• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Haploid Maize Kernel Using NIR Spectroscopy in Reflectance and Transmittance Modes: A Comparative Study

    2016-06-15 16:36:05QINHongMAJingyiCHENShaojiangYANYanluLIWeijunWANGPingLIUJin
    光譜學(xué)與光譜分析 2016年1期
    關(guān)鍵詞:單倍體朝向識別率

    QIN Hong, MA Jing-yi,, CHEN Shao-jiang, YAN Yan-lu,LI Wei-jun*, WANG Ping, LIU Jin

    1. Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China 2. College of Information and Control Engineering,China University of Petroleum (Huadong),Qingdao 266580,China 3. National Maize Improvement Center, China Agricultural University, Beijing 100193, China 4. College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China

    Identification of Haploid Maize Kernel Using NIR Spectroscopy in Reflectance and Transmittance Modes: A Comparative Study

    QIN Hong1, MA Jing-yi1,2, CHEN Shao-jiang3, YAN Yan-lu4,LI Wei-jun1*, WANG Ping2, LIU Jin3

    1. Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China 2. College of Information and Control Engineering,China University of Petroleum (Huadong),Qingdao 266580,China 3. National Maize Improvement Center, China Agricultural University, Beijing 100193, China 4. College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China

    The spectra measurements mode that suitable for haploid maize kernel identification was explored using MicroNIR-1700 series of miniature near infrared spectrometer by JDSU company. Based on Near Infrared Spectroscopy (NIRS) qualitative analysis techniques, we conducted a comparative study using reflectance and transmittance spectra to identify haploid maize kernels. Partial least squares-discriminant analysis(PLS-OLDA) was used to compress the pretreated spectral data, and then the identification models were built based on Support Vector Machine (SVM). The measured data were recorded in reflectance and transmittance modes and the recognition correct rates were calculated. For measurements taken in reflectance mode, the average recognition rate was less than 60% regardless of embryo side positions. In transmittance mode, however, the average recognition rate reached 93.2%. The experiment results show that diffuse reflection spectrum could only obtain corn grain surface information, so embryo side positions severely affect haploid maize kernel identification effect when reflectance measurements mode have been employed, but they have far less impact on transmittance mode. The near infrared diffuse transmittance spectra analyzes non-uniform samples can achieve the analysis of optical path depth information accumulation, all information of the sample interior can be obtained, so transmittance spectra could identify haploid maize effectively and be desensitized to kernel positions. NIRS qualitative analysis techniques with features of rapid, nondestructive could identify the haploid and Micro-NIR spectrometer scan fast and cost less, which have utility for automatically selecting haploid maize kernels from hybrid kernels.

    Near Infrared Spectroscopy; Haploid maize identification; Reflectance spectra;Transmittance spectra; Qualitative analysis

    Biography:QIN Hong, (1977—), Female, Engineer, Institute of Semiconductors, Chinese Academy of Sciences e-mail:qinh@semi.ac.cn *Corresponding author e-mail:wjli@semi.ac.cn

    Introduction

    It can accelerate the process of breeding and improve the efficiency of breeding, by using the haploid technology for getting pure line and then breeding inbred lines. Thus, in recent years, the haploid breeding of maize on the basis of biological induction has gradually become one of the key technologies of maize breeding[1]. Due to the low probability of natural production of haploid (0.05%~0.1%), less than 10% even artificially induced[2], it is significant for maize haploid breeding to study how to rapidly and accurately identify the haploid kernel from the induction produced large amounts of kernels.

    At present, the conventional method for identification of haploid breeding units is the genetic marker method[3], which mainly rely on color indication of the kernel and artificial means for the identification and separation of kernel haploid. Artificial selection, relying on naked-eye observation, easily leads to fatigue of vision and brain, reduces efficiency while increases misidentification, and is subjectively, laborious and time consuming. In addition, a lot of material is very weak for color indication, this will lead to identification efficiency is reduced, the identification result is not ideal. Therefore, we need to develop rapid identification technology which is easier for automation implementation. Zhang Junxiong, etc.[4]studied a feature extraction and dynamic recognition method for maize haploid seeds embryos. The correct recognition rate for maize haploid is 98.04%, for chimeras is 94.44%. The method is based on machine vision technology, suitable for varieties with clear color indication, and needs to identify seed embryo surface, and place maize seeds according to the orientation of embryo surface, not easy to implement automation in its true sense. Liu Jin, etc.[5], studied pollen xenia effect and nuclear magnetic resonance (NMR) technology based on the oil content, to separate maize haploid kernels adopting the method of oil content detection, with an average recognition rate of 92.3%, recognition speed of 4 sec/kernels. This method is of good results in detection and separation, but can only identify kernels of high oil content inducer, and is difficult to popularize for public due to the expensiveness of NMR instruments.

