• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Examination of Correlation between Histidine and Cadmium Absorption by Eleagnusangustifolia L., Vitisvinifera L. and Neriumoleander L. Using HPLC-MS and ICP-MS

    2016-06-15 16:37:25SukranAkkusOzenMehmetYaman
    光譜學(xué)與光譜分析 2016年2期

    Sukran Akkus Ozen, Mehmet Yaman

    Firat University, Faculty of Science, Department of Chemistry, Elazig, Turkey

    Examination of Correlation between Histidine and Cadmium Absorption byEleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. Using HPLC-MS and ICP-MS

    Sukran Akkus Ozen, Mehmet Yaman*

    Firat University, Faculty of Science, Department of Chemistry, Elazig, Turkey

    In this study, HPLC-MS and ICP-MS methods wereused for the determination of histidine and cadmiuminEleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. leaves taken from industrial area including Gaziantep and Bursa cities. To histidine determination by HPLC-MS, flow rate of mobile phase, fragmentor potential, injection volume and column temperature were optimized as 0.2 mL·min-1, 70 V, 15 μL and 20 ℃, respectively. For extraction of histidine from plants, distilled water was used by applying on 90 ℃ and 30 min. The concentrations (as mg·kg-1) of histidine were found to be in range of 8~22 forEleagnusangustifoliaL., 10~33 forVitisviniferaL. and 6~11 forNeriumoleanderL. The concentrations of cadmium were found to be in ranges of 6~21 μg·kg-1forVitisviniferaL. 15~110 μg·kg-1forEleagnusangustifoliaL. and 63~218 μg·kg-1forNeriumoleanderL.

    Histidine; Cadmium; Hyperaccumulator plants; ICP-MS; HPLC-MS

    e-mail: sakkus23@gmail.com *Corresponding author e-mail: ijpacmy@gmail.com; myaman@firat.edu.tr

    Introduction

    Heavy metals can be harmful to humans and animals and tend to bioaccumulate through the food chain[1-2]. Cadmiumhas common industrial use as well as its carcinogenic effect, and thus, it has become a serious pollutant in diverse environmental settings[3-4]. Over the past two centuries, anthropogenic and industrial activities have led to high emissions of toxic metals into the environment at the more high concentrations. Because metals exposed into environment are toxic and none biodegradable unlike organical compounds, removal of excess metal ions from polluted sites is important, reasonably. So, numerous efforts have been undertaken to find methods of removing heavy metals from soil, such as chemical remediation,phytoremediation, soil washing, nano materials, remediation with bacteria, electricalforce and heat[5-7]. Chemical remediation involves the use of chemicals to clean the environment. However, this method is not universal, highly costly and may cause secondary pollution[8]. Phytoextraction (in other words, phytoremediation) is the removal of metals from soil using hyperaccumulatorplants. Phytoextraction or phytoremediation is both 1000-fold cheaper than conventional remediation methods and environmentally friendly technology[8-9]. The use of hyperaccumulator plants opens a new branch of phytoremediation technology that is an ecofriendly and scientific approach to remove, extract, or inactivate metal ions in the soil using plants[5,10-12]. In the phytoremediation, the basic concept is as follow: Growing and harvesting of plants on the polluted soils, burning of plants and smelting or storing of the ash. Hyperaccumulators often exhibit higher metal concentrations in their tissues than are present in the soil and can tolerate much higher metal concentrations before showing symptoms of toxicity[12]. Most hyperaccumulators absorb selectively particular metals but the mechanisms of selection are not understood at the molecular level[13]. Plant-ligands play a role in the sequestration of metals from soils, transport to the above-ground tissue and finally storage. Nitrogen-donor ligands and especially free amino acids are assumed to play a role in hyperaccumulators. Heavy metals are intracellularly chelated through the synthesis of amino acids, organic acids, GSH, or HM-binding ligands such as metallothioneins (MTs), phytochelatins (PCs), compartmentation within vacuoles. Some metals can inactivate enzymes by binding to cysteine residues. Among free amino acids, histidine (His) is considered to be the most important formetal hyperaccumulation[10-14]. Histidine can act as a tridentate ligand via its carboxylato, amine and imadazole functions. While there are many metal-binding biomolecules, this study focuses only on histidine ligand that has been reported to play a role in sequestering, transporting or storing the accumulated metal.As a result, the discovery of new hyperaccumulator plants has high importance.In terms of toxicity of elements, most concern to date has been centered on Cd, Pb and Ni in plants[15-20].

    The aim of this study is,firstly, to examine the correlation between Cd and histidine in plants leaves includingEleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. Secondly, to consider the Cd-pollution extent in two highly industrialized cities in Turkey using three plant species. For this purpose, HPLC-MS and ICP-MS methods were optimized for the determination of histidine and Cd in the leaves samples Representative locations in the surrounding area of the organized industrial zone including lead battery production, cement factory and other similar industrial factories placed around Gaziantep and Bursa cities were chosen for this study.

