• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the Detection of Rice Seed Germination Rate Based on Infrared Thermal Imaging Technology Combined with Generalized Regression Neural Network

    2016-06-15 16:40:58FANGWenhuiLUWeiXUHongliHONGDelinLIANGKun
    光譜學(xué)與光譜分析 2016年8期
    關(guān)鍵詞:稻種標(biāo)準(zhǔn)偏差廣義

    FANG Wen-hui, LU Wei,2*, XU Hong-li, HONG De-lin, LIANG Kun

    1. College of Engineering, Jiangsu Province Engineering Laboratory of Modern Facility Agriculture Technology and Equipment,Nanjing Agricultural University, Nanjing 210031, China

    2. Key Laboratory of Remote Measurement and Control Technology of Jiangsu Province, Nanjing 210096, China

    3. College of Agriculture/State Key Laboratory of Crop Genetics &Germplasm Enhancement,Nanjing Agricultural University, Nanjing 210095, China

    Study on the Detection of Rice Seed Germination Rate Based on Infrared Thermal Imaging Technology Combined with Generalized Regression Neural Network

    FANG Wen-hui1, LU Wei1,2*, XU Hong-li1, HONG De-lin3, LIANG Kun1

    1. College of Engineering, Jiangsu Province Engineering Laboratory of Modern Facility Agriculture Technology and Equipment,Nanjing Agricultural University, Nanjing 210031, China

    2. Key Laboratory of Remote Measurement and Control Technology of Jiangsu Province, Nanjing 210096, China

    3. College of Agriculture/State Key Laboratory of Crop Genetics &Germplasm Enhancement,Nanjing Agricultural University, Nanjing 210095, China

    On the basis of the differences in physiology and physics of rice seed with different aging time, the paper proposes a fast and nondestructive method which is based on infrared thermal imaging technology and generalized regression neural network to detect the germination rate of rice seed. This method solves the problems of long experimental period, complex operations and other disadvantages of the traditional method which is used to detect germination rate. When the temperature is 45 ℃ and humidity is 90%, the rice seeds are aged for 0, 1, 2, 3, 4, 5, 6 and 7 d respectively to get rice seeds of different germination rate. The data of 144 groups was extracted from the germ of rice seed. This data was divided into two groups randomly: the calibration set was 96 groups and the prediction set was 48 groups. Through analyzing and comparing the differences of infrared thermal image of rice seeds of different aging days, the relationship in physics and physiology between germination rate of rice seed and infrared thermal images was revealed. The infrared prediction model for germination rate of rice seed was established by combining partial least squares algorithm, Back Propagationneural network and General regression neural network. The result shows that the optimal germination rate model is built with GRNN. In this model, the correlation coefficient (RC) and standard deviation (SEC) of calibration sets are 0.932 0 and 2.056 0. At the same time, the correlation coefficient (RP) and standard deviation (SEP) of prediction sets are 0.900 3 and 4.101 2. The relevance reaches a higher level and the standard deviation is small. Therefore, the experiment shows that combining infrared thermal imaging technology with GRNN to study germination rate of rice seed is feasible. The model has a higher accuracy in terms of rapid determination of the germination rate of rice seed.

    Infrared thermal imaging technology; Rice seed;Germination rate; Nondestructive detecting; GRNN

    Introduction

    Food is a basic material security of people’s life. According to the data from “Chinese Statistical Yearbook” published in 2014, the acreage sown of rice reached 30 312 000 hectares and its output reached 203.612 million tons in China in 2013. The production of rice affects Chinese grain problem directly. Therefore, food production has become a hot issue in these years. The germination rate of rice seed is one of the basic, common and indispensable quality indicators to detect rice seed. To some extent, it affects food production[1].

    Currently, germination test method, which is the most common method to detect germination rate of rice seed. It not only requires preprocessing rice seed before experiment but also needs test environment to stimulate various indicators of rice seed which grows in natural environment. The experimental environment is demanding and requires long experimental period. At the same time, it is affected by the impact of seed dormant period easily. In addition to conventional detection methods, Wang Chunfang et al realized to use the ultra-weak luminescence technology to detect germination rate of wheat seed. It states that the germination rate of rice and wheat seed and their ultra-weak luminescence value show a monotone decreasing trend with the extension of storage time[2]. Li Yinian et al used near-infrared spectroscopy to study germination rate of hybrid rice seed and proposed a fast nondestructive testing method to detect germination rate[3].

    Infrared thermal imager has following characteristics: high accuracy, strong real-time in temperature measurement and realization of image acquisition and analysis in one. Therefore, it has been widely used in aerospace, mining, petrochemical, new energy and other fields. Research and application of infrared thermal imaging technology has gradually expanded to modern agriculture, industry, biology, medical and other fields and has got some achievements[4]. In the field of agriculture, infrared thermal technology has been applied to early detection of plant diseases, nondestructive testing of seed vigor and detection of rice chaff and so on. Li Xiaolong et al used infrared thermal imaging technology to detect early wheat disease. They took wheat stripe rust as an example to prove that using infrared thermal imaging technology could detect the difference of temperature after wheat was infected by pathogen. Therefore, infrared thermal imaging technology can be used as a method to detect early wheat diseases[5]. Xu Xiaolong et al used infrared thermal imaging technology to detect early tomato mosaic disease. Through using temperature difference between infected leaves and normal leaves to reflect the disease level of tomato leaves, they proved that this technology could be applied to detect early mosaic virus of tomato[6]. NorazlidaJamil et al used infrared thermal imaging technology to detect the composition of rice bran. Through comparing the thermal image pixel of rice and rice bran, they distinguished rice and rice bran successfully. The experiment proves that the cooling of 25S is the most suitable time for the separation of rice and rice bran[7]. LlseKranner et al. applied infrared thermal imaging technology to predict whether or not a static seed could germinate under suction conditions. Through analyzing, they concluded that infrared thermal imaging could detect biophysical and biochemical changes which are related to imbibition and germination[8].

