• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Haploid Maize Kernel Using NIR Spectroscopy in Reflectance and Transmittance Modes: A Comparative Study

    2016-06-15 16:36:05QINHongMAJingyiCHENShaojiangYANYanluLIWeijunWANGPingLIUJin
    光譜學(xué)與光譜分析 2016年1期
    關(guān)鍵詞:單倍體朝向識別率

    QIN Hong, MA Jing-yi,, CHEN Shao-jiang, YAN Yan-lu,LI Wei-jun*, WANG Ping, LIU Jin

    1. Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China 2. College of Information and Control Engineering,China University of Petroleum (Huadong),Qingdao 266580,China 3. National Maize Improvement Center, China Agricultural University, Beijing 100193, China 4. College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China

    Identification of Haploid Maize Kernel Using NIR Spectroscopy in Reflectance and Transmittance Modes: A Comparative Study

    QIN Hong1, MA Jing-yi1,2, CHEN Shao-jiang3, YAN Yan-lu4,LI Wei-jun1*, WANG Ping2, LIU Jin3

    1. Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China 2. College of Information and Control Engineering,China University of Petroleum (Huadong),Qingdao 266580,China 3. National Maize Improvement Center, China Agricultural University, Beijing 100193, China 4. College of Information and Electrical Engineering,China Agricultural University,Beijing 100083,China

    The spectra measurements mode that suitable for haploid maize kernel identification was explored using MicroNIR-1700 series of miniature near infrared spectrometer by JDSU company. Based on Near Infrared Spectroscopy (NIRS) qualitative analysis techniques, we conducted a comparative study using reflectance and transmittance spectra to identify haploid maize kernels. Partial least squares-discriminant analysis(PLS-OLDA) was used to compress the pretreated spectral data, and then the identification models were built based on Support Vector Machine (SVM). The measured data were recorded in reflectance and transmittance modes and the recognition correct rates were calculated. For measurements taken in reflectance mode, the average recognition rate was less than 60% regardless of embryo side positions. In transmittance mode, however, the average recognition rate reached 93.2%. The experiment results show that diffuse reflection spectrum could only obtain corn grain surface information, so embryo side positions severely affect haploid maize kernel identification effect when reflectance measurements mode have been employed, but they have far less impact on transmittance mode. The near infrared diffuse transmittance spectra analyzes non-uniform samples can achieve the analysis of optical path depth information accumulation, all information of the sample interior can be obtained, so transmittance spectra could identify haploid maize effectively and be desensitized to kernel positions. NIRS qualitative analysis techniques with features of rapid, nondestructive could identify the haploid and Micro-NIR spectrometer scan fast and cost less, which have utility for automatically selecting haploid maize kernels from hybrid kernels.

    Near Infrared Spectroscopy; Haploid maize identification; Reflectance spectra;Transmittance spectra; Qualitative analysis

    Biography:QIN Hong, (1977—), Female, Engineer, Institute of Semiconductors, Chinese Academy of Sciences e-mail:qinh@semi.ac.cn *Corresponding author e-mail:wjli@semi.ac.cn

    Introduction

    It can accelerate the process of breeding and improve the efficiency of breeding, by using the haploid technology for getting pure line and then breeding inbred lines. Thus, in recent years, the haploid breeding of maize on the basis of biological induction has gradually become one of the key technologies of maize breeding[1]. Due to the low probability of natural production of haploid (0.05%~0.1%), less than 10% even artificially induced[2], it is significant for maize haploid breeding to study how to rapidly and accurately identify the haploid kernel from the induction produced large amounts of kernels.

    At present, the conventional method for identification of haploid breeding units is the genetic marker method[3], which mainly rely on color indication of the kernel and artificial means for the identification and separation of kernel haploid. Artificial selection, relying on naked-eye observation, easily leads to fatigue of vision and brain, reduces efficiency while increases misidentification, and is subjectively, laborious and time consuming. In addition, a lot of material is very weak for color indication, this will lead to identification efficiency is reduced, the identification result is not ideal. Therefore, we need to develop rapid identification technology which is easier for automation implementation. Zhang Junxiong, etc.[4]studied a feature extraction and dynamic recognition method for maize haploid seeds embryos. The correct recognition rate for maize haploid is 98.04%, for chimeras is 94.44%. The method is based on machine vision technology, suitable for varieties with clear color indication, and needs to identify seed embryo surface, and place maize seeds according to the orientation of embryo surface, not easy to implement automation in its true sense. Liu Jin, etc.[5], studied pollen xenia effect and nuclear magnetic resonance (NMR) technology based on the oil content, to separate maize haploid kernels adopting the method of oil content detection, with an average recognition rate of 92.3%, recognition speed of 4 sec/kernels. This method is of good results in detection and separation, but can only identify kernels of high oil content inducer, and is difficult to popularize for public due to the expensiveness of NMR instruments.