    1 Experimental

    1.1 Apparatus and Reagents

    The concentrations of Cdwere determinedusing a Perkin-Elmer SCIEX ELAN9000 inductively coupled plasma mass spectrometer (ICPMS) (PerkinElmer SCIEX, Concord, ON, Canada). The operation conditions for ICP-MS were taken from the manual Handbook. A microwave digestion system (CEM MARSXpress) was used to prepare the samples for the analysis. Doubly distilled water, obtained with a water purification system (Millipore Direct-Q, Millipore Corporation, Bedford, MA, USA) was used for all samples and standard preparations. An Agilent 1200 HPLC-MS system was used for the quantification of histidine. The instrument included an autosampler, a binary pump, a temperature controlled column oven, and an Agilent 6110 MS detector that was operated in selected ion monitoring (SIM) and scan mode equipped with positive ion electrospray ionization. The HPLC effluent entered the mass spectrometer through an electrospray capillary set at 3 000 V. Nitrogen was used as the drying and vaporizer gas at 300 and 500 ℃. The drying gas flow was 11.0 L·min-1(Table 1). A Zorbax Eclipse XDB-C18 (4.6 mm, 150 mm, 5 μm) was used as the column. Unless stated otherwise, all chemicals used throughout the study were of high-purity reagent grade. Concentrated nitric acid (65%, Merck) was used in the digestion procedure. The cadmium stock solution (1 000 mg·L-1) was prepared from its nitrate salt (Merck, Darmstadt, Germany). All chemicals used were of analytical reagent grade.

    1.2 Sampling and sample preparation

    EleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. leaves were collected around Gaziantep and Bursa citiesof 1 500 000 and 2 000 000 populations in SE and NWTurkey, respectively, that arethe important industrial centers of Turkey (Figure 1). The samples for the control area were taken away from the urban and industrial areas. The sampling was conducted in the summer of 2011. The healthy looking leaves (about 100 g fresh plant) were taken from per site. The plants were transferred to the laboratory in plastic bags, washed with tap water, and then, rinsed with distilled water. After drying procedure at 70 ℃, the samples were ground with agate mortar and then homogenously mixed. The locations of plant sampling were shown at Figure 1.

    Fig.1 Map of sampling locations

    To digestion of plant leaves, a 0.3 g portion of the sample was transferred into Teflon and concentrated nitric acid added. Then, the mixtures were irradiated for 30 min as described in manual handbook of microwave oven. The solutions were heated up near to dryness. After addition 20 mL of 0.1 mol·L-1nitric acid, the solution was filtrated, if necessary, and the clear solution was analyzed by ICP-MS. Each of samples was analyzed in triplicate and mean values were taken as result.

    Table 1 Operating conditions for histidine and Cd determination by HPLC-MS and ICP-MS

    A HPLC-MS method was optimized for the determination of histidine inEleagnusangustifoliaL.,VitisviniferaL. andNeriumoleanderL. leaves. For this purpose, flow rate of mobile phase, fragmentorpotential, injection volume and column temperature were examined and optimized as 0.2 mL·min-1, 70 V, 15 μL and 20 ℃, respectively. To extract histidine from plant leaves, 0.1 M HCl and distilled water wereexamined by applying different temperatures between 20~90 ℃ and stirring times of 15~60 minutes as seen in Figure 2. It was found that distilled water, the temperature of 90 ℃ and stirring time of 30 min are the optimum conditions. Further, different volumes of distilled water were examined to determine optimum amount of extractant using the same amount of the same plant species. It was found that 30 mL of distilled water is sufficient to maximum signal of histidine. In the derivatization step, direct distilled water (underivatization), fenilisothiosiyanat anddabsyl chloride were examined by using the scheme in Figure 2, to determine the best derivatization reagent.

    2 Results and discussion

    Analytical performance: There are three methods to check the reliability of the results obtained. These are (1) the usage of Standard Reference Material (SRM), (2) comparison of the results with those obtained by independent method for the same samples, and (3) the recovery test. In this study, the first method was used to metal determinations and the third method was used for HPLC-MS measurements. The obtained concentration ofCd in SRM, “Bush branches and leaves-Trace elements (NCS DC73348)”, were found to be 135 μg·kg-1that the certified value is 140 μg·kg-1. Becausethe recovery of 96% was achieved, Cd determination in this study is considered as the accurate. In the HPLC measurements for histidine, the recoveries, at least, 95% from the plant leaves fortified (3 mg·kg-1) with histidine were obtained to test the accuracy. The effects of contaminationwere eliminated by subtracting the obtained valuesfrom the blank.