    At present, the relevant literature of using infrared thermal imaging technology to establish research model to detect germination rate of rice seed is rarely reported both home and abroad. Based on infrared thermal imaging technology, this paper proposes a method to detect germination rate of rice seed rapidly and nondestructively. Through the process of artificial aging, acquisition of thermal infrared image, germination experiments and analysis of temperature difference of rice seed germ of Nanjing 46 rice seed, the author established the prediction model of germination rate of rice seed.

    1 Materials and methods

    1.1 Materials

    The materials used for experiment is Nanjing 46 rice seed which was harvested from experimental field of Nanjing Agricultural University in 2014. Through selecting artificially and removing clutter and other seeds, researchers got 10kg of rice seeds which are full particles and at the same size and shape.

    1.2 Methods

    1.2.1 Method of rice seed aging

    The aging of rice seed adopted artificial aging method with high temperature and high humidity. First, researchers divided the treated rice seeds into 8 groups equally. Each sample was placed in a glass tray and the glass tray was placed in RXZ type (Multi-Programming) intelligent artificial climate chamber (Ningbo Jiangnan Instrument Manufacturing). Then researchers aged seeds for 0 day, 1 day, 2 days, 3 days, …, and 7 days orderly by setting the climate chamber at the temperature of 45 ℃ and humidity of 90%. Next, seeds were removed from intelligent climate chamber according to different aging days. Finally, seeds were dried in sunshine and placed in airtight bag. According to different aging days, seeds were classified and numbered. Seeds of the each aging day are 10 parts which includes 9 grains. So there were altogether 720 grains. Different seeds were randomly divided at the ration of 2∶1 into calibration set (96) and prediction set (48).

    1.2.2 Sample collection of infrared thermal images

    The experiment adopted Fluke Ti27 infrared thermal imager of Fluke Corporation. Set the norm as following: the range of images is from 43.2 to 103.2 ℃, the range of calibration is from minus 10.0 to 600.0 ℃ and the resolution is 0.1 ℃. First, researchers heated rice seed. Then, they collected infrared thermal images. The heating source (500 W xenon lamp) was placed at a plane of 7 cm from the floor. Next, they used Fresnel lens to focus light at 17 cm from the light. When the angle between plane mirror and floor is 45 degree, the focused light passed the plane mirror and then projected to the floor vertically after reflection. To reduce the impact of the uneven distribution of heating source, silicon photovoltaic cells were used to regulate the light intensity of heating zone of rice seed. Experimental device is shown in Figure 1.

    Fig.1 Rice infrared image collected experimental setup

    1: Xenon light source box; 2: Plane mirror; 3: The bracket of plane mirror; 4: Zone of heating rice seed; 5: Infrared; 6: Rice seed; 7: The bracket of infrared

    The rice seeds of different aging days were divided into eight groups. They were named as Aging 0 d, Aging 1 d, Aging 2 d, Aging 3 d, Aging 4 d, Aging 5 d, Aging 6 d and Aging 7 d. Each group was divided into five parts and each part had nine grains. They were secured in squares respectively. The place of rice seed was consistent. After preheating the light source for one minute, researchers would heat the rice seed. Research shows that the infrared thermal images are relatively clear when heating 30 s and the seed will not lose activity. After heating, researchers adopted the fluke Ti27 (the distance of infrared thermal imager lens and rice is 16 cm) to shoot the rice seeds which were cooled 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 s respectively to get images. Researchers used data processing software SmartView to extract the image data of the infrared thermal imager.

    1.2.3 Germination tests

    The author referred GB/T3543.4—1995[9]as the rules for agricultural seed testing. For rice seeds of different aging days, researchers took 100 grains from each sample into 150mL beaker and then soaked seeds for two days under the conditions of constant 30℃. Then, researchers put the sample into a glass culture dish with two layers of filter paper. After instilling an appropriate amount of water into the germination boxes, researchers could carry out the implantation germination test. Control conditions are as following: daylight for 8h at 30 ℃ and night for 16 h at 20 ℃. Seven days later, researchers could count the number of germination of rice seeds of different aging days and then calculated the germination rate.

    1.2.4 Data processing

    Researchers used SmartView software to extract the data of infrared thermal images. The germination rate depends on the germ of rice seed, so researchers extracted the average temperature of germ of each rice seed as modeling data. Then, researchers grouped the data according to different aging days and different cooling time. This paper used Matlab (2012b) to build and validate the infrared thermal model for germination rate. The experimental data was divided into the calibration set (96) parts and the prediction set (48) with the ratio of 2∶1 randomly. The calibration set was used to build model. The evaluation indication of the model is correlation coefficient (RC) and standard deviation (SEC) of calibration set. The largerRC, the smaller SEC and thus researchers could get better modeling effort. After modeling, the prediction set was used to test and evaluate the model. The lager the prediction set correlation coefficient (RP), the smaller the standard deviation (SEP) and thus researchers could get a more predictive model.