    NIRS qualitative analysis techniques with features of rapid, nondestructive, low cost detection, easy to operate, etc.[6], are very extensive in the applied research of crop seed identification, and superior results of identification have been achieved. But the NIR qualitative research for haploid maize seed identification has not yet been reported. At present, the conventional near infrared spectral analysis mainly focus on diffuse reflectance spectra, the object samples for diffuse reflectance spectra analysis request uniform samples, and need to meet certain quality or volume requirements. Maize seeds are different in size and shape, and the concentration of composition within the kernel are uneven, the difference of shape is small between maize haploid and polyploid of the same variety, the nature of the differences between them exist in the kernel interior especially embryo. Using diffuse reflectance spectrometry to analyze a single seed, the size, shape, surface morphology and position placed, etc. of the seed will severely affect the results of the analysis, which is called position effect. Position effect leads to the conventional near infrared spectra analysis technique is not applicable to single kernel seed, which is one of the main reasons for that single kernel seed near infrared spectra analysis is currently not practical. While the near infrared diffuse transmittance spectra analyzes non-uniform samples can achieve the analysis of optical path depth information accumulation, all information of the sample interior can be obtained, the influence of position effect to analysis is reduced to a great extent. In this paper, qualitative near infrared spectroscopy analysis method is applied to the identification of maize haploid kernels, and identification results of diffuse reflectance spectra and diffuse transmittance spectra are compared. Experimental results show that in the case of regardless of embryo orientation, spectra obtained from the way of diffuse reflectance measuring cannot effectively identify maize haploid. While adopting diffuse transmittance measurement method, of which the near infrared spectra composition carries more information of the kernel interior, so as to achieve the effective identification of maize haploid and polyploid. Diffuse transmittance identification method based on micro spectrometer is of no special requirements for samples, simple operation, fast speed, low cost, easy to implement practical automatic identification and sorting system for maize haploid seeds.

    1 Experiments

    1.1 Instruments and equipment

    For instrument we use MicroNIR-1700 series of miniature near infrared spectrometer by JDSU company, schematic diagram is shown in Fig.1. Instrument parameters are as follows: light source are the double integration vacuum tungsten lamps, spectral components: linear variable filter (LVF), probe types: 128 linear elements uncooled indium gallium arsenic (InGaAs) diode array, wavelength range: 950~1 650 nm, resolution: 12.5 nm, measuring time (typical): 0.25 seconds. Data analysis software is Matlab2010b (the United States, the Mathworks company).

    Fig.1 Schematic diagram of the MicroNIR reflectance measurements

    Experiments were divided into diffuse reflectance and diffuse transmittance of two groups: diffuse reflectance experiment used the built-in light source of micro spectrometer, i.e. double integration vacuum tungsten lamps, light illuminated the maize kernel from the bottom, the optical signal detector captured was the diffuse reflectance of the maize kernel; the built-in light source was shut in the diffuse transmittance experiment, the halogen tungsten lamp was used as external light source, light illuminated the maize kernel from the top diagonal, the optical signal detector captured was the diffuse transmittance of the maize kernel.

    1.2 Sample source and spectra acquisition

    The haploid and polyploid of maize kernels, provided by national maize improvement center, which are Navajo genetic marker imported and hybridization induced, are experimented as the research object.

    In diffuse reflectance experiments, the data was collected for five days (October 16, 2013, October 17, 2013, October 18, 2013, October 21, 2013 and October 22, 2013), 100 each haploid and polyploid spectra were collected every day, including 35 kernel embryo face down and 35 kernel embryo face up, 30 seed kernels were placed randomly. The data of five days were numbered as R1~R5 according to the sequence of collection time. Spectral curves are shown in Fig.2(a).

    In diffuse transmittance experiments, data was collected for three days (May 26, 2014, May 27, 2014 and May 28, 2014), a set of data was collected in the morning and another in the afternoon every day with a total of 6 sets of data, 50 spectral data for haploid and polyploidy in each set, all kernels are randomly placed. The data of three days were numbered as T1~T5 according to the sequence of collection time. Spectral curves are shown in Fig.2(b). It is observed from the spectrogram, absorbance range of diffuse reflectance spectra is 0.15~0.45, the discrete degree is about 0.3; and absorbance range of diffuse transmittance spectra is 0~0.15, the discrete degree is about 0.15. The same kind of corn seeds were with similar structure and composition. Near-infrared diffuse transmission spectrum of single grain reflects its overall structure and components, so near infrared spectrum of the same kind maize seeds was with the relatively closer characteristics and the smaller discrete degree, this is not the foundation of the same kind of corn seed identification. This is the identified foundation of different kinds of maize seed. While the diffuse reflection spectrum is different. If the endosperm of seeds was faced with light, the starchy material of endosperm (characteristic compooents) was with stronger absorption of light, reflected in the diffuse reflection spectrum was with the relatively stronger O—H characteristic peak. If the embryo of seeds was faced with light, the protein material of endosperm (characterisuic components) was with stronger absorption of light, reflected in the diffuse reflection spectrum was with the relatively stronger N—H characteristic peak. The actual measured spectra of these two types of seed spectrum was usually mixed together, resulting in the discrete degree of the diffuse reflectance spectral set was greater than the diffuse transmittance and therefore the accuracy of the seed identification was affected. Compared with diffuse reflectance spectra, the discrete degree of absorbance for diffuse transmittance spectra is smaller; the accuracy of spectral analysis is higher[7].

    Fig.2 Schematic diagram of the spectral curve

    1.3 Spectral preprocessing, feature extraction and modeling

    The preprocessing for original spectral data[8]applies the combination of Smoothing, First Derivative (FD) and Vector Normalization (VN) (this section is not the key point studied in this paper, thus here is no detailed introduction).