    Fig.2 Steps in analytical scheme for histidine determination

    From the Table 2and Figures 3—5, the concentrations of Cd were found to be in ranges of 15~110 μg·kg-1forEleagnusangustifoliaL., 6~21 μg·kg-1forVitisviniferaL. and 63~218 μg·kg-1forNeriumoleanderL. The concentrations of histidine were found to be in range of 10~33 mg·kg-1forVitisviniferaL. 8~23 mg·kg-1forAngustifoliaL. and 6~11 mg·kg-1forNeriumoleanderL. except control group. Normal concentrations of Cd in plants wereconsidered in ranges of 0.01~1.0 mg·kg-1for plants[21-22]. Kabata-Pendias considered a much higher value of 10 mg·kg-1asan excessive or toxic level of this elementfor plants[21]. Hyperaccumulation has been recognized as an extreme physiological response in heavy metal tolerance. In other words, hyperaccumulator plants can tolerate much higher metal concentrations without symptoms of toxicity[12, 23-25]. However, the physiological processes involved in hyperaccumulation are not well understood. Plants must be able to store the metal ions in nonlabile complexes to eliminate toxic effects. The most likely areas for storage are the cellwall, the cytosol and the vacuole. A number of steps are required for metal ions to reach the storage tissues: mobilization and uptake from soil, compartmentation and sequestration within roots, transfer to the xylem for transport, distribution between metal sinks in abovegroundtissue and sequestration and storage in leaf cells[26]. Each stage could affect metal accumulation.

    The hyperaccumulator may be detoxifying the metal in the leaves via strong binding ligands. So, the ligands including histidine (His), cysteine and phytate may play a part in sequestration within isolated compartments[10-14]. Kaya et al. found cadmium concentrations inVitisviniferaL.,EleagnusangustifoliaL. andNeriumoleanderL. leaves grown area around lead battery factory, up to 70 (in range of 7~70), 327 (in range of 106~327) and 172 (in range of 66~172) μg·kg-1, respectively[15-20]. They obtained those results on 2006—2007. Four years later, the obtained values in this study for the same area were given in Table 2 and Figures 3—5.

    Table 2 Cd and Histidine concentrations in the studied samples, μg·kg-1

    It was reported that metal concentrations in plants change depending on the plant species, polluted source, and the wind direction[27]. Onianwa and Fakayodedetermined trace metal levels in topsoil and vegetation (the plant Cromonolinaodorata, a composite) taken from the vicinity of a lead-battery manufacturing plant located in Ibadan-the largest city in Nigeria[27]. They found that Cd concentration (as mg·kg-1) in plants grown in polluted area was 1.5, while Cd concentration in plant samples taken from the control site was 0.4 mg·kg-1[27]. The high metal uptake may be attributed to high-lyefficient intracellular compartmentalization. Hyperaccumulation in a number of speciesappeared to be the result of airborne contamination of the leaf surface,rather than root uptake and translocation. Boyd hasreviewed interactions between heavy metals pollutants and chemical ecology[28]. It was concluded that communities and ecosystems are difficult tostudy due to their complexity, but a complete understanding of metal pollutanteffects cannot be accomplished without such studies. Hopefully, amore complete understanding will enable us to limit harmful effects of anthropogenic heavy metal pollutants on Earth’s biota. Due to high toxic and carcinogenic effects of metals including cadmium for human and animal, numerous studies were carried out to determine its concentration in environment, food and biological matrices[29-33]. The correlation coefficient between Cd and histidine concentrations were found to ber=0.67 forEleagnusangustifoliaL.,r=0.09 forVitisviniferaL. andr=0.29 forNeriumoleanderL. Hence, insignificant linear correlation forEleagnusangustifoliaL.(r=0.67) were seen.

    Fig.3 Comparison of Cd and histidine levels inE.angustifoliaL. depending on sampling location

    Fig.4 Comparison of Cd and histidine levels inV.viniferaL. depending on sampling location

    Fig.5 Comparison of Cd and histidine levels inN.oleanderL. depending on sampling location

    3 Conclusion

    Cadmium concentrations up to 218 μg·kg-1(in leaves ofN.oleanderL. ) were found in leaves of the studied matrices includingNeriumoleanderL.,VitisviniferaL. andEleagnusangustifoliaL. taken from organized industrial zonein Gaziantep city. The lowest Cd concentration in this plant species was found to be 61.0 μg·kg-1. So, the rate of highest to lowest Cd concentration (Table 2) forN.oleanderL. is 3.6-fold, and this reveal, clearly, that thisplant leaves has a potential as biomonitor and/or hyperaccummulator for Cd.Taking into consideration between Cd and histidine values from Table 2, insignificant linear correlation forEleagnusangustifoliaL. (r=0.67) were seen.

    [1] Mertz W. Academic Press, Newyok. Fifth Ed, 1987.

    [2] Yaman M. Current Medical Chem., 2006, 13(21): 2513.