    2 Results and discussion

    2.1 The relationship between germination rate of seed rice and infrared thermal image

    From germination test, researchers can get the germination rate of different aging time which is shown in table 1. It can be seen from the table that the aging time and rice seed germination rate are in inverse proportional relationship. It states that a series of physiological changes during the aging of rice seed happen in rice seed. The longer aging time, the lower germination rate is[10]. From the point of view of biology, physiological changes occurring in the aging of rice seed mainly include the auto-oxidation of the cell membrane, the destruction of integrity of rice seed membrane, the damage of nucleic acid and chromosomal, changes of enzyme activity and composition of rice seed, the accumulation of toxic substances, the reduction of the synthetic ability and recovery ability and so on[11].

    The infrared thermal image of Nanjing 46 rice seed is shown in Figure 2. 3D pseudo-true color image of rice seed is shown in Figure 3. The relationship between the cooling time and the difference of temperature of rice seed is shown in Figure 4. As we can see from Figure 2 and Figure 3, for the rice seeds which were cooled different time after aged different time, there is a temperature difference. As we can see from Figure 4, the rice seeds of different aging days have the same cooling trend in overall but they don’t have the same speed.

    Table 1 Germination rate of Nanjing 46

    Fig.2 Infrared thermal images of rice seed

    Fig.3 3D Pseudo-true color images of rice seed

    Fig.4 The graph of relationship between temperature

    Zhang Leijie et al used BP neural network to build the model to predict the regulation of various physical properties of food and specific heat capacity. They proved that the specific heat capacity would change with the change of the chemical composition of food[12]. Hence, the rice seeds of different aging days have different specific heat capacity. At the same time, the rice seeds with same heating time and different cooling time have different specific heat capacity. Jin Wen et al used hot-wire method to detect thermal conductivity of food. They proved that it increased with the increase of temperature and moisture at room temperature[13]. Therefore, rice seeds of different aging days have different thermal conductivity. It is feasible that to research the changes of relationship between the germination rate and temperature by analyzing the temperature difference of rice seed of different aging days. Solving formulas of the specific heat capacity and the thermal conductivity are shown in formula (1) and formula (2).

    (1)

    (2)

    In formula (1),mrepresents the quality of rice seed;Qrepresents the heat of absorption (release);t1represents the initial temperature of rice seed;t2represents the temperature of rice seed after heating. In formula (2),t1andt2represents the time of measurement;qrepresents the quantity of heat which was absorbed per unit time;θ1represents the temperature att1;θ2represents the temperature att2.

    2.2 The choose of different modeling approaches

    The most common modeling approaches include PLS, Artificial Neural Network (ANN) and et al. PLS is a novel multivariate statistical data analysis method. It will be easier to interpret the regression coefficients of each independent variable of mathematical model[14]. So it is suitable to be used to model and analyze the infrared thermal images of rice seed. BP neural network is a more mature nonlinear approximation method. 80% to 90% of neural networks use BP neural network or its variations in practical application[15]. GRNN is a novel neural network algorithm which was first proposed in 1991 by a German named Donald Specht. GRNN has following advantages: learning fast, approaching fast when the sample number is very large and very effective for processing sparse data of real-time environment[16]. Artificial neural network has a strong ability of self-adjustment, nonlinear processing and adaptive learning. According to the characteristic that ANN can be used to approximate any nonlinear system and have nonlinear mapping ability (in theory), it is also suitable to be used to model and analyze the infrared thermal images of rice seed.

    This paper used PLS, BP neural network and GRNN to build the prediction model for germination rate of rice seed. The author calculated the calibration set correlation coefficient (RC), standard deviation (SEC), the prediction set correlation coefficient (RP) and the standard deviation (SEP). The results are shown in table 2.

    Table 2 Modeling results of Partial least squares method

    It can be seen from table 2 that the effect of GRNN in the infrared thermal models of rice seed is better than the BP neural networks and partial least squares method. So the author chose the GRNN as the modeling method to predict the germination rate of rice seed.

    2.3 Establishment and test of infrared thermal image model of rice seed

    Researchers used the 96 parts of data in calibration set to build the prediction model of rice seed. Then, they used this model to predict the 48 parts of data in prediction set. Researchers took the data which was extracted from the germ as the input of the model. Through combining it with GRNN, researchers built the infrared thermal model of rice seed. The relationship of the actual value and the prediction value in calibration set is shown in Figure 5. The relationship of the actual value and the prediction value in prediction set are shown in Figure 6. From Figure 5, we can see that the infrared thermal prediction model for germination rate rice seed has good linear relationship. In this model, the value ofRCis 0.932 0 and the value of SEC is 2.056 0. The correlation of this model reaches a good level. From Figure 6, we can see that the value ofRPis 0.900 3 and the value of SEP is 4.101 2. It proves that the result of the prediction set is credible because theRPis larger and the SEP is smaller. In conclusion, applying infrared thermal imaging technology to conduct nondestructive testing for germination rate of rice seed is feasible.

    Fig.5 Fitting graph of calibration set

    Fig.6 Fitting graph of prediction set

    3 Conclusion

    According to the physics principle that the rice seeds of different aging days have different specific heat capacity and thermal conductivity, this paper proposes a testing method for germination rate of rice seed. This method is based on the infrared thermal imaging technology and GRNN. This paper combines PLS, BP neural network with GRNN to build the prediction model. The result proves that using GRNN to build the model can get best modeling effort. In this model, RC and SEC of calibration set are 0.932 0 and 2.056 0. The correlation of the model reaches a high level.RPand SEP of the prediction set are 0.900 3 and 4.101 2. All the data matches the condition of the maximum permissible error range of the rice seed germination test[9]. That is to say that the rapid and nondestructive prediction model for germination rate of rice seed which is established by using infrared thermal imaging technology has good accuracy. Hence, applying infrared thermal imaging technology to conduct nondestructive testing for germination rate of rice seed is feasible.

