• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Degradation of phenol in industrial wastewater over the F–Fe/TiO2 photocatalysts under visible light illumination☆

    2016-06-12 03:48:10YandongLiuShijianZhouFuYangHuaQinYanKong
    Chinese Journal of Chemical Engineering 2016年12期

    Yandong Liu ,Shijian Zhou ,2,*,Fu Yang ,Hua Qin ,Yan Kong ,*

    1 State Key Laboratory of Materials-Oriented Chemical Engineering,College of Chemistry and Chemical Engineering,Nanjing Tech University,Nanjing 210009,China

    2 Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM),Nanjing Tech University,Nanjing 210009,China

    1.Introduction

    The global environment has been seriously polluted by industrial wastewater with the development of world economy.Phenol,as a pollutant in wastewater with high content,has caused severe environmental problems due to its harmful toxicity,poor biodegradability and long remaining-ability[1–3].Therefore,the degradation of phenol in wastewater has attracted more and more attention.To resolve this problem,many technologies have been proposed involving physical adsorption,chemical coagulation and biological treatment[4–8].However,by these traditional techniques,phenol could not be decomposed completely,and even the secondary pollutants would be generated[9].Hence,it is still urgent for us to develop an advanced technique for the degradation of phenolic wastewater.

    Recently,since it is able to decompose toxic chemicals into unharmful CO2and H2O completely,photocatalytic decomposition of organic contaminants with different semiconductor materials becomes an important technology[10].Among these semiconductor photocatalysts,titanium dioxide(TiO2)has been proved to be the mostpromising material in practical application due to its low-cost,nontoxicity and chemical stability.However,due to the wide band gap(3.0–3.2 eV)in TiO2,only UV portion of the solar spectrum could be absorbed,which leads to a poor solar energy utilization during the reaction process[6,11,12].Moreover,the high recombination efficiency of photogenerated electron–hole pairs is another reason for restricting their practical application in pollutant degradation[13].To overcome these drawbacks and improve the photocatalytic activity of TiO2in the visible light region,many efforts have been attempted.For instance,Chenget al.found that F and N co-doped TiO2(F–N-TiO2)nanoparticles exhibited an enhanced photoactivity with an apparent redshift to the region of visible light[11].Songet al.prepared a highly active g-C3N4/TiO2hybrid photocatalyst by using a simple sonication method.The apparent rate constant k of g-C3N4/TiO2–1.5 was 7.03 times higher than bare TiO2,which was mainly attributed to the extended visible light absorption[14].Agorku and coworkers demonstrated that S/Gd3+-codoping made a red shift in the absorption band of TiO2,resulting in the increase of photocatalytic activity under visible light[15].

    In addition,many promoters have been applied to the further improvement of the photocatalytic activity in TiO2catalyst.Ferric species,as the important component of Fenton reagent,have been reported to be useful for the catalytic oxidation of phenol[16–18].Sun.et al.suggested that surface modified TiO2with iron oxide clusters(Fe/TiO2)through adsorption and decomposition of a large Fe(III)complex exhibiting an enhanced activity for phenol degradation in water under UVlight[19].Also,the surface fluorination of TiO2can lead to the reduction of the recombination of photogenerated electrons and holes by the formation of surface≡Ti--F groups[11,20,21].In this case,more mobile·OH radicals which are favorable to the oxidation reaction will be generated by F modification[21–23].Zhanget al.discovered that the F–Fe codoped TiO2exhibited an enhanced photodegradation rate(76%)at the best doping mass ratio of F:Fe:Ti=0.15:0.15:100,which is due to the large red shift in the light adsorption edge[24].Wang and co-workers also prepared the Fe(III)/F-TiO2photocatalyst by two wet-chemical method including Fe(III)(atomic percent of Fe to Ti=0.8%)ions impregnation and then F-ion(F/Ti=1%)adsorption on the TiO2surface[25].However,further research found that the catalyst with a relatively high iron loading(5%)displays the optimum photocatalytic properties for phenol degradation[26].Since the low iron content in these codoped catalysts,the synthesis of new F and Fe co-modified TiO2catalysts with a superior photoactivity and higher stability for phenoldegradation is still important.