    [3] Rani A, Kumar A, Lal A, et al. International Journal of Environmental Health Research, 2014, 24(4): 378.

    [4] Huff,et al. Int. J. Occup. Environ. Health., 2007, 13(2): 202.

    [5] Mulligan C N,et al. Engineering Geology, 2001, 60: 193.

    [6] Gunawardana B,et al. Plant Soil, 2010, 329: 283.

    [7] Pilon-Smils E, Pilau M. Critical Reviews in Plant Sciences, 2002, 21: 439.

    [8] Shah K, Nongkynrih J M. Biologia Plantarum, 2007, 51(4): 618.

    [9] Kr?mer U, Chardonnens A N. Appl. Microbiol. Biotechnol.,2001, 55: 661.

    [10] Haydon M J, Cobbett C S. New Phytol., 2007, 174(3): 499.

    [11] Callahan D L, Baker A J M, Kolev S D, et al. Journal of Biological Inorganic Chemistry, 2006, 11: 2.

    [12] Ugulu I. Applied Spectroscopy Reviews, 2015, 50: 113.

    [13] Hall J L. Journal of Experimental Botany, 2002, 366: 1.

    [14] Kr?mer U, et al. Nature, 1996, 379: 635.

    [15] Kaya G, Okumus N, Yaman M. Fresenius Environ. Bull., 2010, 19(4):669.

    [16] Kaya G, Yaman M. Trace Elements and Electrolytes, 2008, 25(3): 156.

    [17] Kaya G, Yaman M. Talanta, 2008, 75: 1127.

    [18] Kaya G, Ozcan C, Yaman M. Bull. Environ. Contam Toxicol, 2010, 84(2): 191.

    [19] Kaya G, Yaman M. Spectrosc. Spectral Anal., 2012, 32(1): 229.

    [20] Kaya G, Yaman M. Instrumentation Science & Technology, 2012, 40(1): 61.

    [21] Kabata-Pendias A. Trace Elements in Soils and Plants, Fourth Edition, Taylor and Francis Group, 2011.

    [22] Dong J, Mao W H, Zhang G P,et al. Plant Soil and Environment, 2007, 53(5): 193.

    [23] Bargagli R. Plants as Biomonitors, in: Trace Elements in Terrestrial Plants: an Ecophysiological Approach to Biomonitoring and Biorecovery. Springer, Berlin Heideberg New York, 1998.

    [24] Mulgrew A, Willeams P. Biomononitoring of Air Quality Using Plants, Air Hygiene Report no:10 Berlin, Germany WHO CC. 165, 2000.

    [25] Mertens J, et al. Environmental Pollution, 2005, 138: 1.

    [26] Clemens S, Palmgren M G, Kramer U. Trends Plant Sci., 2002, 7: 309.

    [27] Onianwa P C, Fakayode S O. Environmental Geochemistry and Health, 2000, 22: 211.

    [28] Boyd R S. J. Chem. Ecol., 2010, 36(1): 46.

    [29] Yaman M, Kaya G, Yekeler H. World J. Gastroentor., 2007, 13(4): 612.

    [30] Er C, Senkal B F, Yaman M. Food Chem., 2013, 137(1-4): 55.

    [31] Ozen O A, Songur A, Sarsilmaz M, et al. Trace Elem. Med. Biol., 2003, 17(3): 207.

    [32] Yaman M, Cokol N. At. Spectrosc., 2004, 25(4): 185.

    [33] Yaman M, Bakirdere S. Mikrochim. Acta, 2003, 141: 47.

    O657.3

    A

    2015-08-20; accepted: 2015-10-09

    This study was financially supported by the Scientific Investigate Projects of Firat University, Turkey (Project Number: FF.11.19)