    After above preprocessing for the original spectra, based on the method of literature[8], PLS+OLDA is used for data feature extraction. Partial least-squares regression (PLS)[9]data decomposition and regression were combined to one step, the obtained eigenvalue vectors were directly related to the nature of varieties classified, the extracted comprehensive composition can maximally reflect the features of category information. Orthogonal linear discriminant analysis (OLDA) is an improvement of linear discriminant analysis (LDA), which is a kind of classical effective method of dimension reduction. By finding a projection matrix composed of discriminant vector, the projection of raw data towards low dimension space, makes similar samples as focused as possible, non-similar sample as disperse as possible, i.e. maximize the ratio of distribution of inter-class and intra-class[10]. The OLDA[11]makes the discriminant vector a set of mutually orthogonal projection vector.

    In this paper, support vector machine (SVM) method is adopted to build the maize haploid identification model. SVM is a machine learning method, through a nonlinear mapping, the sample!space is mapped into a feature space of high dimension even infinite dimension, making the nonlinear separable problem in original sample space transformed into a linear separable problem in feature space[12]. The SVM method is often used in binary classification problems, thus we choose SVM as classifier for maize haploid and polyploid identification problems.

    The experimental data, including reflectance and diffuse transmittance, were processed using the same algorithm. The first step, the PLS algorithm was used to reduce the dimensionality of the pretreated data. The second step, the former 9-dimensional data obtained were reduced to a two-dimensional using the laboratory prepared OLDA algorithm code. The final step, the species identification model was established by the SVM algorithm (polynomial kernel).

    1.4 Diffuse reflectance experiment

    Modeling with data set R1, test for R2~R5, count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 1.

    Table 1 Result of test sets in diffuse reflectance conditions

    It can be seen from the result in Table 1, the average recognition rate for maize haploid and polyploid is between 44%~55%, less than 60%. Applying experiment scheme of diffuse reflectance illumination is unable to effectively identify maize haploid and polyploid.

    In order to further explore the influence of the maize kernel embryo surface orientation to the recognition results, the following two sets of experiments are designed. The first set of experiments modeling with 35 spectra with kernel embryo facing down in data set R4, test 35 spectra in data set R5 corresponding to the spectra of kernel embryo facing down and kernel embryo facing up, respectively. The second set of experiments modeling with 35 spectra with kernel embryo facing up in data set R4, test 35 spectra in data set R5 corresponding to the spectra of kernel embryo facing up and kernel embryo facing down, respectively. Count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 2.

    Table 2 Result of test sets in diffuse reflectance conditions with embryo surface orientation

    Analyzing data in Table 2, the kernel embryo placed facing down, the diffuse reflectance spectra contains information of embryo most, with the recognition rate of 100%; the kernel embryo placed facing up, diffuse reflectance spectra contains less proportion of information of embryo, recognition rate is significantly reduced; Under the worst circumstance (embryo surface orientation of modeling set and testing set are opposite), diffuse reflectance spectra cannot effectively identify haploid and polyploid. analysis results suggest due to the position effect of diffuse reflectance spectra, the essential difference between maize haploid and polyploid of the same variety exists in the kernel interior especially embryo, thus the orientation of maize kernel embryo surface is the main causes of that the diffuse reflectance spectra is unable to accurately identify maize haploid kernels. In order to achieve rapid and automatic sorting of maize haploid kernels without artificial participation, low recognition rate as a result of the orientation of maize kernel embryo surface needs to be solved.

    1.5 Diffuse transmittance experiment

    Shut the built-in light source of micro spectrometer, use the external light source to illuminate the maize kernel, collect the near infrared diffuse transmittance spectra. To prevent the damage of spectrometer caused by high light direct illumination to the detector, adjust the angle of incidence light to about 45-degree with the kernel. The detector collected are near infrared diffuse reflectance spectra through maize kernel, which carry a large number of information of sample interior, can largely reduce the influence of position effect to analysis. In this experiment, the kernels were placed randomly; orientation of embryo surface was not distinguished.

    Use T1 as modeling set, test for T2~T6, count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 3.

    Table 3 Result of test sets in diffuse transmittance conditions

    It is observed from data in Table 3, the minimum average recognition rate is 88%, the maximum achieves 98%, the average is 93.2%, i.e. adopting diffuse transmittance method can effectively identify maize haploid and polyploid kernel. In addition, the collection time of modeling data and the collection time of test set data were not completely on the same day. In Table 3, the collection time of modeling data of set T1 was on 26th, the collection time of data used to test set T6 was on 28th, the recognition rate can still achieve 92%, the results show that modeling with diffuse transmittance spectra is of certain time stability, to satisfy practical applications.

    Diffuse transmittance spectra collection without distinction of the orientation of maize kernel embryo surface can effectively identify maize haploid seeds, and the model stability is good, which provides technical basis for automatic collection and spectra identification. It takes only 0.25 s for a single spectra collection by miniature near infrared spectrometer; these advantages provide the possibilities for subsequent development of high throughput automatic sorting equipment for maize haploid kernels.

    2 The results and discussion

    This paper based on NIRS qualitative analysis technology, compared the identification results of maize haploid with diffuse reflectance and transmittance spectra. The experiment results show that regardless of the orientation of kernel embryo surface, using diffuse reflectance spectra cannot identify maize haploid effectively; while using diffuse transmittance spectra can effectively identify the haploid and polyploid, with an average correct recognition rate of 93.2%, and the time stability of the model is preferable. The analysis suggests that, diffuse reflectance spectra mainly contain the material information of the sample surface and shallow, tending to be more influenced by factors of maize kernels such as size, surface morphology, embryo surface orientation, etc., reducing the proportion of information of differences between haploid and polyploid category, increasing the difficulties for maize haploid identification. Diffuse transmittance experiments use an external light source to illuminate maize kernel, the detector collected are near infrared diffuse transmittance spectra through the kernel, which carry more information of differences between haploid and polyploid kernel interior. Therefore, in the circumstance that regardless of orientation, it is still able to effectively identify maize haploid and polyploid kernels.