    NIRS qualitative analysis techniques with features of rapid, nondestructive, low cost detection, easy to operate, etc.[6], are very extensive in the applied research of crop seed identification, and superior results of identification have been achieved. But the NIR qualitative research for haploid maize seed identification has not yet been reported. At present, the conventional near infrared spectral analysis mainly focus on diffuse reflectance spectra, the object samples for diffuse reflectance spectra analysis request uniform samples, and need to meet certain quality or volume requirements. Maize seeds are different in size and shape, and the concentration of composition within the kernel are uneven, the difference of shape is small between maize haploid and polyploid of the same variety, the nature of the differences between them exist in the kernel interior especially embryo. Using diffuse reflectance spectrometry to analyze a single seed, the size, shape, surface morphology and position placed, etc. of the seed will severely affect the results of the analysis, which is called position effect. Position effect leads to the conventional near infrared spectra analysis technique is not applicable to single kernel seed, which is one of the main reasons for that single kernel seed near infrared spectra analysis is currently not practical. While the near infrared diffuse transmittance spectra analyzes non-uniform samples can achieve the analysis of optical path depth information accumulation, all information of the sample interior can be obtained, the influence of position effect to analysis is reduced to a great extent. In this paper, qualitative near infrared spectroscopy analysis method is applied to the identification of maize haploid kernels, and identification results of diffuse reflectance spectra and diffuse transmittance spectra are compared. Experimental results show that in the case of regardless of embryo orientation, spectra obtained from the way of diffuse reflectance measuring cannot effectively identify maize haploid. While adopting diffuse transmittance measurement method, of which the near infrared spectra composition carries more information of the kernel interior, so as to achieve the effective identification of maize haploid and polyploid. Diffuse transmittance identification method based on micro spectrometer is of no special requirements for samples, simple operation, fast speed, low cost, easy to implement practical automatic identification and sorting system for maize haploid seeds.

    1 Experiments

    1.1 Instruments and equipment

    For instrument we use MicroNIR-1700 series of miniature near infrared spectrometer by JDSU company, schematic diagram is shown in Fig.1. Instrument parameters are as follows: light source are the double integration vacuum tungsten lamps, spectral components: linear variable filter (LVF), probe types: 128 linear elements uncooled indium gallium arsenic (InGaAs) diode array, wavelength range: 950~1 650 nm, resolution: 12.5 nm, measuring time (typical): 0.25 seconds. Data analysis software is Matlab2010b (the United States, the Mathworks company).

    Fig.1 Schematic diagram of the MicroNIR reflectance measurements

    Experiments were divided into diffuse reflectance and diffuse transmittance of two groups: diffuse reflectance experiment used the built-in light source of micro spectrometer, i.e. double integration vacuum tungsten lamps, light illuminated the maize kernel from the bottom, the optical signal detector captured was the diffuse reflectance of the maize kernel; the built-in light source was shut in the diffuse transmittance experiment, the halogen tungsten lamp was used as external light source, light illuminated the maize kernel from the top diagonal, the optical signal detector captured was the diffuse transmittance of the maize kernel.

    1.2 Sample source and spectra acquisition

    The haploid and polyploid of maize kernels, provided by national maize improvement center, which are Navajo genetic marker imported and hybridization induced, are experimented as the research object.

    In diffuse reflectance experiments, the data was collected for five days (October 16, 2013, October 17, 2013, October 18, 2013, October 21, 2013 and October 22, 2013), 100 each haploid and polyploid spectra were collected every day, including 35 kernel embryo face down and 35 kernel embryo face up, 30 seed kernels were placed randomly. The data of five days were numbered as R1~R5 according to the sequence of collection time. Spectral curves are shown in Fig.2(a).

    In diffuse transmittance experiments, data was collected for three days (May 26, 2014, May 27, 2014 and May 28, 2014), a set of data was collected in the morning and another in the afternoon every day with a total of 6 sets of data, 50 spectral data for haploid and polyploidy in each set, all kernels are randomly placed. The data of three days were numbered as T1~T5 according to the sequence of collection time. Spectral curves are shown in Fig.2(b). It is observed from the spectrogram, absorbance range of diffuse reflectance spectra is 0.15~0.45, the discrete degree is about 0.3; and absorbance range of diffuse transmittance spectra is 0~0.15, the discrete degree is about 0.15. The same kind of corn seeds were with similar structure and composition. Near-infrared diffuse transmission spectrum of single grain reflects its overall structure and components, so near infrared spectrum of the same kind maize seeds was with the relatively closer characteristics and the smaller discrete degree, this is not the foundation of the same kind of corn seed identification. This is the identified foundation of different kinds of maize seed. While the diffuse reflection spectrum is different. If the endosperm of seeds was faced with light, the starchy material of endosperm (characteristic compooents) was with stronger absorption of light, reflected in the diffuse reflection spectrum was with the relatively stronger O—H characteristic peak. If the embryo of seeds was faced with light, the protein material of endosperm (characterisuic components) was with stronger absorption of light, reflected in the diffuse reflection spectrum was with the relatively stronger N—H characteristic peak. The actual measured spectra of these two types of seed spectrum was usually mixed together, resulting in the discrete degree of the diffuse reflectance spectral set was greater than the diffuse transmittance and therefore the accuracy of the seed identification was affected. Compared with diffuse reflectance spectra, the discrete degree of absorbance for diffuse transmittance spectra is smaller; the accuracy of spectral analysis is higher[7].

    Fig.2 Schematic diagram of the spectral curve

    1.3 Spectral preprocessing, feature extraction and modeling

    The preprocessing for original spectral data[8]applies the combination of Smoothing, First Derivative (FD) and Vector Normalization (VN) (this section is not the key point studied in this paper, thus here is no detailed introduction).