    In this work,we prepared F and Fe co-modified TiO2(F–Fe/TiO2)catalyst with high iron loading(4.5%)via a facile one-step hydrothermal method.The physical and chemical characterizations of F–Fe/TiO2photocatalysts were conducted,and the performance was evaluated in terms of phenol photodegradation under visible light irradiation.Then the simulated conditions of industrial wastewater including initial phenol concentration,visible light intensity,pH and different anions were investigated in the presence of F–Fe/TiO2photocatalyst.This research provides a promising practical approach in the efficient treatment of phenol in industrial wastewater.

    2.Experimental Methods

    2.1.Materials

    Allchemicals except the tetrabutyltitanate(chemicalgrade)used in this study are analytical grade and used without further treatment.Tetrabutyl titanate and iron(III)chioride anhydrous were obtained from Sinopharm Chemical Reagent Co.Ltd.All the other reagents are supplied by Shanghai Jiuyi Chemical Reagent Co.Ltd.

    2.2.Preparation of F-Fe/TiO2,F/TiO2,Fe/TiO2 and pure TiO2 samples

    The F–Fe/TiO2photocatalyst was prepared by hydrothermal method.In a typical procedure,tetrabutyltitanate(20 ml)was added into absolute ethanol(80 ml)under vigorously stirring.After that,a certain amount of hydrofluoric acid solution(40 wt%)and FeCl3was added.The resulting solution was stirred for 30 min,subsequently transferred into a Teflon lined stainless-steel autoclave,which was reacted at 180°C for 24 h.After the reaction,the products were air-cooled to room temperature,then centrifuged,washed with absolute ethanol,and dried at60°C for severalhours.The final resulting samples were labeled as F–Fe/TiO2(atomic percent of F/Ti=0.8%,Fe/Ti=4.5%).The mono-modified F/TiO2or Fe/TiO2catalyst was prepared under the same conditions with only FeCl3or hydrofluoric acid,respectively.The pure TiO2catalyst was prepared by the same method using deionized water instead of hydrofluoric acid solution.

    2.3.Preparation of F0.38-Fe0.13-TiO2 sample

    The material of F and Fe co-doping TiO2(F0.38–Fe0.13–TiO2)was prepared by a stepwise sol–gel reaction and hydrogen peroxide oxidation according to the previous report[24].First of all,0.6 mol·L-1titanium tetrachloride solutions were prepared,and then appropriate amounts of NH4F and FeCl3were added to produce the solutions.The system was statically kept for 24 h,and then an ammonia solution was added slowly to reach pH value of 10.The obtained precipitate was washed with distilled water 6 times to remove impurities.Subsequently,distilled water was used to dilute the slurry to yield a suspension(about 10 g of sediment in 0.1 L of water),and saturated hydrogen peroxide was dropped using a drip funnel until an orange-red transparent solution was formed.The solution was heated to 80°C for 8 h to form the sol and then dried to produce powders of TiO2.The resulting sample is labeled as F0.38–Fe0.13–TiO2(F/Ti=0.38%,Fe/Ti=0.13%).

    2.4.Preparation of Fe(III)/F-TiO2 sample

    As Wanget al.reported[25],the Fe(III)/F-TiO2photocatalysts was prepared with impregnation method as follows.The P25 TiO2powder calcined at550°C for 2 h was used as the TiO2precursor.Firstly,TiO2(0.5 g)was dispersed into 5 ml Fe(NO3)3solution with a pH of 2(adjusted by 1 mol·L-1HCl solution)under stirring.After 15 min,the suspension solution was heated to 60°C and maintained for 2 h.The resultant powders were filtrated,rinsed with distilled water,and dried at 60°C to obtain the Fe(III)/TiO2photocatalysts.And then F ions were impregnated onto the Fe(III)/TiO2sample to form the Fe(III)/F-TiO2(F/Ti=1.0%,Fe/Ti=0.8%)photocatalyst based on above method,wherein,the aforementioned TiO2and Fe(NO3)3were replaced with Fe(III)/TiO2and NH4F,respectively.