    3 Conclusions

    This paper based on MicroNIR-1700 series miniature near infrared spectrometer of JDSU Company, using NIRS qualitative analysis methods, did related research for maize haploid and polyploid identification problems. The study found that the differences between maize kernel haploid and polyploid were mainly in the embryo, and diffuse reflectance spectra carry information of the kernel surface and shallow, therefore, in the circumstance that regardless of orientation, near infrared diffuse reflectance spectra analysis cannot effectively identify haploid, while diffuse transmittance spectra carrying a lot of information, to a great extent overcome the shortage that diffuse reflectance spectra is kernel embryo surface orientation sensitive. Applying the diffuse transmittance analysis method that external light source illuminate maize kernel proposed in this paper, can achieve the average correct recognition rate for haploid and polyploid 93.2%, miniature near infrared spectrometer is of low cost, fast spectra collection speed, simple operation. The near infrared diffuse transmittance spectra qualitative analysis combined with micro near infrared device studied in this paper, is easy to implement high throughput automatic identification system equipment for maize haploid kernels, is of great practical value.

    [1] Shi Xiaodong, Gao Runmei. Plant Tissue Cultivation. Beijing: China Agricultural Science and Technology Press,2009.

    [2] Cai Zhuo, Xu Guoliang. Journal of Maize Sciences,2008,16(1): 1.

    [3] Zhao Yanming, Dong Shuting, Zhang Suoliang, et al. Journal of Maize Sciences,2007, 15(5):60.

    [4] Zhang Junxiong, Wu Zhanyuan, Song Peng, et al. Transactions of the Chinese Society of Agricultural Engineering,2013, 29(4):199.

    [5] Liu Jin, Guo Tingting. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(z2): 233.

    [6] Lu Wanzhen, Yuan Hongfu, Xu Guangtong, et al. Modern Near Infrared Spectroscopy Analytical Technology(Second Edition). Beijing: China Petrochemical Press, 2007.

    [7] Yan Yanlu. Modern Instrumental Analysis(Third Edition). Beijing: China Agricultural University Press,2010.

    [8] Zhang Liping, Li Weijun, WANG Ping, et al. Spectroscopy and Spectral Analysis, 2012, 32(10): 2785.

    [9] Svante Wold,Michael Sjostroma,et al. Chemometrics and Intelligent Laboratory Systems,2001,58:109.

    [10] Duda R O,Hart P E,Stork D G. Pattern Classification. Translated by Li Hongdong,Yao Tianxiang,et al. Beijing:China Machine Press,2003.

    [11] Fan Bin,Lei Zhen,et al. Proceedings of 8th IEEE International Conference on Automatic Face & Gesture Recognition,2008. 1.

    [12] Zhang Shanwen, Jia Qingjie, Jing Rongzhi. Journal of Anhui Agricultural Sciences, 2012,40(1):9.

    *通訊聯(lián)系人

    O657.3; S123

    A

    基于近紅外漫反射與漫透射光譜的玉米單倍體鑒別比較研究

    覃 鴻1,馬競一1,2,陳紹江3,嚴(yán)衍祿4,李衛(wèi)軍1*,王 平2,劉 金3

    1. 中國科學(xué)院半導(dǎo)體研究所高速電路與神經(jīng)網(wǎng)絡(luò)實驗室,北京 100083 2. 中國石油大學(xué)(華東)信息與控制工程學(xué)院,山東 青島 266580 3. 中國農(nóng)業(yè)大學(xué)國家玉米改良中心,北京 100193 4. 中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083

    使用JDSU公司的MicroNIR1700型微型近紅外光譜儀,研究了適合進(jìn)行單籽粒玉米單倍體鑒別的光譜測量方法。基于近紅外光譜定性分析技術(shù),比較了漫反射和漫透射兩種情況下玉米單倍體鑒別的效果。光譜數(shù)據(jù)經(jīng)過預(yù)處理后,采用PLS+OLDA特征提取算法,應(yīng)用SVM建立玉米單倍體鑒別模型,分別統(tǒng)計漫反射和漫透射實驗條件下,鑒別模型的正確識別率。在微型光譜儀內(nèi)置光源漫反射的光譜測量方式下,不分胚面朝向,玉米單倍體籽粒平均識別率低于60%,不能有效鑒別玉米單倍體和多倍體。而采用外置光源對籽粒進(jìn)行漫透射光譜測量方式,獲得了平均正確識別率為93.2%的鑒別效果,并且模型穩(wěn)定性好。實驗結(jié)果表明,漫反射光譜僅能獲得玉米籽粒表層信息,因此玉米籽粒胚面朝向嚴(yán)重影響漫反射光譜鑒別單倍體種子的效果;而漫透射光譜可以實現(xiàn)分析光程縱深信息全累加,能夠得到樣品內(nèi)部的信息,因此對胚面朝向不敏感,能夠有效地對隨機擺放的玉米單倍體和多倍體進(jìn)行識別。近紅外方法能快速、無損地鑒別單倍體,并且微型光譜儀采集速度快,成本低,為實現(xiàn)實用化的自動鑒別提供了條件。