    After above preprocessing for the original spectra, based on the method of literature[8], PLS+OLDA is used for data feature extraction. Partial least-squares regression (PLS)[9]data decomposition and regression were combined to one step, the obtained eigenvalue vectors were directly related to the nature of varieties classified, the extracted comprehensive composition can maximally reflect the features of category information. Orthogonal linear discriminant analysis (OLDA) is an improvement of linear discriminant analysis (LDA), which is a kind of classical effective method of dimension reduction. By finding a projection matrix composed of discriminant vector, the projection of raw data towards low dimension space, makes similar samples as focused as possible, non-similar sample as disperse as possible, i.e. maximize the ratio of distribution of inter-class and intra-class[10]. The OLDA[11]makes the discriminant vector a set of mutually orthogonal projection vector.

    In this paper, support vector machine (SVM) method is adopted to build the maize haploid identification model. SVM is a machine learning method, through a nonlinear mapping, the sample!space is mapped into a feature space of high dimension even infinite dimension, making the nonlinear separable problem in original sample space transformed into a linear separable problem in feature space[12]. The SVM method is often used in binary classification problems, thus we choose SVM as classifier for maize haploid and polyploid identification problems.

    The experimental data, including reflectance and diffuse transmittance, were processed using the same algorithm. The first step, the PLS algorithm was used to reduce the dimensionality of the pretreated data. The second step, the former 9-dimensional data obtained were reduced to a two-dimensional using the laboratory prepared OLDA algorithm code. The final step, the species identification model was established by the SVM algorithm (polynomial kernel).

    1.4 Diffuse reflectance experiment

    Modeling with data set R1, test for R2~R5, count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 1.

    Table 1 Result of test sets in diffuse reflectance conditions

    It can be seen from the result in Table 1, the average recognition rate for maize haploid and polyploid is between 44%~55%, less than 60%. Applying experiment scheme of diffuse reflectance illumination is unable to effectively identify maize haploid and polyploid.

    In order to further explore the influence of the maize kernel embryo surface orientation to the recognition results, the following two sets of experiments are designed. The first set of experiments modeling with 35 spectra with kernel embryo facing down in data set R4, test 35 spectra in data set R5 corresponding to the spectra of kernel embryo facing down and kernel embryo facing up, respectively. The second set of experiments modeling with 35 spectra with kernel embryo facing up in data set R4, test 35 spectra in data set R5 corresponding to the spectra of kernel embryo facing up and kernel embryo facing down, respectively. Count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 2.

    Table 2 Result of test sets in diffuse reflectance conditions with embryo surface orientation

    Analyzing data in Table 2, the kernel embryo placed facing down, the diffuse reflectance spectra contains information of embryo most, with the recognition rate of 100%; the kernel embryo placed facing up, diffuse reflectance spectra contains less proportion of information of embryo, recognition rate is significantly reduced; Under the worst circumstance (embryo surface orientation of modeling set and testing set are opposite), diffuse reflectance spectra cannot effectively identify haploid and polyploid. analysis results suggest due to the position effect of diffuse reflectance spectra, the essential difference between maize haploid and polyploid of the same variety exists in the kernel interior especially embryo, thus the orientation of maize kernel embryo surface is the main causes of that the diffuse reflectance spectra is unable to accurately identify maize haploid kernels. In order to achieve rapid and automatic sorting of maize haploid kernels without artificial participation, low recognition rate as a result of the orientation of maize kernel embryo surface needs to be solved.

    1.5 Diffuse transmittance experiment

    Shut the built-in light source of micro spectrometer, use the external light source to illuminate the maize kernel, collect the near infrared diffuse transmittance spectra. To prevent the damage of spectrometer caused by high light direct illumination to the detector, adjust the angle of incidence light to about 45-degree with the kernel. The detector collected are near infrared diffuse reflectance spectra through maize kernel, which carry a large number of information of sample interior, can largely reduce the influence of position effect to analysis. In this experiment, the kernels were placed randomly; orientation of embryo surface was not distinguished.

    Use T1 as modeling set, test for T2~T6, count the correct recognition rate for haploid and polyploid respectively, and averaging. The test result is shown in Table 3.

    Table 3 Result of test sets in diffuse transmittance conditions

    It is observed from data in Table 3, the minimum average recognition rate is 88%, the maximum achieves 98%, the average is 93.2%, i.e. adopting diffuse transmittance method can effectively identify maize haploid and polyploid kernel. In addition, the collection time of modeling data and the collection time of test set data were not completely on the same day. In Table 3, the collection time of modeling data of set T1 was on 26th, the collection time of data used to test set T6 was on 28th, the recognition rate can still achieve 92%, the results show that modeling with diffuse transmittance spectra is of certain time stability, to satisfy practical applications.

    Diffuse transmittance spectra collection without distinction of the orientation of maize kernel embryo surface can effectively identify maize haploid seeds, and the model stability is good, which provides technical basis for automatic collection and spectra identification. It takes only 0.25 s for a single spectra collection by miniature near infrared spectrometer; these advantages provide the possibilities for subsequent development of high throughput automatic sorting equipment for maize haploid kernels.

    2 The results and discussion

    This paper based on NIRS qualitative analysis technology, compared the identification results of maize haploid with diffuse reflectance and transmittance spectra. The experiment results show that regardless of the orientation of kernel embryo surface, using diffuse reflectance spectra cannot identify maize haploid effectively; while using diffuse transmittance spectra can effectively identify the haploid and polyploid, with an average correct recognition rate of 93.2%, and the time stability of the model is preferable. The analysis suggests that, diffuse reflectance spectra mainly contain the material information of the sample surface and shallow, tending to be more influenced by factors of maize kernels such as size, surface morphology, embryo surface orientation, etc., reducing the proportion of information of differences between haploid and polyploid category, increasing the difficulties for maize haploid identification. Diffuse transmittance experiments use an external light source to illuminate maize kernel, the detector collected are near infrared diffuse transmittance spectra through the kernel, which carry more information of differences between haploid and polyploid kernel interior. Therefore, in the circumstance that regardless of orientation, it is still able to effectively identify maize haploid and polyploid kernels.