    2.5.Characterization

    Powder X-ray diffraction(XRD)patterns were recorded on a Bruker D8 Advance X-ray diffractometer to study the crystal structure and crystallinity,using Ni- filtered CuKαradiation(λ =0.154178 nm)at 40 kV and 40 mA in the 2θ range from 20°to 60°.The elemental composition and electronic structure of the synthesized materials were carried out with an X-ray photoelectron spectroscopy(XPS,PHI 5000 Versa Probe),using AlKαradiation(1486.6 eV)and characteristic C 1s peak centered at 284.6 eV as the standard bond energy of the samples.The UV–visible diffuse reflection spectra were determined by a UV–Vis spectrometer(Perkin–Elmer Lambda 950)with a light path length of 1 cm.

    2.6.Photodegradation of phenol under visible light

    The photocatalytic degradation of phenol was carried out in a quartz column with water circulation jacket at room temperature.The pH of experiments involved was adjusted with NaOH(0.1 mol·L-1)and H2SO4(0.1 mol·L-1).In a typical photocatalytic experiment,a given amount of catalyst was added to the quartz column containing 50 ml aqueous solution of phenol with the desired initial concentration at pH=4.The prepared suspension was stirred in the dark for 1 h to ensure the establishment of an adsorption–desorption equilibrium of phenol on the catalyst.Then,the suspension was irradiated under a 700 W xenon lamp equipped with 400 nm cutoff filters(PCS-400)to remove the UV lights.At given time intervals(every 60 min),4 ml suspensions were sampled and centrifuged to remove catalyst powders,and the filtrates were analyzed by UV–Vis spectrophotometer(BLV-GHX-V,Shanghai Bilang Instrument Co.Ltd.)to determine the photodegradation rate of phenol.The simulated conditions of industrial wastewater including phenol such as initial phenol concentrations(50–400 mg·L-1),visible light intensity(500–900 W),pH(4,7 and 10)and several different sodium salts(NaCl,Na2SO4,NaNO3and Na2CO3)at 0.1 mol·L-1on the degradation reaction were investigated.The photocatalytic stability of catalysts was examined by recycling runs.After the completion of the reaction,the separated photocatalysts were gathered,washed by water and ethanol alternatively,and dried for the subsequent cycling test.

    3.Results and Discussion

    3.1.Catalyst characterization

    Fig.1 demonstrates the XRD patterns of pure TiO2,F/TiO2,Fe/TiO2and F–Fe/TiO2photocatalysts.In Fig.1,only diffraction peaks of anatase TiO2(JCPDS no.21-1272)are observed in all samples,indicating that the introduction of F and Fe species has no effect on the phase of TiO2.Meanwhile,there is no diffraction peak corresponding to Fe-like compounds detected,suggesting that Fe species should be well-dispersed in the prepared samples.Apparently,compared with pure TiO2,the peak intensity of F-TiO2is strengthened,manifesting the addition of F is beneficial for the crystallinity of the catalyst.According to previous reports[27],the good anatase crystallization is beneficial to the promotion of photocatalytic activity TiO2catalysts.

    Fig.1.XRD patterns of different samples.

    The XPS spectra were used to investigate the elemental chemical states of various modified samples.As shown in Fig.2,all the XPS spectra were calibrated with the C1s peak at284.6 eV.In the F 1s spectra of F/TiO2and F–Fe/TiO2,only one peak with binding energy located at about 684.1 eV can be observed,which assigned to the surface fluoride(≡Ti--F)formed by ligand exchange between F-and surface hydroxyl group on TiO2surface[20,28].Furthermore,it can be seen that there is no significant difference between the F/TiO2and F–Fe/TiO2,indicating that the introduction of Fe species almost has no influence on the content and chemical states of F.Based on calculated results from the XPS spectra,the surface content of F in F/TiO2and F–Fe/TiO2is 0.91 and 0.89%,respectively.In the Fe 2p spectra of Fe/TiO2and F–Fe/TiO2,the peaks at around 711.0 and 724.3 eV correspond to the 2p3/2and 2p1/2of Fe3+[29,30].Meanwhile,the satellite ‘shoulder’at 717.6 eV confirms the presence of FeOx[30,31].Comparing the Fe 2p peaks of Fe-TiO2and F–Fe/TiO2,the positions and intensities almost be the same,indicating that F modification does not affect the concentration and states of Fe species in the TiO2catalysts.The XPS spectra reveal that the Fe species are adsorbed on the surface of TiO2in the form of FeOx.As calculated from the XPS spectra,the surface content of Fe accounts for Fe/TiO2and F–Fe/TiO2is 4.38%and 4.42%,respectively,which is close to the theoretical value.