    近紅外光譜;單倍體鑒別;漫透射;漫反射;定性分析

    2014-09-23,

    2014-12-10)

    2014-09-23; accepted:2014-12-10

    National Key Scientific Instrument and Equipment Development Project(2014YQ470377), the China Scholarship Council (201404910237)

    10.3964/j.issn.1000-0593(2016)01-0292-06

    猜你喜歡
    單倍體朝向識別率
    朝向馬頭的方向
    遼河(2022年1期)2022-02-14 21:48:35
    朝向馬頭的方向
    遼河(2022年1期)2022-02-14 05:15:04
    不同除草劑對玉米單倍體成熟胚的加倍效果
    基于類圖像處理與向量化的大數(shù)據(jù)腳本攻擊智能檢測
    計算機工程(2020年3期)2020-03-19 12:24:50
    基于真耳分析的助聽器配戴者言語可懂度指數(shù)與言語識別率的關(guān)系
    烏龜快跑
    提升高速公路MTC二次抓拍車牌識別率方案研究
    玉米單倍體育性自然恢復(fù)研究進(jìn)展
    高速公路機電日常維護(hù)中車牌識別率分析系統(tǒng)的應(yīng)用
    微生物學(xué)
    久99久视频精品免费| 欧美成人a在线观看| 亚洲精品粉嫩美女一区| 他把我摸到了高潮在线观看| 精品午夜福利在线看| eeuss影院久久| 亚洲av成人不卡在线观看播放网| 亚洲av成人不卡在线观看播放网| ponron亚洲| 全区人妻精品视频| 99久久久亚洲精品蜜臀av| 亚洲精品在线美女| 亚洲成人久久性| 91av网一区二区| 成人特级av手机在线观看| 高清毛片免费观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 看黄色毛片网站| 精品国产亚洲在线| 久久精品国产清高在天天线| 国产精品久久视频播放| 亚洲不卡免费看| 搞女人的毛片| 国产午夜精品久久久久久一区二区三区 | 国产国拍精品亚洲av在线观看| 日日干狠狠操夜夜爽| 免费在线观看成人毛片| 9191精品国产免费久久| 大型黄色视频在线免费观看| 精品久久国产蜜桃| 欧美xxxx性猛交bbbb| 亚洲国产色片| 国产视频内射| 少妇的逼水好多| 午夜福利在线观看免费完整高清在 | 91av网一区二区| 激情在线观看视频在线高清| 中文字幕久久专区| 日韩av在线大香蕉| 午夜福利在线观看吧| 俄罗斯特黄特色一大片| 综合色av麻豆| 深爱激情五月婷婷| 69av精品久久久久久| 欧美xxxx黑人xx丫x性爽| 国产精品嫩草影院av在线观看 | 国产亚洲欧美在线一区二区| 男女之事视频高清在线观看| 久久亚洲真实| 在现免费观看毛片| 很黄的视频免费| 亚洲av电影不卡..在线观看| 一级a爱片免费观看的视频| 免费电影在线观看免费观看| 桃红色精品国产亚洲av| av在线老鸭窝| 动漫黄色视频在线观看| 国产免费av片在线观看野外av| 亚洲av熟女| 成年女人毛片免费观看观看9| netflix在线观看网站| 国产乱人视频| 欧美日韩中文字幕国产精品一区二区三区| 久久久久性生活片| 亚洲中文日韩欧美视频| 久久久久亚洲av毛片大全| 精品久久国产蜜桃| 日本黄色片子视频| 国内精品一区二区在线观看| 少妇被粗大猛烈的视频| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产99精品国产亚洲性色| 在线国产一区二区在线| 日本五十路高清| 淫秽高清视频在线观看| 亚洲成a人片在线一区二区| 波多野结衣巨乳人妻| 色哟哟哟哟哟哟| 国产成年人精品一区二区| 一本久久中文字幕| 欧美最黄视频在线播放免费| 身体一侧抽搐| 精品午夜福利在线看| 亚洲av免费高清在线观看| 久久久久久久亚洲中文字幕 | 熟女人妻精品中文字幕| 国产伦精品一区二区三区四那| 日韩中文字幕欧美一区二区| 亚洲成人精品中文字幕电影| 亚洲av免费在线观看| 欧美日韩中文字幕国产精品一区二区三区| 嫩草影院入口| 99热这里只有是精品在线观看 | 国产精品亚洲美女久久久| 在线a可以看的网站| 成人美女网站在线观看视频| 亚洲一区高清亚洲精品| 久久久色成人| 亚洲精品久久国产高清桃花| 日日干狠狠操夜夜爽| 美女免费视频网站| 亚洲经典国产精华液单 | av天堂中文字幕网| 亚洲成人免费电影在线观看| 欧美一区二区精品小视频在线| 最新中文字幕久久久久| 精品久久国产蜜桃| 性插视频无遮挡在线免费观看| 一级作爱视频免费观看| 日韩欧美在线二视频| 波多野结衣巨乳人妻| 国产乱人伦免费视频| 国产av麻豆久久久久久久| 国产成人啪精品午夜网站| 