    [1] Chen N W, Zhang T G. Hybrid Rice, 2009, 24(3): 23.

    [2] Wang C F, Zhan Y, Hu F F, et al. Journal of the Chinese Cereals and Oils Association, 2013, 28(2): 105.

    [3] Li Yinian, Jiang Dan, Liu Yingying, et al. Spectroscopy and Spectral Analysis, 2014, 34(6): 1528.

    [4] Shi D P, Wu C, Li Z J, et al. Infrared Technology, 2015, 37(6): 528.

    [5] Li X L, Wang K, Ma Z H, et al. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 183.

    [6] Xu X L, Jiang H Y, Hang Y L. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 145.

    [7] Jamil Norazlida, Siti Khairunniza Bejo. Agriculture and Agricultural Science Procedia, 2014, 2: 128.

    [8] Kranner Ilse, et al. Proceedings of the National Academy of Sciences, 2010, 107(8): 3912.

    [9] Zhi J Z, Bi X H, Du K M, et al. Rules for Agricultural Seed Testing-Germination Test. Beijing: Chinese Standard Press, 1995.

    [10] Xu H B, Wei Y D, Lian L, et al. Molecular Plant Breeding, 2013, 11(5): 552.

    [11] Yang Y P, Jiang X C, Chen L B, et al. Journal of Hunan Agricultural University: Natural Sciences, 2008, 34(3): 265.

    [12] Zhang L J, Zhang M, Yang L, et al. Journal of Anhui Agri. Sci., 2009, 37(17): 8296.

    [13] Jin W, Zhang L L, Li G T, et al. Foodstuffs Technology, 2010, 18(2): 1.

    [15] Li H D, Guan D X, Yuan F J, et al. Acta Ecologicasinica, 2015, 6(4): 1.

    [16] Zhang Y L, La G Y. Journal of Data Acquisition & Processing, 2009, 24(B10): 100.

    *通訊聯(lián)系人

    S511

    A

    基于紅外熱成像技術(shù)和廣義回歸神經(jīng)網(wǎng)絡(luò)的稻種發(fā)芽率檢測(cè)方法研究

    方文輝1, 盧 偉1, 2*, 徐鴻力1, 洪德林3, 梁 琨1

    1. 南京農(nóng)業(yè)大學(xué)工學(xué)院/江蘇省現(xiàn)代設(shè)施農(nóng)業(yè)技術(shù)與裝備工程實(shí)驗(yàn)室, 江蘇 南京 210031

    2. 遠(yuǎn)程測(cè)控技術(shù)江蘇省重點(diǎn)實(shí)驗(yàn)室, 江蘇 南京 210096

    3. 南京農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/作物遺傳與種質(zhì)創(chuàng)新國(guó)家重點(diǎn)實(shí)驗(yàn)室, 江蘇 南京 210095

    基于稻種老化時(shí)間不同時(shí)的物理學(xué)和生理學(xué)差異, 提出一種基于紅外熱成像技術(shù)及廣義回歸神經(jīng)網(wǎng)絡(luò)的快速、 無損檢測(cè)稻種發(fā)芽率的檢測(cè)方法, 解決傳統(tǒng)稻種發(fā)芽率檢測(cè)方法操作復(fù)雜、 實(shí)驗(yàn)周期長(zhǎng)等問題。 在溫度為45 ℃、 濕度為90%的條件下, 將水稻種子依次老化0, 1, 2, 3, 4, 5, 6和7 d, 得到不同發(fā)芽率的種子; 采集稻種紅外熱圖像, 然后提取稻種胚芽部位數(shù)據(jù), 總計(jì)144份, 隨機(jī)分為校正集和預(yù)測(cè)集, 其中校正集96份, 預(yù)測(cè)集48份; 分析和比較不同老化天數(shù)稻種紅外熱差異, 從物理學(xué)和生理學(xué)方面揭示稻種發(fā)芽率與紅外熱圖像間的關(guān)系, 結(jié)合偏最小二乘算法(partial least squares, PLS)、 BP(back propagation, BP)人工神經(jīng)網(wǎng)絡(luò)和廣義回歸神經(jīng)網(wǎng)絡(luò)(general regression neural network, GRNN), 建立稻種發(fā)芽率的紅外熱模型。 結(jié)果表明, 利用GRNN建立的發(fā)芽率預(yù)測(cè)模型效果最優(yōu), 其中校正集的RC(相關(guān)系數(shù))和SEC(標(biāo)準(zhǔn)偏差)分別為0.932 0和2.056 0, 預(yù)測(cè)集RP(相關(guān)系數(shù))和SEP(標(biāo)準(zhǔn)偏差)分別為0.900 3和4.101 2, 相關(guān)性均達(dá)到較高水平且校正集與預(yù)測(cè)集的標(biāo)準(zhǔn)偏差均較小。 實(shí)驗(yàn)結(jié)果表明, 采用紅外熱成像技術(shù)結(jié)合廣義回歸神經(jīng)網(wǎng)絡(luò)研究稻種發(fā)芽率是可行的, 且所建模型在稻種發(fā)芽率快速測(cè)定方面有較高的精度。