    10.3964/j.issn.1000-0593(2016)02-0588-05

    xxx大片免费视频| 午夜福利视频在线观看免费| 日韩制服骚丝袜av| 熟女电影av网| 国产精品久久久久久久久免| 搡老乐熟女国产| 日本午夜av视频| 日韩熟女老妇一区二区性免费视频| 国产精品嫩草影院av在线观看| 精品久久国产蜜桃| 少妇被粗大猛烈的视频| 亚洲精品亚洲一区二区| 久久久国产精品麻豆| 伦精品一区二区三区| 亚洲性久久影院| 中文字幕久久专区| 蜜桃久久精品国产亚洲av| 婷婷成人精品国产| 欧美成人精品欧美一级黄| 九九爱精品视频在线观看| 欧美精品亚洲一区二区| 国产成人免费无遮挡视频| 一级毛片 在线播放| 在线看a的网站| 91精品三级在线观看| 久久久a久久爽久久v久久| a级毛色黄片| 亚洲成人手机| 久久久国产一区二区| 街头女战士在线观看网站| 人体艺术视频欧美日本| 一区二区日韩欧美中文字幕 | 国产高清不卡午夜福利| 午夜免费观看性视频| 久久久久久久国产电影| 日韩亚洲欧美综合| 一区二区三区四区激情视频| 久久久久视频综合| 国产精品无大码| 国产成人精品在线电影| 久久婷婷青草| av线在线观看网站| 狂野欧美白嫩少妇大欣赏| 国产成人av激情在线播放 | 青青草视频在线视频观看| 美女国产视频在线观看| 亚洲激情五月婷婷啪啪| 亚洲人成77777在线视频| 男人添女人高潮全过程视频| 999精品在线视频| 99久久精品国产国产毛片| 天美传媒精品一区二区| 亚州av有码| 男人操女人黄网站| 交换朋友夫妻互换小说| 亚洲国产精品999| 午夜福利视频在线观看免费| 韩国高清视频一区二区三区| 成人无遮挡网站| 18禁在线播放成人免费| 国产伦精品一区二区三区视频9| 日韩一本色道免费dvd| 女性生殖器流出的白浆| 在线播放无遮挡| 国产精品麻豆人妻色哟哟久久| 久久精品久久久久久久性| 99久久精品国产国产毛片| 一区二区三区四区激情视频| 2018国产大陆天天弄谢| 亚洲色图 男人天堂 中文字幕 | 妹子高潮喷水视频| 免费日韩欧美在线观看| 91久久精品国产一区二区三区| 夜夜看夜夜爽夜夜摸| 成年人免费黄色播放视频| 国产av一区二区精品久久| 久久精品国产a三级三级三级| 秋霞在线观看毛片| 五月天丁香电影| 成人无遮挡网站| 最近中文字幕高清免费大全6| 一级a做视频免费观看| 最新中文字幕久久久久| 免费高清在线观看视频在线观看| 五月开心婷婷网| 在线精品无人区一区二区三| 考比视频在线观看| 在线观看人妻少妇| 熟妇人妻不卡中文字幕| 日韩一区二区三区影片| 亚洲精品日本国产第一区| 亚洲高清免费不卡视频| 人人妻人人添人人爽欧美一区卜| 国产男女内射视频| 一本色道久久久久久精品综合| 欧美日韩精品成人综合77777| 精品国产乱码久久久久久小说| 满18在线观看网站| 一级毛片黄色毛片免费观看视频| 高清视频免费观看一区二区| 不卡视频在线观看欧美| 欧美激情 高清一区二区三区| 国产毛片在线视频| 国产av一区二区精品久久| 亚洲丝袜综合中文字幕| 欧美精品高潮呻吟av久久| 国产亚洲精品第一综合不卡 | 亚洲综合精品二区| 久久久久久久精品精品| 成人漫画全彩无遮挡| 欧美国产精品一级二级三级| 亚洲一级一片aⅴ在线观看| 九九久久精品国产亚洲av麻豆| 大香蕉久久成人网| 免费观看在线日韩| 欧美三级亚洲精品| 人体艺术视频欧美日本| 日本免费在线观看一区| 成人免费观看视频高清| 性高湖久久久久久久久免费观看| 国产白丝娇喘喷水9色精品| 精品酒店卫生间| 国产在线视频一区二区| 色5月婷婷丁香| 亚洲人成网站在线观看播放| 久久精品国产亚洲av涩爱| 久久亚洲国产成人精品v| 日韩一区二区视频免费看| 日韩欧美一区视频在线观看| 在线观看人妻少妇| 99热这里只有精品一区| 亚洲国产成人一精品久久久| 免费看av在线观看网站| 妹子高潮喷水视频| 精品人妻一区二区三区麻豆| 精品亚洲成a人片在线观看| tube8黄色片| 下体分泌物呈黄色| 丰满乱子伦码专区| 成人黄色视频免费在线看| 精品人妻偷拍中文字幕| 欧美日韩成人在线一区二区| 这个男人来自地球电影免费观看 | 精品酒店卫生间| 亚洲在久久综合| 一个人看视频在线观看www免费| 一个人看视频在线观看www免费| 亚洲精华国产精华液的使用体验| 国产av一区二区精品久久| 亚洲丝袜综合中文字幕| 夜夜爽夜夜爽视频| 欧美变态另类bdsm刘玥| 欧美激情国产日韩精品一区| 国产成人freesex在线| 黄色配什么色好看| 国产高清不卡午夜福利| 