久久久国产成人免费| 美女免费视频网站| 久久中文看片网| 男女做爰动态图高潮gif福利片| 国产高清视频在线播放一区| 国产精品综合久久久久久久免费| 日韩人妻高清精品专区| 久久国产乱子伦精品免费另类| 国产高清激情床上av| 嫩草影院精品99| 国产亚洲av嫩草精品影院| 少妇人妻精品综合一区二区 | 一级毛片久久久久久久久女| 能在线免费观看的黄片| 国产精品永久免费网站| 久久久久免费精品人妻一区二区| 久久香蕉精品热| 日韩中字成人| 18禁在线播放成人免费| 禁无遮挡网站| 乱码一卡2卡4卡精品| 欧美激情久久久久久爽电影| 久久精品人妻少妇| 久久精品国产清高在天天线| 两个人视频免费观看高清| 可以在线观看的亚洲视频| 亚洲久久久久久中文字幕| 午夜视频国产福利| 全区人妻精品视频| 日韩精品青青久久久久久| 国产精品av视频在线免费观看| 久久99热这里只有精品18| 欧美黑人欧美精品刺激| or卡值多少钱| 色播亚洲综合网| 最后的刺客免费高清国语| 日韩 亚洲 欧美在线| 国产久久久一区二区三区| 黄色配什么色好看| 午夜福利18| 色吧在线观看| 亚洲成人精品中文字幕电影| 精品久久久久久久久av| 男人的好看免费观看在线视频| 成人亚洲精品av一区二区| 国产伦在线观看视频一区| 人妻夜夜爽99麻豆av| 宅男免费午夜| 人妻久久中文字幕网| 色综合欧美亚洲国产小说| 韩国av一区二区三区四区| 此物有八面人人有两片| 色哟哟·www| 97热精品久久久久久| 国产精品美女特级片免费视频播放器| 免费在线观看日本一区| 伦理电影大哥的女人| 99久久久亚洲精品蜜臀av| 色在线成人网| 午夜福利18| 九色成人免费人妻av| 成人午夜高清在线视频| 国产日本99.免费观看| 国产精品野战在线观看| 老熟妇乱子伦视频在线观看| 亚洲专区国产一区二区| 深夜a级毛片| 露出奶头的视频| 欧美色视频一区免费| 久久人妻av系列| h日本视频在线播放| 美女免费视频网站| 黄色视频,在线免费观看| 欧美xxxx性猛交bbbb| 成人一区二区视频在线观看| 亚洲国产高清在线一区二区三| 久久久成人免费电影| 欧美zozozo另类| 欧美成人免费av一区二区三区| 麻豆一二三区av精品| 日韩中文字幕欧美一区二区| 亚洲精品亚洲一区二区| 黄色女人牲交| 免费人成视频x8x8入口观看| 婷婷丁香在线五月| 欧美日韩亚洲国产一区二区在线观看| 91狼人影院| 国产高潮美女av| 精品久久久久久久久亚洲 | 久久婷婷人人爽人人干人人爱| 国产高清有码在线观看视频| 男人和女人高潮做爰伦理| 国产欧美日韩一区二区精品| 黄色丝袜av网址大全| 亚洲av五月六月丁香网| 一区二区三区激情视频| 99国产极品粉嫩在线观看| 久久婷婷人人爽人人干人人爱| 长腿黑丝高跟| 国产精品嫩草影院av在线观看 | 欧美乱妇无乱码| 人妻丰满熟妇av一区二区三区| 国产三级在线视频| 给我免费播放毛片高清在线观看| 在线国产一区二区在线| 久久中文看片网| 国内精品久久久久久久电影| 在线a可以看的网站| 淫秽高清视频在线观看| 亚洲人成网站高清观看| avwww免费| 久99久视频精品免费| 激情在线观看视频在线高清| 色哟哟·www| 国产精品久久电影中文字幕| 国产三级中文精品| 欧美黑人巨大hd| 赤兔流量卡办理| 黄色女人牲交| 老司机午夜福利在线观看视频| 国产极品精品免费视频能看的| av在线天堂中文字幕| 国产在视频线在精品| av在线观看视频网站免费| 一边摸一边抽搐一进一小说| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 欧美成人免费av一区二区三区| 成人av一区二区三区在线看| 久久久久国内视频| 人妻制服诱惑在线中文字幕| 午夜福利免费观看在线| 国产色婷婷99| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 女同久久另类99精品国产91| 欧美zozozo另类| a级一级毛片免费在线观看| 午夜福利欧美成人| 欧美色欧美亚洲另类二区| 欧美区成人在线视频| 免费看美女性在线毛片视频| 国产伦精品一区二区三区四那| 搡女人真爽免费视频火全软件 | 欧美日韩中文字幕国产精品一区二区三区| 十八禁国产超污无遮挡网站| 国产精品av视频在线免费观看| 午夜激情欧美在线| 人妻夜夜爽99麻豆av| 国产精品久久久久久人妻精品电影| 精品久久久久久久人妻蜜臀av| 久久精品国产亚洲av香蕉五月| x7x7x7水蜜桃| 国内少妇人妻偷人精品xxx网站| 亚洲五月天丁香| 91九色精品人成在线观看| 在线免费观看的www视频| bbb黄色大片| netflix在线观看网站| 国产av在哪里看| 国产精品久久久久久精品电影| 一个人免费在线观看电影| 午夜精品久久久久久毛片777| 亚洲三级黄色毛片| 成人毛片a级毛片在线播放| 一个人免费在线观看的高清视频| 老司机午夜十八禁免费视频| 