    3 Conclusions

    This paper based on MicroNIR-1700 series miniature near infrared spectrometer of JDSU Company, using NIRS qualitative analysis methods, did related research for maize haploid and polyploid identification problems. The study found that the differences between maize kernel haploid and polyploid were mainly in the embryo, and diffuse reflectance spectra carry information of the kernel surface and shallow, therefore, in the circumstance that regardless of orientation, near infrared diffuse reflectance spectra analysis cannot effectively identify haploid, while diffuse transmittance spectra carrying a lot of information, to a great extent overcome the shortage that diffuse reflectance spectra is kernel embryo surface orientation sensitive. Applying the diffuse transmittance analysis method that external light source illuminate maize kernel proposed in this paper, can achieve the average correct recognition rate for haploid and polyploid 93.2%, miniature near infrared spectrometer is of low cost, fast spectra collection speed, simple operation. The near infrared diffuse transmittance spectra qualitative analysis combined with micro near infrared device studied in this paper, is easy to implement high throughput automatic identification system equipment for maize haploid kernels, is of great practical value.

    [1] Shi Xiaodong, Gao Runmei. Plant Tissue Cultivation. Beijing: China Agricultural Science and Technology Press,2009.

    [2] Cai Zhuo, Xu Guoliang. Journal of Maize Sciences,2008,16(1): 1.

    [3] Zhao Yanming, Dong Shuting, Zhang Suoliang, et al. Journal of Maize Sciences,2007, 15(5):60.

    [4] Zhang Junxiong, Wu Zhanyuan, Song Peng, et al. Transactions of the Chinese Society of Agricultural Engineering,2013, 29(4):199.

    [5] Liu Jin, Guo Tingting. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(z2): 233.

    [6] Lu Wanzhen, Yuan Hongfu, Xu Guangtong, et al. Modern Near Infrared Spectroscopy Analytical Technology(Second Edition). Beijing: China Petrochemical Press, 2007.

    [7] Yan Yanlu. Modern Instrumental Analysis(Third Edition). Beijing: China Agricultural University Press,2010.

    [8] Zhang Liping, Li Weijun, WANG Ping, et al. Spectroscopy and Spectral Analysis, 2012, 32(10): 2785.

    [9] Svante Wold,Michael Sjostroma,et al. Chemometrics and Intelligent Laboratory Systems,2001,58:109.

    [10] Duda R O,Hart P E,Stork D G. Pattern Classification. Translated by Li Hongdong,Yao Tianxiang,et al. Beijing:China Machine Press,2003.

    [11] Fan Bin,Lei Zhen,et al. Proceedings of 8th IEEE International Conference on Automatic Face & Gesture Recognition,2008. 1.

    [12] Zhang Shanwen, Jia Qingjie, Jing Rongzhi. Journal of Anhui Agricultural Sciences, 2012,40(1):9.

    *通訊聯(lián)系人

    O657.3; S123

    A

    基于近紅外漫反射與漫透射光譜的玉米單倍體鑒別比較研究

    覃 鴻1,馬競一1,2,陳紹江3,嚴(yán)衍祿4,李衛(wèi)軍1*,王 平2,劉 金3

    1. 中國科學(xué)院半導(dǎo)體研究所高速電路與神經(jīng)網(wǎng)絡(luò)實驗室,北京 100083 2. 中國石油大學(xué)(華東)信息與控制工程學(xué)院,山東 青島 266580 3. 中國農(nóng)業(yè)大學(xué)國家玉米改良中心,北京 100193 4. 中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083

    使用JDSU公司的MicroNIR1700型微型近紅外光譜儀,研究了適合進(jìn)行單籽粒玉米單倍體鑒別的光譜測量方法。基于近紅外光譜定性分析技術(shù),比較了漫反射和漫透射兩種情況下玉米單倍體鑒別的效果。光譜數(shù)據(jù)經(jīng)過預(yù)處理后,采用PLS+OLDA特征提取算法,應(yīng)用SVM建立玉米單倍體鑒別模型,分別統(tǒng)計漫反射和漫透射實驗條件下,鑒別模型的正確識別率。在微型光譜儀內(nèi)置光源漫反射的光譜測量方式下,不分胚面朝向,玉米單倍體籽粒平均識別率低于60%,不能有效鑒別玉米單倍體和多倍體。而采用外置光源對籽粒進(jìn)行漫透射光譜測量方式,獲得了平均正確識別率為93.2%的鑒別效果,并且模型穩(wěn)定性好。實驗結(jié)果表明,漫反射光譜僅能獲得玉米籽粒表層信息,因此玉米籽粒胚面朝向嚴(yán)重影響漫反射光譜鑒別單倍體種子的效果;而漫透射光譜可以實現(xiàn)分析光程縱深信息全累加,能夠得到樣品內(nèi)部的信息,因此對胚面朝向不敏感,能夠有效地對隨機擺放的玉米單倍體和多倍體進(jìn)行識別。近紅外方法能快速、無損地鑒別單倍體,并且微型光譜儀采集速度快,成本低,為實現(xiàn)實用化的自動鑒別提供了條件。