日本黄大片高清| 中文字幕人妻丝袜制服| 99视频精品全部免费 在线| 国产有黄有色有爽视频| 最近中文字幕2019免费版| 人妻夜夜爽99麻豆av| av在线观看视频网站免费| av福利片在线| 极品人妻少妇av视频| 亚洲欧洲国产日韩| 国产一区二区三区av在线| 国产免费现黄频在线看| 国产av码专区亚洲av| 男的添女的下面高潮视频| 全区人妻精品视频| 天天躁夜夜躁狠狠久久av| 国产永久视频网站| 国产黄频视频在线观看| 久久99精品国语久久久| 国产精品偷伦视频观看了| 少妇被粗大猛烈的视频| 七月丁香在线播放| 男女边吃奶边做爰视频| 一级二级三级毛片免费看| 18禁在线无遮挡免费观看视频| 国内精品宾馆在线| 日韩亚洲欧美综合| 精品人妻熟女av久视频| 51国产日韩欧美| 亚洲av综合色区一区| 九九爱精品视频在线观看| 国产高清三级在线| 精品一品国产午夜福利视频| 日本黄色日本黄色录像| .国产精品久久| 日韩一本色道免费dvd| 久久精品国产自在天天线| 日本猛色少妇xxxxx猛交久久| 精品卡一卡二卡四卡免费| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区国产| 久热久热在线精品观看| 成年女人在线观看亚洲视频| 亚洲,欧美,日韩| 岛国毛片在线播放| 满18在线观看网站| 国产精品一国产av| 99热网站在线观看| 国产亚洲最大av| 午夜福利视频精品| 国产亚洲精品久久久com| 在线免费观看不下载黄p国产| 99热这里只有是精品在线观看| 香蕉精品网在线| 亚洲av在线观看美女高潮| 免费人成在线观看视频色| 蜜桃在线观看..| 精品酒店卫生间| 亚洲第一区二区三区不卡| 汤姆久久久久久久影院中文字幕| 观看av在线不卡| av又黄又爽大尺度在线免费看| 狂野欧美激情性xxxx在线观看| 日日摸夜夜添夜夜爱| 一本久久精品| 午夜激情av网站| 国产欧美日韩一区二区三区在线 | 欧美精品人与动牲交sv欧美| 免费高清在线观看视频在线观看| 久久精品国产自在天天线| 一级毛片电影观看| 亚洲av免费高清在线观看| 99久久人妻综合| 在线播放无遮挡| 亚洲成人av在线免费| 母亲3免费完整高清在线观看 | 又粗又硬又长又爽又黄的视频| 国产综合精华液| 最后的刺客免费高清国语| 午夜激情av网站| 久热久热在线精品观看| 丁香六月天网| 国产不卡av网站在线观看| 久久久久国产网址| 国产成人精品久久久久久| 汤姆久久久久久久影院中文字幕| 亚洲欧美成人综合另类久久久| 成人国语在线视频| 啦啦啦中文免费视频观看日本| 日韩免费高清中文字幕av| 三级国产精品片| 国产淫语在线视频| 九草在线视频观看| 午夜福利网站1000一区二区三区| 欧美bdsm另类| 黑人猛操日本美女一级片| 午夜91福利影院| 如何舔出高潮| a级片在线免费高清观看视频| 亚洲av日韩在线播放| 99热网站在线观看| 一本久久精品| 又黄又爽又刺激的免费视频.| 欧美变态另类bdsm刘玥| 一级毛片黄色毛片免费观看视频| 免费观看a级毛片全部| 中文精品一卡2卡3卡4更新| 久久综合国产亚洲精品| 2021少妇久久久久久久久久久| 人妻系列 视频| 国产日韩欧美在线精品| 免费大片黄手机在线观看| 母亲3免费完整高清在线观看 | 免费大片18禁| 国产老妇伦熟女老妇高清| 内地一区二区视频在线| 中国美白少妇内射xxxbb| 蜜臀久久99精品久久宅男| 大香蕉久久成人网| 国产精品国产三级国产av玫瑰| 青青草视频在线视频观看| 热99国产精品久久久久久7| 国产精品久久久久久久久免| 精品久久久噜噜| 五月开心婷婷网| 蜜臀久久99精品久久宅男| 各种免费的搞黄视频| 免费观看性生交大片5| 国产片特级美女逼逼视频| 狠狠精品人妻久久久久久综合| 夜夜爽夜夜爽视频| www.av在线官网国产| 日产精品乱码卡一卡2卡三| 久久久国产一区二区| 插阴视频在线观看视频| 妹子高潮喷水视频| 两个人免费观看高清视频| 肉色欧美久久久久久久蜜桃| 3wmmmm亚洲av在线观看| 成人影院久久| 亚洲欧美中文字幕日韩二区| 熟妇人妻不卡中文字幕| 人人妻人人爽人人添夜夜欢视频| 美女大奶头黄色视频| 色婷婷av一区二区三区视频| 日本爱情动作片www.