国产伦一二天堂av在线观看| 3wmmmm亚洲av在线观看| 18美女黄网站色大片免费观看| 真实男女啪啪啪动态图| 人妻夜夜爽99麻豆av| a级毛片免费高清观看在线播放| 国内精品久久久久久久电影| 欧美乱色亚洲激情| 国产一区二区在线观看日韩| 狂野欧美白嫩少妇大欣赏| 欧美区成人在线视频| av视频在线观看入口| 免费av观看视频| 精品乱码久久久久久99久播| 人妻久久中文字幕网| 此物有八面人人有两片| 天美传媒精品一区二区| 天堂av国产一区二区熟女人妻| eeuss影院久久| 在线免费观看不下载黄p国产 | 精品一区二区免费观看| 99热这里只有精品一区| 老熟妇仑乱视频hdxx| 欧美成人一区二区免费高清观看| 亚洲经典国产精华液单 | 日本成人三级电影网站| 老鸭窝网址在线观看| 国产亚洲精品av在线| 亚洲熟妇熟女久久| 精品久久久久久久久久免费视频| 久久国产乱子伦精品免费另类| 一进一出抽搐动态| 91久久精品电影网| 午夜精品在线福利| 亚洲 欧美 日韩 在线 免费| 在线观看午夜福利视频| av福利片在线观看| 毛片一级片免费看久久久久 | 麻豆成人av在线观看| 一级毛片久久久久久久久女| 色5月婷婷丁香| 国产一区二区在线av高清观看| av黄色大香蕉| 欧美午夜高清在线| 丰满人妻熟妇乱又伦精品不卡| 精品人妻视频免费看| 精品人妻熟女av久视频| 三级国产精品欧美在线观看| 欧美成狂野欧美在线观看| h日本视频在线播放| 免费大片18禁| 久久久久久久久久成人| 超碰av人人做人人爽久久| a级一级毛片免费在线观看| 国产高清视频在线观看网站| 亚洲欧美日韩高清在线视频| 五月玫瑰六月丁香| 亚洲欧美日韩高清在线视频| 美女黄网站色视频| 国产在线精品亚洲第一网站| 香蕉av资源在线| 亚洲美女搞黄在线观看 | 亚洲国产高清在线一区二区三| 欧美成人a在线观看| 欧美激情久久久久久爽电影| 欧美在线一区亚洲| 老熟妇乱子伦视频在线观看| 老鸭窝网址在线观看| 国内精品一区二区在线观看| 69av精品久久久久久| 国产熟女xx| 欧美日韩中文字幕国产精品一区二区三区| 99精品在免费线老司机午夜| 国产精品久久久久久精品电影| 精品久久久久久成人av| 美女大奶头视频| 欧美黄色淫秽网站| 亚洲精品日韩av片在线观看| 老司机午夜福利在线观看视频| 亚洲美女黄片视频| 美女高潮的动态| 婷婷精品国产亚洲av在线| 国产人妻一区二区三区在| 不卡一级毛片| 久9热在线精品视频| 精品一区二区三区人妻视频| 国产真实乱freesex| 三级国产精品欧美在线观看| 一级作爱视频免费观看| 久久精品人妻少妇| a在线观看视频网站| 91在线观看av| 色综合亚洲欧美另类图片| 日韩av在线大香蕉| 亚洲天堂国产精品一区在线| 女同久久另类99精品国产91| 亚洲国产欧洲综合997久久,| 婷婷丁香在线五月| 亚洲片人在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久精品夜夜夜夜夜久久蜜豆| 人妻久久中文字幕网| 日韩中字成人| 日本三级黄在线观看| 日本 av在线| 99热这里只有精品一区| 他把我摸到了高潮在线观看| 国产在线精品亚洲第一网站| 国产av不卡久久| 怎么达到女性高潮| 琪琪午夜伦伦电影理论片6080| 丁香六月欧美| 国产精品精品国产色婷婷| 91在线观看av| 最近中文字幕高清免费大全6 | 免费无遮挡裸体视频| 18禁在线播放成人免费| 国产精品乱码一区二三区的特点| 啪啪无遮挡十八禁网站| 99视频精品全部免费 在线| a在线观看视频网站| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看电影| 夜夜躁狠狠躁天天躁| 午夜日韩欧美国产| 又爽又黄a免费视频| 自拍偷自拍亚洲精品老妇| 亚洲精品影视一区二区三区av| 国产又黄又爽又无遮挡在线| 国产三级在线视频| 欧美色视频一区免费| 一区二区三区激情视频| 久久天躁狠狠躁夜夜2o2o| 欧美精品啪啪一区二区三区| 制服丝袜大香蕉在线| 9191精品国产免费久久| 久久中文看片网| 精品无人区乱码1区二区| 不卡一级毛片| 亚洲精品影视一区二区三区av| 人妻制服诱惑在线中文字幕| 性色av乱码一区二区三区2| 国产激情偷乱视频一区二区| 丁香欧美五月| 亚洲人与动物交配视频| 国产精品98久久久久久宅男小说| 天堂动漫精品| 别揉我奶头 嗯啊视频| 最好的美女福利视频网| 一本一本综合久久| 欧美激情久久久久久爽电影| 久久久久久久午夜电影| 别揉我奶头 嗯啊视频| 国产av在哪里看| 简卡轻食公司| 成人av一区二区三区在线看| 1024手机看黄色片| 少妇高潮的动态图| 欧美精品国产亚洲| 欧美黄色淫秽网站| 午夜福利在线观看免费完整高清在 | 亚洲色图av天堂| 久久人人爽人人爽人人片va | 人人妻人人看人人澡| 久久久成人免费电影| 中文字幕精品亚洲无线码一区| 熟女电影av网| 