    近紅外光譜;單倍體鑒別;漫透射;漫反射;定性分析

    2014-09-23,

    2014-12-10)

    2014-09-23; accepted:2014-12-10

    National Key Scientific Instrument and Equipment Development Project(2014YQ470377), the China Scholarship Council (201404910237)

    10.3964/j.issn.1000-0593(2016)01-0292-06

    猜你喜歡
    單倍體朝向識別率
    朝向馬頭的方向
    遼河(2022年1期)2022-02-14 21:48:35
    朝向馬頭的方向
    遼河(2022年1期)2022-02-14 05:15:04
    不同除草劑對玉米單倍體成熟胚的加倍效果
    基于類圖像處理與向量化的大數(shù)據(jù)腳本攻擊智能檢測
    計算機工程(2020年3期)2020-03-19 12:24:50
    基于真耳分析的助聽器配戴者言語可懂度指數(shù)與言語識別率的關(guān)系
    烏龜快跑
    提升高速公路MTC二次抓拍車牌識別率方案研究
    玉米單倍體育性自然恢復(fù)研究進(jìn)展
    高速公路機電日常維護(hù)中車牌識別率分析系統(tǒng)的應(yīng)用
    微生物學(xué)
    精品亚洲成国产av| 岛国毛片在线播放| 麻豆成人av在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲天堂av无毛| 欧美成狂野欧美在线观看| 一夜夜www| 成在线人永久免费视频| 91av网站免费观看| 在线天堂中文资源库| 亚洲欧美日韩高清在线视频 | 51午夜福利影视在线观看| 99久久精品国产亚洲精品| 亚洲av美国av| 极品少妇高潮喷水抽搐| 中文字幕制服av| 大型黄色视频在线免费观看| 国产一区有黄有色的免费视频| 18禁国产床啪视频网站| 青草久久国产| 婷婷丁香在线五月| 久久久国产成人免费| 亚洲精品在线美女| 亚洲一区中文字幕在线| 一级黄色大片毛片| 久久精品亚洲熟妇少妇任你| 在线十欧美十亚洲十日本专区| 伊人久久大香线蕉亚洲五| 日本精品一区二区三区蜜桃| 国产黄色免费在线视频| 免费不卡黄色视频| 精品国产一区二区久久| 不卡一级毛片| 亚洲欧美精品综合一区二区三区| 国产日韩欧美视频二区| 亚洲熟女毛片儿| 亚洲精品久久成人aⅴ小说| 一夜夜www| 亚洲成国产人片在线观看| 一本久久精品| 国产真人三级小视频在线观看| 欧美日韩亚洲综合一区二区三区_| 国产国语露脸激情在线看| 黄色a级毛片大全视频| 在线观看www视频免费| 欧美午夜高清在线| 如日韩欧美国产精品一区二区三区| 国产人伦9x9x在线观看| 超碰97精品在线观看| 亚洲,欧美精品.| 最新的欧美精品一区二区| 午夜成年电影在线免费观看| 国产亚洲av高清不卡| 他把我摸到了高潮在线观看 | 精品卡一卡二卡四卡免费| 女人被躁到高潮嗷嗷叫费观| 国产成人精品在线电影| 亚洲成国产人片在线观看| 高清欧美精品videossex| 乱人伦中国视频| 一个人免费在线观看的高清视频| av又黄又爽大尺度在线免费看| av不卡在线播放| 一个人免费看片子| 国产精品 国内视频| 国产激情久久老熟女| 在线 av 中文字幕| 在线永久观看黄色视频| 日韩人妻精品一区2区三区| 首页视频小说图片口味搜索| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 中文字幕最新亚洲高清| 国产片内射在线| 在线播放国产精品三级| svipshipincom国产片| av天堂久久9| 伦理电影免费视频| av不卡在线播放| 日韩 欧美 亚洲 中文字幕| 在线看a的网站| 大片电影免费在线观看免费| 国产亚洲av高清不卡| 免费在线观看完整版高清| tocl精华| 精品国产国语对白av| 免费看a级黄色片| 俄罗斯特黄特色一大片| www.精华液| 亚洲精品成人av观看孕妇| 91麻豆精品激情在线观看国产 | 精品国产超薄肉色丝袜足j| 亚洲三区欧美一区| 欧美 日韩 精品 国产| 亚洲美女黄片视频| 精品人妻熟女毛片av久久网站| 欧美成狂野欧美在线观看| 国产精品电影一区二区三区 | 亚洲精品美女久久av网站| 国产熟女午夜一区二区三区| 成人精品一区二区免费| 国产精品久久久av美女十八| 久久天躁狠狠躁夜夜2o2o| 搡老乐熟女国产| 欧美成人午夜精品| 美女高潮到喷水免费观看| 黄色片一级片一级黄色片| 亚洲国产欧美网| 在线观看人妻少妇| 夜夜爽天天搞| 精品国内亚洲2022精品成人 | 亚洲第一av免费看| 国产黄频视频在线观看| 99久久99久久久精品蜜桃| 欧美av亚洲av综合av国产av| 免费在线观看完整版高清| 在线观看人妻少妇| 精品国产乱子伦一区二区三区| 啦啦啦中文免费视频观看日本| 