    紅外熱成像技術(shù); 稻種; 發(fā)芽率; 無損檢測(cè); GRNN

    2015-04-14,

    2015-08-26)

    2015-04-14; accepted: 2015-08-26

    The National Natural Science Foundation of China(31401610), the Natural Science Foundation of Jiangsu Province(BK20130696), the Fundamental Research Funds for the Central Universities (KYZ201427), Remote Measurement and Control Technology Key Laboratory Open Fund of Jiangsu Province (YCCK201501)

    10.3964/j.issn.1000-0593(2016)08-2692-06

    Biography: FANG Wen-hui, (1994—), female, Undergraduate student in Nanjing Agricultural University e-mail: fwhnjau@126.com *Corresponding author e-mail: njaurobot@njau.edu.cn

    猜你喜歡
    稻種標(biāo)準(zhǔn)偏差廣義
    Rn中的廣義逆Bonnesen型不等式
    傾斜改正在連續(xù)重力數(shù)據(jù)預(yù)處理中的應(yīng)用
    從廣義心腎不交論治慢性心力衰竭
    有限群的廣義交換度
    互感器檢定裝置切換方式研究
    秋收:胭脂米重回京城
    關(guān)于垂準(zhǔn)儀一測(cè)回垂準(zhǔn)測(cè)量標(biāo)準(zhǔn)偏差檢測(cè)方法的探討
    水稻機(jī)插秧育苗催芽器研制成功
    基于FOGRA表格計(jì)算彩色套印標(biāo)準(zhǔn)偏差的研究
    久久久久久免费高清国产稀缺| 日韩欧美在线乱码| 黑人操中国人逼视频| 亚洲av五月六月丁香网| 男人舔女人下体高潮全视频| 国产伦人伦偷精品视频| 久久久久久亚洲精品国产蜜桃av| 精品高清国产在线一区| 999久久久精品免费观看国产| 国产不卡一卡二| 听说在线观看完整版免费高清| 国产精品九九99| 国产亚洲欧美在线一区二区| 成人午夜高清在线视频| 中亚洲国语对白在线视频| 国产成人影院久久av| xxxwww97欧美| 日韩欧美国产在线观看| 成人一区二区视频在线观看| 国产午夜精品论理片| 变态另类成人亚洲欧美熟女| 美女免费视频网站| 岛国在线免费视频观看| 校园春色视频在线观看| 中文资源天堂在线| 日日爽夜夜爽网站| 不卡一级毛片| 99在线人妻在线中文字幕| 欧美乱妇无乱码| 国产片内射在线| 老熟妇乱子伦视频在线观看| 男女做爰动态图高潮gif福利片| 日本免费a在线| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 日韩欧美国产一区二区入口| 国产精品自产拍在线观看55亚洲| 国内精品久久久久久久电影| 国产伦一二天堂av在线观看| 免费看a级黄色片| 国产精品九九99| 国产欧美日韩一区二区精品| 国产99久久九九免费精品| 老汉色∧v一级毛片| 五月玫瑰六月丁香| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 一二三四在线观看免费中文在| 美女大奶头视频| 亚洲九九香蕉| 国产精品亚洲av一区麻豆| 一区二区三区国产精品乱码| 国产三级中文精品| 亚洲九九香蕉| 天堂影院成人在线观看| 国产精品永久免费网站| 精品高清国产在线一区| 黑人巨大精品欧美一区二区mp4| 又紧又爽又黄一区二区| 精品一区二区三区视频在线观看免费| www日本黄色视频网| 黄色女人牲交| 国产精品日韩av在线免费观看| 国产精品久久久久久人妻精品电影| 久久久久性生活片| 久久久久久久久免费视频了| 免费在线观看视频国产中文字幕亚洲| 老司机靠b影院| 国产精品久久久久久精品电影| 国产一区二区在线av高清观看| 午夜亚洲福利在线播放| 久久久国产成人免费| 又爽又黄无遮挡网站| 成人一区二区视频在线观看| 久久精品91蜜桃| 波多野结衣高清无吗| 美女免费视频网站| 亚洲av日韩精品久久久久久密| 日韩大码丰满熟妇| 热99re8久久精品国产| 欧美丝袜亚洲另类 | 国产成人精品无人区| 久99久视频精品免费| 色尼玛亚洲综合影院| 日日摸夜夜添夜夜添小说| 三级男女做爰猛烈吃奶摸视频| 999久久久国产精品视频| 悠悠久久av| av国产免费在线观看| 淫秽高清视频在线观看| 色播亚洲综合网| 国产成人一区二区三区免费视频网站| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品一区二区www| 亚洲自拍偷在线| 精品国产乱码久久久久久男人| 女人被狂操c到高潮| 国内精品一区二区在线观看| 午夜福利18| 国产亚洲精品久久久久5区| 女人被狂操c到高潮| 国产精品一区二区三区四区免费观看 | 欧美最黄视频在线播放免费| 