    3.2.Optical property

    The UV–Vis DRS spectra(Fig.3)were recorded to investigate the optical properties of various samples.The bandgaps of samples were determined by a plot(αhυ)1/2vsthe photon energyhυ.The adsorption coefficient α and Eg is related by the following equation:

    Fig.3.UV–Vis DRS spectra of pure TiO2,F/TiO2,Fe/TiO2 and F–Fe/TiO2 catalysts.

    whereEg(eV)is the bandgap,hand υ represent the Planck constant,and frequency,respectively.As shown in the inset of Fig.3,the bandgaps of TiO2,F/TiO2,Fe/TiO2and F–Fe/TiO2were calculated to be 3.08,3.05,2.20 and 1.76 eV,respectively.Compared to the pure TiO2,the F/TiO2catalyst exhibits similar bandgap absorption with a slight decrease of bandgap of 0.03 eV.This observation suggests that the electronic absorption spectroscopy properties between F/TiO2and pure TiO2is similar,which further demonstrates that the F just replaces the--OH on TiO2crystal surface rather than enters into the TiO2crystal lattice to replace the oxygen.Therefore,the UV–Vis DRS results are in good accordance with the XPS results.After introducing Fe species,Fe/TiO2and F–Fe/TiO2show a stronger absorption in the visible light region with a bandgap of 2.20 and 1.76 eV,which is due to the excitation of 3d electrons of Fe3+to TiO2conduction band[29]and the charge transition between interacting iron ions(Fe3++Fe3+→Fe4++Fe2+)[32,33].The red shift of the absorption wavelength indicates that the comodified F–Fe/TiO2catalyst can absorb visible light and be further applied for the visible-light photocatalysis.

    3.3.Photocatalytic performance of catalysts

    The photocatalytic performances of various prepared samples were evaluated by the degradation of phenol under visible light irradiation for 300 min.As shown in Fig.4(a),the F–Fe/TiO2photocatalyst exhibits the highest photocatalytic activity for the degradation of phenol in all samples,while the photocatalytic activities of F/TiO2and Fe/TiO2are higher than pure TiO2.Moreover,it should be noted that,as compared with F0.38–Fe0.13–TiO2and Fe(III)/F-TiO2,the prepared F–Fe/TiO2catalyst from the hydrothermal process in this study exhibit a higher photoactivity.To further investigate the reaction kinetics process,the reaction rate constant of phenol degradation over various samples were measured by the slop of following equation:

    Fig.2.XPS spectra of F 1s and Fe 2p for modified TiO2 catalysts.

    Fig.4.(a)Potodegradation of phenol over various samples and(b)apparent rate constants under visible light irradiation([phenol]=100 mg·L-1,[catalyst]=1 g·L-1,[visible light intensity]=700 W,pH=4).

    wherein,k(min-1)is the apparent reaction rate constant,C0andC(mg·L-1)represent the concentration of phenol at initial and time t(min),respectively.Fig.4(b)shows the reaction rate constant of phenol degradation under visible light irradiation on various TiO2photocatalysts.The reaction rate constant of F–Fe/TiO2is improved to be 0.012 min-1,which is 18.96,3.37 and 2.25 times higher than pure TiO2,F/TiO2and Fe/TiO2,respectively.This observation confirms that the co-modification of F and Fe on TiO2can improve the photodegradation rate of phenol significantly.Also,the reaction rate constant for F–Fe/TiO2is higher than that of F0.38–Fe0.13–TiO2and Fe(III)/F-TiO2.Also,Table 1 lists several reported modified TiO2catalysts,and their photocatalytic results in the degradation of phenol.It is found that,as compared with these studies,the catalysts synthesized in this study not only exhibit superior photoactivity under visible light irradiation,but also could degrade phenol with high concentration completely.