在线观看| 热99国产精品久久久久久7| 自线自在国产av| 在线精品无人区一区二区三| 日韩av不卡免费在线播放| 成人国语在线视频| 国产精品久久久久久av不卡| 欧美 日韩 精品 国产| 伦精品一区二区三区| 亚洲欧美精品自产自拍| 精品国产一区二区久久| 国产视频首页在线观看| 人妻少妇偷人精品九色| 丁香六月天网| 色94色欧美一区二区| av免费观看日本| 黑人欧美特级aaaaaa片| 熟女人妻精品中文字幕| 午夜影院在线不卡| 全区人妻精品视频| 亚洲综合色惰| 99久久综合免费| 亚洲av不卡在线观看| 欧美老熟妇乱子伦牲交| 午夜福利网站1000一区二区三区| 97超视频在线观看视频| 99九九在线精品视频| 中文字幕亚洲精品专区| 欧美人与善性xxx| 这个男人来自地球电影免费观看 | 精品久久久久久电影网| 啦啦啦视频在线资源免费观看| 欧美3d第一页| 国产精品不卡视频一区二区| a级毛片在线看网站| 啦啦啦在线观看免费高清www| videossex国产| 内地一区二区视频在线| 女人久久www免费人成看片| 欧美bdsm另类| 高清不卡的av网站| 丝袜在线中文字幕| 18+在线观看网站| 久久久亚洲精品成人影院| 国产精品欧美亚洲77777| 精品人妻熟女av久视频| 日韩一区二区视频免费看| 欧美三级亚洲精品| 亚洲av.av天堂| 亚洲综合精品二区| 乱码一卡2卡4卡精品| 人人妻人人澡人人爽人人夜夜| 精品久久久久久久久亚洲| 观看美女的网站| 一边摸一边做爽爽视频免费| 另类亚洲欧美激情| 日韩人妻高清精品专区| 有码 亚洲区| 少妇人妻精品综合一区二区| 99久久精品一区二区三区| av.在线天堂| 各种免费的搞黄视频| av不卡在线播放| 国产亚洲av片在线观看秒播厂| 国产在线免费精品| 欧美最新免费一区二区三区| 国产精品成人在线| 伦理电影免费视频| 国产 精品1| 999精品在线视频| 成人午夜精彩视频在线观看| 免费看光身美女| 欧美精品人与动牲交sv欧美| 亚洲欧洲精品一区二区精品久久久 | 国产日韩欧美亚洲二区| 最近中文字幕2019免费版| 日韩制服骚丝袜av| 国产在视频线精品| 欧美一级a爱片免费观看看| 久久久久久久久久久久大奶| 国产精品一区二区在线不卡| 日韩一区二区三区影片| 欧美+日韩+精品| 精品久久久久久久久亚洲| 中文字幕av电影在线播放| 婷婷色av中文字幕| 性高湖久久久久久久久免费观看| 日本vs欧美在线观看视频| 国产精品久久久久久精品电影小说| 考比视频在线观看| 亚洲精品日韩av片在线观看| 久久精品久久精品一区二区三区| 日日摸夜夜添夜夜爱| 精品亚洲成国产av| 边亲边吃奶的免费视频| 日韩强制内射视频| 蜜桃国产av成人99| 免费高清在线观看日韩| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品夜色国产| 色5月婷婷丁香| 精品久久久久久久久亚洲| 99九九在线精品视频| 男人添女人高潮全过程视频| 亚洲精品视频女| 啦啦啦视频在线资源免费观看| 国产一区有黄有色的免费视频| 交换朋友夫妻互换小说| 美女xxoo啪啪120秒动态图| 欧美亚洲日本最大视频资源| 女人久久www免费人成看片| 色吧在线观看| 国产黄色视频一区二区在线观看| 色5月婷婷丁香| 免费播放大片免费观看视频在线观看| 亚洲国产最新在线播放| 久久狼人影院| 国产精品偷伦视频观看了| 美女福利国产在线| 新久久久久国产一级毛片| 欧美精品人与动牲交sv欧美| 亚洲国产精品一区三区| 欧美 日韩 精品 国产| 久久久久久久久久人人人人人人| 国产一区亚洲一区在线观看| 久久久久国产精品人妻一区二区| 日本黄色日本黄色录像| 国产成人免费观看mmmm| 午夜激情av网站| 在线精品无人区一区二区三| 桃花免费在线播放| 丝袜脚勾引网站| 国产探花极品一区二区| 亚洲国产av新网站| 日本欧美国产在线视频| 黄色配什么色好看| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃 | 99re6热这里在线精品视频| 又大又黄又爽视频免费| 五月天丁香电影| 国产精品99久久久久久久久| 精品国产一区二区久久| 简卡轻食公司| 国产在线免费精品| 午夜激情久久久久久久| 亚洲精品中文字幕在线视频| 国产熟女欧美一区二区| 国产视频首页在线观看| 久久久久久人妻| 满18在线观看网站| 卡戴珊不雅视频在线播放| 亚洲av成人精品一区久久| 这个男人来自地球电影免费观看 | 久久韩国三级中文字幕| 精品亚洲成国产av| 亚洲精品视频女| 男男h啪啪无遮挡| 亚洲精品久久成人aⅴ小说 | 激情五月婷婷亚洲| 性色av一级| 插逼视频在线观看| 成人漫画全彩无遮挡| 丝袜喷水一区| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 