大型黄色视频在线免费观看| 香蕉丝袜av| 99久久综合精品五月天人人| 在线观看66精品国产| 男女床上黄色一级片免费看| 国产亚洲欧美98| 亚洲va日本ⅴa欧美va伊人久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月天丁香| 精品久久久久久成人av| 久久香蕉精品热| 床上黄色一级片| 97超级碰碰碰精品色视频在线观看| 久久精品亚洲精品国产色婷小说| 欧美黑人精品巨大| 女警被强在线播放| 白带黄色成豆腐渣| 长腿黑丝高跟| 欧美色欧美亚洲另类二区| 国产精品亚洲美女久久久| av国产免费在线观看| 亚洲精品久久国产高清桃花| 天堂av国产一区二区熟女人妻 | 最近在线观看免费完整版| 国产1区2区3区精品| 999精品在线视频| 19禁男女啪啪无遮挡网站| x7x7x7水蜜桃| 婷婷亚洲欧美| 亚洲激情在线av| 一级作爱视频免费观看| 老司机深夜福利视频在线观看| 日韩精品免费视频一区二区三区| 后天国语完整版免费观看| 亚洲中文日韩欧美视频| 99re在线观看精品视频| 午夜福利视频1000在线观看| 欧美日本视频| 国产欧美日韩一区二区三| 国产成人影院久久av| 真人做人爱边吃奶动态| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 韩国av一区二区三区四区| 五月伊人婷婷丁香| 亚洲国产欧美一区二区综合| 欧美最黄视频在线播放免费| 色噜噜av男人的天堂激情| 男人的好看免费观看在线视频 | 母亲3免费完整高清在线观看| 最近最新中文字幕大全电影3| 99久久久亚洲精品蜜臀av| 国内毛片毛片毛片毛片毛片| 日韩欧美国产在线观看| 亚洲全国av大片| 91av网站免费观看| 黑人欧美特级aaaaaa片| 国产三级在线视频| 男插女下体视频免费在线播放| 黄色毛片三级朝国网站| 搡老岳熟女国产| 十八禁人妻一区二区| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 亚洲国产欧美一区二区综合| 色综合婷婷激情| 国产av在哪里看| 亚洲国产欧美一区二区综合| 91在线观看av| 久久婷婷人人爽人人干人人爱| 制服诱惑二区| 欧美 亚洲 国产 日韩一| 久久99热这里只有精品18| 后天国语完整版免费观看| 国产伦在线观看视频一区| 99久久精品热视频| 日本撒尿小便嘘嘘汇集6| 老熟妇乱子伦视频在线观看| 露出奶头的视频| 高清毛片免费观看视频网站| 亚洲人成电影免费在线| 在线观看舔阴道视频| 午夜a级毛片| 国产高清有码在线观看视频 | 精品一区二区三区视频在线观看免费| 听说在线观看完整版免费高清| 国产片内射在线| 嫩草影视91久久| 69av精品久久久久久| 制服人妻中文乱码| 日韩 欧美 亚洲 中文字幕| 欧美乱妇无乱码| 99国产精品一区二区三区| 一进一出好大好爽视频| 欧美中文日本在线观看视频| 午夜福利18| 男插女下体视频免费在线播放| 女人爽到高潮嗷嗷叫在线视频| 草草在线视频免费看| 日本一二三区视频观看| 成人欧美大片| 亚洲成人精品中文字幕电影| 亚洲成人久久爱视频| av免费在线观看网站| 国产一区二区在线av高清观看| 熟女少妇亚洲综合色aaa.| 999精品在线视频| 国产高清有码在线观看视频 | 亚洲成人国产一区在线观看| 久久草成人影院| 亚洲成人久久性| 久久久久久久精品吃奶| 国产午夜精品论理片| 亚洲精品色激情综合| 国产v大片淫在线免费观看| 精品国产亚洲在线| 色精品久久人妻99蜜桃| 亚洲专区字幕在线| 九九热线精品视视频播放| 午夜成年电影在线免费观看| 老汉色∧v一级毛片| 大型av网站在线播放| 成人一区二区视频在线观看| 国产精品,欧美在线| 欧美中文日本在线观看视频| 欧美+亚洲+日韩+国产| 色精品久久人妻99蜜桃| 757午夜福利合集在线观看| 国产欧美日韩精品亚洲av| 熟女少妇亚洲综合色aaa.| 97碰自拍视频| 久久久国产成人免费| 日韩精品中文字幕看吧| 亚洲狠狠婷婷综合久久图片| 啦啦啦观看免费观看视频高清| 久久国产乱子伦精品免费另类| 男女之事视频高清在线观看| 亚洲国产中文字幕在线视频| 国产男靠女视频免费网站| 在线观看午夜福利视频| 欧美日韩精品网址| 国产亚洲精品久久久久5区| 50天的宝宝边吃奶边哭怎么回事| 他把我摸到了高潮在线观看| 国产激情久久老熟女| 男人舔女人的私密视频| 91国产中文字幕| 国内精品一区二区在线观看| 舔av片在线| xxx96com| 久久婷婷人人爽人人干人人爱| 亚洲免费av在线视频| 国产99白浆流出| 大型av网站在线播放| 亚洲av成人一区二区三| 长腿黑丝高跟| 精品久久久久久久久久久久久| 村上凉子中文字幕在线| 国产成人av教育| 一边摸一边做爽爽视频免费| 99国产精品一区二区蜜桃av| 国产伦在线观看视频一区| 19禁男女啪啪无遮挡网站| 国产高清videossex| 亚洲国产精品sss在线观看| 后天国语完整版免费观看| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 久久 成人 亚洲| 日韩欧美三级三区| 色av中文字幕| 一级a爱片免费观看的视频| 午夜老司机福利片| 好男人电影高清在线观看| 91国产中文字幕| 国产精品99久久99久久久不卡| 我要搜黄色片| 黑人操中国人逼视频| 