久久精品亚洲精品国产色婷小说| 亚洲精品成人av观看孕妇| 涩涩av久久男人的天堂| 99在线人妻在线中文字幕 | 男人舔女人的私密视频| 少妇裸体淫交视频免费看高清 | 国产免费福利视频在线观看| 久久国产精品人妻蜜桃| 午夜免费成人在线视频| 这个男人来自地球电影免费观看| 亚洲欧美日韩高清在线视频 | √禁漫天堂资源中文www| 国产亚洲av高清不卡| 久久久久精品人妻al黑| 日本wwww免费看| 国产精品久久久久成人av| 午夜福利欧美成人| 最黄视频免费看| 国产成人精品久久二区二区免费| 久久久精品免费免费高清| 日本av免费视频播放| 久久 成人 亚洲| 日本五十路高清| 满18在线观看网站| 国产99久久九九免费精品| 极品少妇高潮喷水抽搐| 视频在线观看一区二区三区| 国产成人精品久久二区二区免费| 日韩欧美一区二区三区在线观看 | 老司机午夜十八禁免费视频| 亚洲午夜精品一区,二区,三区| 亚洲成人国产一区在线观看| 亚洲人成伊人成综合网2020| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 国产成人欧美在线观看 | 国产91精品成人一区二区三区 | 99精品欧美一区二区三区四区| 在线天堂中文资源库| 俄罗斯特黄特色一大片| 久久久精品国产亚洲av高清涩受| 久久久久久久久免费视频了| 美女视频免费永久观看网站| 亚洲成人国产一区在线观看| 69av精品久久久久久 | 国产真人三级小视频在线观看| 电影成人av| 久久人妻av系列| 欧美日韩亚洲高清精品| 十八禁网站网址无遮挡| a级毛片在线看网站| 黑人猛操日本美女一级片| 免费在线观看日本一区| 欧美+亚洲+日韩+国产| 99在线人妻在线中文字幕 | 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9 | 18禁裸乳无遮挡动漫免费视频| 美女国产高潮福利片在线看| 欧美精品高潮呻吟av久久| 国产精品一区二区在线观看99| cao死你这个sao货| 欧美成人免费av一区二区三区 | 成人精品一区二区免费| 亚洲精品在线美女| 久久久欧美国产精品| 69精品国产乱码久久久| 淫妇啪啪啪对白视频| 男人舔女人的私密视频| 免费观看人在逋| 狂野欧美激情性xxxx| 色婷婷久久久亚洲欧美| 91成人精品电影| 国产成人精品无人区| 欧美精品av麻豆av| 国产欧美日韩一区二区三区在线| 极品教师在线免费播放| 亚洲avbb在线观看| 岛国在线观看网站| 亚洲成人免费av在线播放| 国产欧美亚洲国产| 免费看十八禁软件| 91麻豆av在线| www日本在线高清视频| 在线观看免费视频网站a站| 亚洲七黄色美女视频| 操美女的视频在线观看| 亚洲国产欧美网| 新久久久久国产一级毛片| 久久国产精品大桥未久av| 欧美亚洲 丝袜 人妻 在线| 欧美黄色淫秽网站| 下体分泌物呈黄色| www.自偷自拍.com| 丝袜美腿诱惑在线| 久久香蕉激情| 啦啦啦在线免费观看视频4| 飞空精品影院首页| 欧美老熟妇乱子伦牲交| 男人操女人黄网站| 一级毛片女人18水好多| 欧美 亚洲 国产 日韩一| 老司机靠b影院| 日韩熟女老妇一区二区性免费视频| 久久久国产成人免费| 中文字幕高清在线视频| 老熟妇仑乱视频hdxx| 人人妻人人澡人人爽人人夜夜| 精品久久久久久电影网| 91九色精品人成在线观看| 日韩视频在线欧美| 高清黄色对白视频在线免费看| 色尼玛亚洲综合影院| 12—13女人毛片做爰片一| 亚洲精品美女久久av网站| 母亲3免费完整高清在线观看| 91麻豆av在线| 黄网站色视频无遮挡免费观看| 大香蕉久久网| 日韩中文字幕欧美一区二区| 午夜福利乱码中文字幕| 午夜福利在线观看吧| 久久久久精品国产欧美久久久| 亚洲午夜精品一区,二区,三区| 亚洲第一av免费看| 人成视频在线观看免费观看| 午夜久久久在线观看| 手机成人av网站| 考比视频在线观看| 婷婷丁香在线五月| 色在线成人网| tocl精华| 建设人人有责人人尽责人人享有的| 中文字幕人妻丝袜制服| 亚洲午夜理论影院| 久久av网站| 日韩一卡2卡3卡4卡2021年| 757午夜福利合集在线观看| 日韩欧美国产一区二区入口| 黄片小视频在线播放| 亚洲熟女精品中文字幕| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 中文字幕人妻丝袜制服| 9191精品国产免费久久| 亚洲精品粉嫩美女一区| 精品第一国产精品| 另类亚洲欧美激情| 成人国语在线视频| 97在线人人人人妻| 亚洲国产av影院在线观看| 国产日韩欧美视频二区| 男女边摸边吃奶| 国产亚洲精品一区二区www | 久久精品成人免费网站| 夜夜骑夜夜射夜夜干| 99在线人妻在线中文字幕 | 中文亚洲av片在线观看爽 | √禁漫天堂资源中文www| 日本五十路高清| 久9热在线精品视频| 9热在线视频观看99| 日韩视频一区二区在线观看| 色视频在线一区二区三区| av欧美777| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产区一区二| 