嫩草影院新地址| av专区在线播放| 搡女人真爽免费视频火全软件 | 中文亚洲av片在线观看爽| 成人午夜高清在线视频| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 精品一区二区三区视频在线| 小说图片视频综合网站| 免费观看人在逋| av专区在线播放| 丰满人妻一区二区三区视频av| 极品教师在线视频| 97碰自拍视频| 欧美色视频一区免费| 欧美区成人在线视频| 欧美激情在线99| 久久精品国产亚洲av涩爱 | 麻豆国产97在线/欧美| 精品久久久久久久久久免费视频| 长腿黑丝高跟| 9191精品国产免费久久| 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 国产亚洲精品久久久com| 亚洲精品亚洲一区二区| 午夜福利成人在线免费观看| 亚洲av免费在线观看| 日日夜夜操网爽| 我要看日韩黄色一级片| 国产黄片美女视频| 国产亚洲精品久久久com| 国产爱豆传媒在线观看| 中出人妻视频一区二区| 99久久精品热视频| 日本一本二区三区精品| 久久久精品欧美日韩精品| 亚洲欧美日韩东京热| 国产成人影院久久av| 日韩人妻高清精品专区| 色av中文字幕| 波多野结衣高清作品| netflix在线观看网站| 日本a在线网址| 国产精品98久久久久久宅男小说| 国产真实乱freesex| 日韩欧美精品v在线| 亚洲第一电影网av| 精品久久国产蜜桃| 757午夜福利合集在线观看| 日韩高清综合在线| 成人国产一区最新在线观看| 国产v大片淫在线免费观看| 国产精品一及| 国产在线男女| 免费人成视频x8x8入口观看| 两个人的视频大全免费| 成年女人毛片免费观看观看9| 91麻豆精品激情在线观看国产| 成人一区二区视频在线观看| 91在线精品国自产拍蜜月| 久久香蕉精品热| 一级黄片播放器| 午夜a级毛片| 啦啦啦观看免费观看视频高清| 免费大片18禁| 亚洲中文字幕日韩| 久久久久性生活片| 国产精品久久久久久精品电影| 国产伦精品一区二区三区四那| 最近中文字幕高清免费大全6 | 国产精品1区2区在线观看.| 日本 欧美在线| 国产乱人伦免费视频| 中亚洲国语对白在线视频| 欧美激情久久久久久爽电影| 日韩欧美免费精品| 91在线观看av| 国产一区二区激情短视频| 国产色婷婷99| 亚洲熟妇中文字幕五十中出| 亚洲第一电影网av| 男女做爰动态图高潮gif福利片| 蜜桃久久精品国产亚洲av| 国产高清激情床上av| 日本三级黄在线观看| 精品一区二区免费观看| 国产在视频线在精品| 国产精品免费一区二区三区在线| 国产又黄又爽又无遮挡在线| 99热只有精品国产| 淫妇啪啪啪对白视频| 波多野结衣高清作品| 免费黄网站久久成人精品 | 午夜精品在线福利| 日本黄色视频三级网站网址| 午夜福利视频1000在线观看| 午夜福利在线观看免费完整高清在 | 午夜日韩欧美国产| 性插视频无遮挡在线免费观看| 国产爱豆传媒在线观看| 国产成人啪精品午夜网站| 国产三级黄色录像| 国产乱人伦免费视频| 18禁黄网站禁片午夜丰满| 热99在线观看视频| 国产在线男女| 欧美成人一区二区免费高清观看| 午夜福利在线在线| 老女人水多毛片| 日韩欧美免费精品| 国内精品美女久久久久久| 极品教师在线视频| 亚洲精品粉嫩美女一区| 亚洲色图av天堂| 无人区码免费观看不卡| 精品一区二区免费观看| netflix在线观看网站| 99riav亚洲国产免费| 亚洲真实伦在线观看| 国产 一区 欧美 日韩| a级毛片免费高清观看在线播放| 国产精品1区2区在线观看.| 国产中年淑女户外野战色| 亚洲av.av天堂| 成人永久免费在线观看视频| 在现免费观看毛片| 国产不卡一卡二| 赤兔流量卡办理| 日韩欧美精品免费久久 | 国产单亲对白刺激| 亚洲18禁久久av| 国产精品国产高清国产av| bbb黄色大片| 亚洲综合色惰| 久久久久久久久久成人| 国产欧美日韩一区二区精品| 3wmmmm亚洲av在线观看| a级一级毛片免费在线观看| 国产精品久久久久久人妻精品电影| 久久精品人妻少妇| 久久精品国产99精品国产亚洲性色| 亚洲av成人av| 欧美+日韩+精品| 国产淫片久久久久久久久 | 欧美日韩福利视频一区二区| 又粗又爽又猛毛片免费看| 亚洲avbb在线观看| 丰满乱子伦码专区| 欧美区成人在线视频| 久久久国产成人精品二区| 99在线人妻在线中文字幕| 国产精品98久久久久久宅男小说| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三| 欧美激情国产日韩精品一区| 精品一区二区三区视频在线| 男女做爰动态图高潮gif福利片| 亚洲国产日韩欧美精品在线观看| 久久九九热精品免费| 精华霜和精华液先用哪个| 怎么达到女性高潮| 性插视频无遮挡在线免费观看| 中文字幕av成人在线电影| 国内久久婷婷六月综合欲色啪| av在线天堂中文字幕| 免费在线观看影片大全网站|