久久久水蜜桃国产精品网| 亚洲第一电影网av| 男女做爰动态图高潮gif福利片| 成人国语在线视频| 欧美又色又爽又黄视频| 免费在线观看黄色视频的| 国产精品亚洲一级av第二区| 男女视频在线观看网站免费 | 久久久久久大精品| 欧洲精品卡2卡3卡4卡5卡区| 巨乳人妻的诱惑在线观看| 大型av网站在线播放| 成人18禁高潮啪啪吃奶动态图| 美女免费视频网站| 国产v大片淫在线免费观看| av天堂在线播放| 真人一进一出gif抽搐免费| 777久久人妻少妇嫩草av网站| 搡老妇女老女人老熟妇| 中文字幕av在线有码专区| 欧美黑人精品巨大| 日本在线视频免费播放| 久久99热这里只有精品18| 精品日产1卡2卡| 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 麻豆成人午夜福利视频| 12—13女人毛片做爰片一| 亚洲五月婷婷丁香| 日本成人三级电影网站| 国产精品久久久久久人妻精品电影| 搞女人的毛片| 亚洲av第一区精品v没综合| 搡老熟女国产l中国老女人| 亚洲精品国产精品久久久不卡| 级片在线观看| 中文字幕人成人乱码亚洲影| 成人亚洲精品av一区二区| 最好的美女福利视频网| 国产69精品久久久久777片 | 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 特级一级黄色大片| 日日干狠狠操夜夜爽| 欧美乱码精品一区二区三区| 舔av片在线| 亚洲中文日韩欧美视频| 成在线人永久免费视频| 亚洲专区字幕在线| 狠狠狠狠99中文字幕| 欧美乱色亚洲激情| 在线观看美女被高潮喷水网站 | 19禁男女啪啪无遮挡网站| 淫妇啪啪啪对白视频| 美女黄网站色视频| 国产精品一区二区免费欧美| 中文字幕人妻丝袜一区二区| 久久人妻av系列| 99久久精品热视频| 一本精品99久久精品77| 18禁国产床啪视频网站| 观看免费一级毛片| 老汉色av国产亚洲站长工具| 国产激情偷乱视频一区二区| 19禁男女啪啪无遮挡网站| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 精品国内亚洲2022精品成人| 日本免费一区二区三区高清不卡| 国内毛片毛片毛片毛片毛片| 最近最新中文字幕大全免费视频| 一本一本综合久久| 欧美成狂野欧美在线观看| 中文字幕精品亚洲无线码一区| 日韩欧美在线二视频| 夜夜躁狠狠躁天天躁| 亚洲欧美精品综合一区二区三区| 日韩精品青青久久久久久| 男女下面进入的视频免费午夜| 国产私拍福利视频在线观看| 国产一区二区三区在线臀色熟女| 免费观看人在逋| aaaaa片日本免费| 精品久久久久久久久久免费视频| 国产伦一二天堂av在线观看| 亚洲国产精品sss在线观看| 日本免费a在线| 毛片女人毛片| 久久久久久亚洲精品国产蜜桃av| 观看免费一级毛片| 国产免费男女视频| 亚洲精品中文字幕在线视频| 一级a爱片免费观看的视频| 哪里可以看免费的av片| 久久久久久久精品吃奶| 可以在线观看的亚洲视频| 久久热在线av| 国产精品亚洲美女久久久| 日韩精品青青久久久久久| 亚洲成人国产一区在线观看| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 久久精品亚洲精品国产色婷小说| 日本成人三级电影网站| 久久99热这里只有精品18| 久久天躁狠狠躁夜夜2o2o| 亚洲一区高清亚洲精品| 精品国内亚洲2022精品成人| 亚洲国产高清在线一区二区三| 男人舔女人下体高潮全视频| 亚洲欧美一区二区三区黑人| 亚洲五月婷婷丁香| 精品国产乱子伦一区二区三区| 国产精品98久久久久久宅男小说| 久久亚洲精品不卡| 免费看美女性在线毛片视频| 麻豆成人午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 中文亚洲av片在线观看爽| 欧美黑人精品巨大| 久久精品91无色码中文字幕| 久久久国产成人精品二区| 丁香六月欧美| 国产一级毛片七仙女欲春2| 他把我摸到了高潮在线观看| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 国产黄片美女视频| 五月伊人婷婷丁香| av在线天堂中文字幕| 很黄的视频免费| 精品久久久久久久久久免费视频| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站| 99在线视频只有这里精品首页| 精品久久久久久久人妻蜜臀av| 亚洲精品中文字幕在线视频| 草草在线视频免费看| 欧美zozozo另类| 国产视频内射| 亚洲精品av麻豆狂野| 99久久久亚洲精品蜜臀av| 黄片小视频在线播放| 免费搜索国产男女视频| 桃红色精品国产亚洲av| 一进一出抽搐动态| 国内久久婷婷六月综合欲色啪| 观看免费一级毛片| 午夜激情av网站| 久久99热这里只有精品18| 久久九九热精品免费| 99久久精品国产亚洲精品| 日韩国内少妇激情av| 午夜福利高清视频| 岛国视频午夜一区免费看| 十八禁人妻一区二区| 精品第一国产精品| 久久国产精品影院| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看 | 亚洲国产精品999在线| 精品久久久久久久末码| 9191精品国产免费久久| 99在线人妻在线中文字幕| 国产人伦9x9x在线观看| 成人三级黄色视频| 亚洲黑人精品在线| 欧美最黄视频在线播放免费| 99re在线观看精品视频| 久久天躁狠狠躁夜夜2o2o| 欧美高清成人免费视频www| 中文字幕人妻丝袜一区二区| 亚洲av电影不卡..