伦精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 99精国产麻豆久久婷婷| 精品一区在线观看国产| 乱人伦中国视频| 午夜日本视频在线| 嫩草影院入口| 国产成人午夜福利电影在线观看| 成人国产麻豆网| 久久精品国产亚洲网站| 一级毛片aaaaaa免费看小| 久久久久久久久久久久大奶| 视频中文字幕在线观看| 青春草国产在线视频| 久久久久久久久久人人人人人人| 丰满迷人的少妇在线观看| 一级爰片在线观看| 婷婷色综合大香蕉| 最近2019中文字幕mv第一页| 久久久国产精品麻豆| 18禁在线播放成人免费| 久久国产精品男人的天堂亚洲 | 亚洲精品自拍成人| 18禁在线无遮挡免费观看视频| 午夜免费男女啪啪视频观看| 大码成人一级视频| 亚洲国产成人一精品久久久| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 大香蕉久久网| 多毛熟女@视频| 丁香六月天网| 边亲边吃奶的免费视频| 毛片一级片免费看久久久久| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 99热全是精品| 国产免费一级a男人的天堂| 亚洲国产最新在线播放| 欧美+日韩+精品| 亚洲国产av新网站| 国产69精品久久久久777片| 成人毛片a级毛片在线播放| videossex国产| 不卡视频在线观看欧美| 国产精品欧美亚洲77777| 丝袜喷水一区| www.色视频.com| 亚洲精品456在线播放app| 日韩av不卡免费在线播放| 日韩免费高清中文字幕av| 成年人免费黄色播放视频| av一本久久久久| 国产免费又黄又爽又色| 99热网站在线观看| 亚洲精品国产av蜜桃| 这个男人来自地球电影免费观看 | 黑人高潮一二区| 九九爱精品视频在线观看| av播播在线观看一区| 国产 精品1| 亚洲欧美精品自产自拍| 18禁在线无遮挡免费观看视频| 十八禁网站网址无遮挡| 国产视频首页在线观看| 久久国产精品男人的天堂亚洲 | 人人妻人人澡人人看| 嘟嘟电影网在线观看| 久久99蜜桃精品久久| 一级黄片播放器| 欧美精品一区二区大全| 国语对白做爰xxxⅹ性视频网站| 黄色配什么色好看| 色视频在线一区二区三区| 国产又色又爽无遮挡免| 一边亲一边摸免费视频| 男女无遮挡免费网站观看| 亚洲精品乱久久久久久| 亚洲av在线观看美女高潮| 99热国产这里只有精品6| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| 2021少妇久久久久久久久久久| 色网站视频免费| videossex国产| 久久久国产精品麻豆| 亚洲,一卡二卡三卡| 99re6热这里在线精品视频| 国产片内射在线| 久久这里有精品视频免费| 日韩中文字幕视频在线看片| 久久久久久久久久久丰满| 久久99蜜桃精品久久| 简卡轻食公司| 交换朋友夫妻互换小说| 免费观看的影片在线观看| 九九在线视频观看精品| 午夜老司机福利剧场| 99国产综合亚洲精品| 午夜老司机福利剧场| 精品国产露脸久久av麻豆| 丝袜美足系列| 黄色一级大片看看| 国产精品久久久久久av不卡| .国产精品久久| 男女国产视频网站| 少妇的逼水好多| 欧美另类一区| 日韩在线高清观看一区二区三区| 免费av中文字幕在线| 国产伦理片在线播放av一区| av在线播放精品| 久久精品人人爽人人爽视色| 精品久久久精品久久久| 欧美日韩综合久久久久久| 亚洲成人手机| videosex国产| 精品卡一卡二卡四卡免费| 在线精品无人区一区二区三| 亚洲,一卡二卡三卡| 国产成人精品福利久久| 观看美女的网站| 精品少妇黑人巨大在线播放| 9色porny在线观看| 国产不卡av网站在线观看| 免费久久久久久久精品成人欧美视频 | 国产成人精品无人区| 曰老女人黄片| 国产免费一级a男人的天堂| 国产精品嫩草影院av在线观看| 亚洲国产精品一区二区三区在线| 好男人视频免费观看在线| 成人免费观看视频高清| 中文字幕av电影在线播放| 久久国产精品大桥未久av| 免费观看的影片在线观看| 人成视频在线观看免费观看| 人妻少妇偷人精品九色| a级毛片在线看网站| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线 | 亚洲五月色婷婷综合| 亚洲一区二区三区欧美精品| 国产精品国产三级国产专区5o| av播播在线观看一区| 晚上一个人看的免费电影| 一区二区av电影网|