男女边摸边吃奶| 不卡av一区二区三区| 性高湖久久久久久久久免费观看| av国产精品久久久久影院| 久久毛片免费看一区二区三区| av又黄又爽大尺度在线免费看| 99久久人妻综合| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 欧美精品人与动牲交sv欧美| 下体分泌物呈黄色| 人成视频在线观看免费观看| 色老头精品视频在线观看| 国产精品自产拍在线观看55亚洲 | 老熟妇仑乱视频hdxx| a在线观看视频网站| 国产精品久久久久久精品电影小说| 久久中文字幕人妻熟女| 9191精品国产免费久久| 国产精品自产拍在线观看55亚洲 | 999久久久国产精品视频| 亚洲五月婷婷丁香| 国产精品亚洲一级av第二区| 18在线观看网站| 欧美日韩av久久| 91av网站免费观看| 一本大道久久a久久精品| 亚洲中文av在线| 正在播放国产对白刺激| 国产av一区二区精品久久| 精品欧美一区二区三区在线| 国产野战对白在线观看| 老司机午夜十八禁免费视频| 嫩草影视91久久| 如日韩欧美国产精品一区二区三区| 久久国产精品影院| 久久久久国内视频| 国产精品免费视频内射| 大型av网站在线播放| av电影中文网址| 一个人免费在线观看的高清视频| 亚洲av成人一区二区三| 亚洲精品美女久久av网站| 黄片播放在线免费| 亚洲成av片中文字幕在线观看| 成人影院久久| 1024香蕉在线观看| 9色porny在线观看| 91精品三级在线观看| 9色porny在线观看| 一二三四社区在线视频社区8| av一本久久久久| 午夜福利乱码中文字幕| 午夜激情久久久久久久| 亚洲精品久久成人aⅴ小说| 91麻豆av在线| avwww免费| 欧美一级毛片孕妇| 色在线成人网| 精品国产一区二区久久| 午夜两性在线视频| 久久久水蜜桃国产精品网| 美女高潮到喷水免费观看| 日韩视频在线欧美| 桃红色精品国产亚洲av| 看免费av毛片| 国产日韩欧美在线精品| 亚洲天堂av无毛| 老司机深夜福利视频在线观看| 亚洲久久久国产精品| 99热网站在线观看| 悠悠久久av| 人成视频在线观看免费观看| 亚洲精品av麻豆狂野| 亚洲国产毛片av蜜桃av| 日本av免费视频播放| a级毛片在线看网站| 国产熟女午夜一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 婷婷成人精品国产| 久久人妻熟女aⅴ| 淫妇啪啪啪对白视频| 国产亚洲精品第一综合不卡| 一级片免费观看大全| 日日摸夜夜添夜夜添小说| 欧美精品高潮呻吟av久久| 香蕉国产在线看| 亚洲午夜精品一区,二区,三区| 岛国毛片在线播放| 精品少妇内射三级| 91av网站免费观看| 国产精品国产高清国产av | 99riav亚洲国产免费| 精品少妇一区二区三区视频日本电影| 这个男人来自地球电影免费观看| 超碰97精品在线观看| 欧美成狂野欧美在线观看| 999精品在线视频| 久久久国产成人免费| 老熟妇仑乱视频hdxx| 国产国语露脸激情在线看| 丰满饥渴人妻一区二区三| 免费在线观看完整版高清| 纯流量卡能插随身wifi吗| 精品少妇黑人巨大在线播放| 99香蕉大伊视频| 757午夜福利合集在线观看| 女性生殖器流出的白浆| 高清在线国产一区| 久久狼人影院| 欧美日韩视频精品一区| 两性午夜刺激爽爽歪歪视频在线观看 | 人成视频在线观看免费观看| 国产亚洲av高清不卡| 免费人妻精品一区二区三区视频| 999精品在线视频| 欧美日韩福利视频一区二区| 亚洲精品在线观看二区| 91麻豆av在线| 蜜桃在线观看..| 91老司机精品| av有码第一页| 精品久久久精品久久久| 天天操日日干夜夜撸| 97人妻天天添夜夜摸| 一级,二级,三级黄色视频| 中文亚洲av片在线观看爽 | 精品国内亚洲2022精品成人 | 欧美精品一区二区大全| 麻豆成人av在线观看| 国产色视频综合| 久久久久久人人人人人| 性少妇av在线| 久久精品熟女亚洲av麻豆精品| 午夜成年电影在线免费观看| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 黄色视频,在线免费观看| 午夜福利影视在线免费观看| 交换朋友夫妻互换小说| 国产亚洲一区二区精品| 精品国产乱码久久久久久小说| 亚洲精品在线观看二区| 高清av免费在线| av视频免费观看在线观看| 两个人看的免费小视频| 国产三级黄色录像| 欧美 亚洲 国产 日韩一| 啪啪无遮挡十八禁网站| 亚洲精品在线美女| 亚洲人成伊人成综合网2020| 久久狼人影院| 国产成人av激情在线播放| 国产亚洲欧美在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利欧美成人| 久久热在线av| 成人亚洲精品一区在线观看| 色婷婷久久久亚洲欧美| 高清毛片免费观看视频网站 | 午夜福利视频精品| 国产免费福利视频在线观看| 中文亚洲av片在线观看爽 | 精品久久久久久电影网| 一区二区三区激情视频| 满18在线观看网站| 精品久久久精品久久久| 国产亚洲欧美在线一区二区| 黑人欧美特级aaaaaa片| 国产高清激情床上av| 精品午夜福利视频在线观看一区 | 国产欧美日韩综合在线一区二区| 亚洲国产欧美一区二区综合| 91九色精品人成在线观看| 91精品三级在线观看| √禁漫天堂资源中文www| 国产男靠女视频免费网站| 日本av免费视频播放| 咕卡用的链子| 国产欧美日韩精品亚洲av| 熟女少妇亚洲综合色aaa.