在线观看| 亚洲全国av大片| 国产av又大| 在线国产一区二区在线| 色综合亚洲欧美另类图片| 少妇的丰满在线观看| 两个人的视频大全免费| 亚洲aⅴ乱码一区二区在线播放 | 国产精品久久久久久精品电影| 国产成人aa在线观看| 中文亚洲av片在线观看爽| 精品久久久久久久末码| 日本熟妇午夜| 日韩三级视频一区二区三区| 观看免费一级毛片| 国产不卡一卡二| 99久久精品国产亚洲精品| 99久久久亚洲精品蜜臀av| 久久久久国内视频| 亚洲国产精品合色在线| 淫秽高清视频在线观看| 精品第一国产精品| 草草在线视频免费看| 成熟少妇高潮喷水视频| 日韩精品青青久久久久久| 好男人在线观看高清免费视频| 女同久久另类99精品国产91| 变态另类丝袜制服| 性欧美人与动物交配| 日韩欧美国产一区二区入口| 日韩高清综合在线| 国产精品乱码一区二三区的特点| 日韩欧美一区二区三区在线观看| av福利片在线| 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人综合色| 亚洲一区二区三区不卡视频| 99在线人妻在线中文字幕| 黄色丝袜av网址大全| 日韩成人在线观看一区二区三区| 俺也久久电影网| 白带黄色成豆腐渣| 国产黄色小视频在线观看| 日本一本二区三区精品| 五月伊人婷婷丁香| 久久久久国产一级毛片高清牌| 国产精品久久久久久亚洲av鲁大| 99精品久久久久人妻精品| 日本黄大片高清| 18禁美女被吸乳视频| 亚洲av中文字字幕乱码综合| 一进一出好大好爽视频| 欧美国产日韩亚洲一区| 久久人人精品亚洲av| 欧美色欧美亚洲另类二区| 日韩免费av在线播放| 黄片大片在线免费观看| 黄色成人免费大全| 搡老妇女老女人老熟妇| 黑人操中国人逼视频| 国产三级黄色录像| 国产成人啪精品午夜网站| 精品久久久久久,| 久久精品国产99精品国产亚洲性色| 国产精品影院久久| 国产97色在线日韩免费| 悠悠久久av| 亚洲人成电影免费在线| 国内少妇人妻偷人精品xxx网站 | 99在线视频只有这里精品首页| 身体一侧抽搐| 别揉我奶头~嗯~啊~动态视频| 老熟妇仑乱视频hdxx| 男插女下体视频免费在线播放| av免费在线观看网站| 99久久无色码亚洲精品果冻| 日韩精品中文字幕看吧| 亚洲黑人精品在线| 日韩国内少妇激情av| 最近最新中文字幕大全免费视频| 亚洲最大成人中文| 18禁美女被吸乳视频| 国产精品乱码一区二三区的特点| 丝袜美腿诱惑在线| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀| 九色国产91popny在线| 欧美黑人欧美精品刺激| 久久久久久久久免费视频了| 免费av毛片视频| 国产精品永久免费网站| 在线观看一区二区三区| 成人亚洲精品av一区二区| 日韩 欧美 亚洲 中文字幕| 久久精品国产99精品国产亚洲性色| 午夜福利18| 久久精品国产99精品国产亚洲性色| 亚洲国产精品999在线| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 亚洲欧美精品综合久久99| 亚洲精品久久成人aⅴ小说| 99热这里只有精品一区 | 亚洲精品中文字幕在线视频| 十八禁人妻一区二区| 999久久久精品免费观看国产| 制服诱惑二区| 一进一出抽搐gif免费好疼| 热99re8久久精品国产| 99国产极品粉嫩在线观看| 99久久精品国产亚洲精品| 亚洲国产精品999在线| 人妻久久中文字幕网| 啦啦啦免费观看视频1| 色综合欧美亚洲国产小说| 国产精品香港三级国产av潘金莲| 婷婷丁香在线五月| 一a级毛片在线观看| 国产精品久久电影中文字幕| 少妇人妻一区二区三区视频| 亚洲第一欧美日韩一区二区三区| 国产在线观看jvid| 亚洲国产中文字幕在线视频| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 国产三级黄色录像| 国产午夜精品论理片| 色播亚洲综合网| 成人特级黄色片久久久久久久| 国产亚洲av嫩草精品影院| 亚洲熟女毛片儿| 久久精品成人免费网站| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说| 色哟哟哟哟哟哟| 男人的好看免费观看在线视频 | 国产高清有码在线观看视频 | 日韩三级视频一区二区三区| 韩国av一区二区三区四区| 亚洲av电影在线进入| 亚洲国产精品合色在线| 99riav亚洲国产免费| 欧美一区二区精品小视频在线| 久久久久久亚洲精品国产蜜桃av| 亚洲美女视频黄频| 亚洲av成人精品一区久久| 变态另类丝袜制服| 国产精品乱码一区二三区的特点| 亚洲精品久久国产高清桃花| 亚洲成人免费电影在线观看| 黄色片一级片一级黄色片| 亚洲av成人不卡在线观看播放网| 亚洲国产中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 亚洲成av人片在线播放无| 亚洲aⅴ乱码一区二区在线播放 | 国产av又大| 亚洲自拍偷在线| 黄色丝袜av网址大全| 久久香蕉国产精品| 国产亚洲精品一区二区www|