    Table 1Comparison on catalytic activity for phenol degradation over some modified TiO2 catalysts

    To further verify the industrial application value of F–Fe/TiO2catalyst,we simulated the industrial phenolic wastewater to investigate the influence of different initial parameters on photocatalytic degradation of phenol,including initial phenol concentration,visible light intensity,pH and various anions.

    3.3.1.Effect of initial phenol concentration

    It is well known that,the initial concentration has a great influence on photodegradation of organic compounds.The effect of initial phenol concentration(50–400 mg·L-1)on the photodegradation was demonstrated in Fig.5.It is revealed that,with the decreasing initial phenol concentration from 400 to 100 mg·L-1,the degradation rate significantly increases from 35.73%to 100%in 300 min.Moreover,100%phenol is removed within 180 min with the concentration of 50 mg·L-1.Zhanget al.reported that,in a typical photocatalytic reaction,molecular oxygen is activated by photogenerated electrons to produce·O2-or H2O2,while holes are trapped by surface-absorbed hydroxyls(OH-)to generate·OH,which would participate in the subsequent degradation reaction[36].At higher phenol concentration,due to the growth of the equilibrium adsorption of phenol on the active sites,a large amount of phenol molecules get adsorbed.Therefore,competitive adsorption of OH-on the same site decreases,and consequently the amount of·OH and ·O2-on the same site decreases[37].Furthermore,in the different initial phenol concentration,the probability of phenol molecules to react with·OH would be decreased and then the removal efficiency is accordingly dropped[38].In addition,with progress in degradation reaction especially at high initial concentration,some intermediates,such as 2-hydroxy-propaldehyde,hydroxyacetic acid,3-hydroxy-propyl acid,glycerol etc.[39],are formed and competitively adsorbed on the catalyst surface and also competitively react with oxidant species[37].All of these factors finally cause a decrease of the degradation rate of phenol.Since the catalyst dosage is 1 g·L-1for different initial phenol concentration,the present results indicate that photocatalytic degradation is rather promising when the ratio of phenol to catalyst is below 1:10.3.3.2.Effect of visible light intensity

    The effect of visible light intensity(500–900 W)on phenol photodegradation was examined for F–Fe/TiO2photocatalyst.As shown in Fig.6,the degradation rate with a light intensity of 500,600 and 700 W is 71.48%,84.76%and 100%within 300 min,respectively.When the visible light intensity increases from 700 to 900 W,the time required for complete degradation reduces from 300 to 180 min.This can be attributed to the fact that the enhancement of visible light intensity can provide more energy for the production of photogenerated electron–hole pairs and hence,promoting the formation of·OH radicals which are beneficial to the degradation of phenol[40].Therefore,it is suitable for the complete degradation of phenol when the visible light intensity is higher than 700 W.

    Fig.6.Influence of visible light intensity on the photocatalytic degradation of phenol over F–Fe/TiO2 catalyst under visible light irradiation.([catalyst]=1 g·L-1,[phenol concentration]=100 mg·L-1,pH=4).

    3.3.3.Effect of pH

    Due to the complex acid–base properties of industrial wastewater including phenol,the pH effect needs to be investigated.Also,the pH of an aqueous mediumis an important factor that may influence the uptake of the adsorbate on the photocatalyst surface[41].According to previous reports[42],the point of zero charge(pHpzc)of TiO2is about 6.8,thus below this value the TiO2surface is positively charged and above it is negatively charged.The results in Fig.7 indicate that the degradation is favored in an acidic solution,in contrary,it is inhibited in a basic solution as compared with that of in neutral solution.In the acidic solution,phenol is primarily in its nonionic form,water solubility is minimized and the adsorption onto the catalyst is maximized[40].It is supposed that the density of·OH radicals is highest near the surface of F–Fe/TiO2and decreases rapidly with distance from the surface[40].At higher pH,phenol tends to exist as negatively charged phenolate species,which have extremely strong solubility in solution and will not be adsorbed on TiO2surface significantly[42].Also,the coulombic repulsion between the negatively charged surface of particles and the OH-could avoid the formation of·OH radicals,hence reducing the photodegradation rate of phenol.Moreover,high pH favors the formation of carbonate ions which are effective scavengers of OH-ions and can cause the less degradation of phenol[37,42].Through above results,we conclude that the degradation efficiency is favorable in the acidic solution.

