to shoot was significantly enhanced.
Keywords:japonica rice; zinc; cadmium; accumulation; translocation; subcellular distribution