| 韩国精品一区二区三区| 18在线观看网站| 国产精品久久久久久精品电影小说| 日本a在线网址| 不卡av一区二区三区| 久久中文字幕一级| 欧美 亚洲 国产 日韩一| 国产亚洲精品久久久久5区| 免费日韩欧美在线观看| 叶爱在线成人免费视频播放| 色播在线永久视频| 90打野战视频偷拍视频| netflix在线观看网站| 成人免费观看视频高清| 亚洲国产欧美网| 一本一本久久a久久精品综合妖精| 丰满迷人的少妇在线观看| 久久久欧美国产精品| av又黄又爽大尺度在线免费看| 欧美在线黄色| 国产97色在线日韩免费| 久久久久久久大尺度免费视频| 18在线观看网站| 9热在线视频观看99| 亚洲一码二码三码区别大吗| 老司机亚洲免费影院| 午夜福利在线免费观看网站| 成人影院久久| 黄片小视频在线播放| 成人18禁高潮啪啪吃奶动态图| 在线观看一区二区三区激情| 国产97色在线日韩免费| 久久久久久免费高清国产稀缺| 最新的欧美精品一区二区| 国产日韩欧美视频二区| 大香蕉久久成人网| 激情视频va一区二区三区| 最新的欧美精品一区二区| 天堂俺去俺来也www色官网| 两性夫妻黄色片| 丝袜在线中文字幕| 午夜精品久久久久久毛片777| 超碰97精品在线观看| 在线观看免费日韩欧美大片| 亚洲午夜精品一区,二区,三区| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 国产成人精品无人区| 下体分泌物呈黄色| 亚洲av日韩在线播放| 在线十欧美十亚洲十日本专区| 久久人妻熟女aⅴ| 欧美人与性动交α欧美软件| 91av网站免费观看| 高清欧美精品videossex| 狠狠婷婷综合久久久久久88av| 成人永久免费在线观看视频 | 亚洲精品国产一区二区精华液| 亚洲av美国av| 亚洲专区字幕在线| 两性夫妻黄色片| 少妇精品久久久久久久| 久久久久久久久免费视频了| 国产男女超爽视频在线观看| 一级a爱视频在线免费观看| 在线观看免费午夜福利视频| 亚洲精品久久成人aⅴ小说| 免费一级毛片在线播放高清视频 | 另类精品久久| 日韩中文字幕视频在线看片| 亚洲精品美女久久久久99蜜臀| av不卡在线播放| 91国产中文字幕| 日韩成人在线观看一区二区三区| 9色porny在线观看| 狠狠婷婷综合久久久久久88av| 精品国产超薄肉色丝袜足j| 18禁裸乳无遮挡动漫免费视频| 亚洲av美国av| 热99国产精品久久久久久7| 成年人黄色毛片网站| 午夜精品国产一区二区电影| 国产极品粉嫩免费观看在线| 黄网站色视频无遮挡免费观看| 亚洲av成人不卡在线观看播放网| 后天国语完整版免费观看| 欧美亚洲日本最大视频资源| 两性夫妻黄色片| 国产精品久久久久久精品古装| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲日本最大视频资源| 国产精品美女特级片免费视频播放器 | 欧美日韩亚洲高清精品| 免费久久久久久久精品成人欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品久久久av美女十八| 一级毛片女人18水好多| 交换朋友夫妻互换小说| 丝瓜视频免费看黄片| 成人18禁在线播放| 国产精品av久久久久免费| 精品国产亚洲在线| 亚洲国产av新网站| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久| 99re6热这里在线精品视频| 国产成人av激情在线播放| 女性生殖器流出的白浆| 女人爽到高潮嗷嗷叫在线视频| 国产福利在线免费观看视频| 变态另类成人亚洲欧美熟女 | 午夜日韩欧美国产| 亚洲av国产av综合av卡| 亚洲美女黄片视频| 久久99热这里只频精品6学生| 亚洲av欧美aⅴ国产| 丝瓜视频免费看黄片| 久久人妻av系列| 亚洲国产精品一区二区三区在线| 大型黄色视频在线免费观看| 中文字幕最新亚洲高清| 日本a在线网址| 午夜精品国产一区二区电影| 欧美精品av麻豆av| 一夜夜www| 好男人电影高清在线观看| 欧美大码av| 狠狠狠狠99中文字幕| 成人国产一区最新在线观看| 国产日韩一区二区三区精品不卡| 亚洲av日韩在线播放| www.自偷自拍.com| 国产在线精品亚洲第一网站| cao死你这个sao货| 极品少妇高潮喷水抽搐| 看免费av毛片| 中国美女看黄片| 亚洲欧美色中文字幕在线| 91精品国产国语对白视频| 一边摸一边抽搐一进一小说 | 亚洲熟妇熟女久久| 精品国产乱子伦一区二区三区| 亚洲五月色婷婷综合| 日韩大码丰满熟妇| 黄色 视频免费看| 夜夜夜夜夜久久久久| h视频一区二区三区| 淫妇啪啪啪对白视频|