    3.3.4.Effect of different anions

    Fig.7.Influence of pH on the photocatalytic degradation of phenolover F–Fe/TiO2 catalyst under visible light irradiation.([catalyst]=1 g·L-1,[phenol concentration]=100 mg·L-1,[visible light intensity]=700 W).

    To further assess the process,the influences of several anions,such as Cl-,andwhich are common in phenolic wastewater,were investigated.In the presence of Cl-,,andthe phenol degradation rate is 74.04%,82.13%,91.76%and 97.07%,respectively within 300 min(Fig.8).Kormann et al.found that the adsorption of organic molecules is poor because the chloride can be easily adsorbed on the positively charged TiO2surface at low pH.Also,chloride is considered to deactivate·OH radicals according to following equations[42]:

    Therefore,the decrease in the phenol degradation rate in the case of chloride is due to the combined effect of both poor adsorption on catalyst surface and lower·OH radical concentration.Carbonate ion has also been reported to scavenge·OH radicals via a mechanism similar to that of Cl-[43].Nitrate and sulfate ions have comparatively weaker effect on adsorption and consequently on the photocatalytic degradation.In conclusion,the adsorbed anions compete with organic molecules for the photo-oxidizing species on the surface of catalyst and inhibit the degradation of phenol with the order of Cl->>>

    Fig.8.Influence of the presence of various anions on photocatalytic degradation of phenol over F–Fe/TiO2 catalyst under visible light irradiation.([catalyst]=1 g·L-1,[phenol concentration]=100 mg·L-1,[visible light intensity]=700 W,pH=4).

    Fig.9.(a)Cycling of phenol degradation over F–Fe/TiO2 under visible light irradiation,(b)XRD patterns and(c)UV–Vis DRS of F–Fe/TiO2 before and after the reaction.

    3.4.Stability of catalysts

    To evaluate the catalytic stability of F–Fe/TiO2catalyst,the recycling of photodegradation of phenol under visible light was conducted,as shown in Fig.9(a).It is found that,after 5 times recycle,the photoactivity of F–Fe/TiO2catalyst still almost be the same,indicating the good performance of reuse during the reaction.In order to well understand the physiochemical properties ofF–Fe/TiO2catalyst before and after reaction,the XRD and UV–Vis DRS experiments have been carried out and the results are shown in Fig.9(b,c).As observed,there is not any obvious change between the F–Fe/TiO2catalyst before and after reaction,demonstrating the high stability of the catalyst.In short,with the high catalytic stability and reuse rate,the catalyst of F–Fe/TiO2has a promising potential industrial application in the treatment of phenolic wastewater.

    4.Conclusions

    Photocatalytic degradation of phenol has been carried out over F–Fe/TiO2(synthesized by hydrothermal method)under visible light irradiation.Results showed that the F–Fe/TiO2(F:0.89%;Fe:4.42%)catalyst possesses a superior photocatalytic activity as compared with pure TiO2,F/TiO2,Fe/TiO2,F0.38–Fe0.13–TiO2and Fe(III)/F-TiO2.The simulated conditions of industrial phenolic wastewater including initial phenol concentration,visible light intensities,pH and anions types were investigated in the presence of F–Fe/TiO2photocatalyst.It is found that,in acidic solution,phenol can be degraded completely when the ratio of phenol to catalyst is below 1:10 and visible light intensity is higher than 700 W.The presence of various anions inhibited the photodegradation efficiency with the order of Cl-Moreover,the F–Fe/TiO2photocatalyst exhibited excellent stability.The involving investigations demonstrated that the as prepared F–Fe/TiO2could act as an efficient potential catalyst for the treatment of phenol in industrial wastewater.

    [1]Q.L.Ge,X.P.Yue,G.Y.Wang,Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp PD-7,Chin.J.Chem.Eng.23(5)(2015)835–841.

    [2]F.Shahrezaei,Y.Mansouri,A.A.L.Zinatizadeh,A.Akhbari,Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2nanoparticles,Powder Technol.221(2012)203–212.

    [3]P.Górska,A.Zaleska,J.Hupka,Photodegradation of phenol by UV/TiO2and Vis/N,CTiO2processes:Comparative mechanistic and kinetic studies,Sep.Purif.Technol.68(1)(2009)90–96.

    [4]J.Wang,H.Ruan,W.Li,D.Li,Y.Hu,J.Chen,Y.Shao,Y.Zheng,Highly efficient oxidation of gaseous benzene on novel Ag3VO4/TiO2nanocomposite photocatalysts under visible and simulated solar light irradiation,J.Phys.Chem.C116(26)(2012)13935–13943.

    [5]J.A.O.Méndez,J.A.H.Melián,J.Ara?a,J.M.D.Rodríguez,O.G.Díaz,J.P.Pe?a,Detoxification of waters contaminated with phenol,formaldehyde and phenol–formaldehyde mixtures using a combination of biological treatments and advanced oxidation techniques,Appl.Catal.B Environ.163(2015)63–73.

    [6]J.Lim,D.Monllor-Satoca,J.S.Jang,S.Lee,W.Choi,Visible light photocatalysis of fullerol-complexed TiO2enhanced by Nb doping,Appl.Catal.B Environ.152-153(2014)233–240.

    [7]B.Li,K.Sun,Y.Guo,J.Tian,Y.Xue,D.Sun,Adsorption kinetics of phenol from water on Fe/AC,Fuel110(2013)99–106.

    [8]M.Eiroa,A.Vilar,C.Kennes,M.C.Veiga,Effect of phenol on the biological treatment of waste waters from a resin producing industry,Bioresour.Technol.99(9)(2008)3507–3512.

    [9]H.Ling,K.Kim,Z.Liu,J.Shi,X.Zhu,J.Huang,Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2nanoparticles,Catal.Today258(2015)96–102.

    [10]F.He,J.Li,T.Li,G.Li,Solvothermal synthesis of mesoporous TiO2:The effect of morphology,size and calcination progress on photocatalytic activity in the degradation of gaseous benzene,Chem.Eng.J.237(2014)312–321.

    [11]J.Cheng,J.Chen,W.Lin,Y.Liu,Y.Kong,Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2with tunable nanoparticle size,Appl.Surf.Sci.332(2015)573–580.

    [12]Y.Fang,D.Cheng,W.Wu,Understanding electronic and optical properties of N–Sn codoped anatase TiO2,Comput.Mater.Sci.85(2014)264–268.

    [13]J.Wang,Q.Meng,J.Huang,Q.Li,J.Yang,Band structure engineering of anatase TiO2by metal-assisted P–O coupling,J.Chem.Phys.140(17)(2014)174705.

    [14]G.Song,Z.Chu,W.Jin,H.Sun,Enhanced performance of g-C3N4/TiO2photocatalysts for degradation of organic pollutants under visible light,Chin.J.Chem.Eng.23(8)(2015)1326–1334.

    [15]E.S.Agorku,B.B.Mamba,A.C.Pandey,A.K.Mishra,Sulfur/gadolinium-codoped TiO2nanoparticles for enhanced visible-light photocatalytic performance,J.Nanomater.(2014).

    [16]H.Q.Wang,X.M.Li,C.R.Xiong,S.Y.Gao,J.Wang,Y.Kong,One-pot synthesis of ironcontaining nanoreactors with controllable catalytic activity based on multichannel mesoporous silica,ChemCatChem7(23)(2015)3855–3864.

    [17]B.Han,X.Shi,Y.Zhang,Q.Kong,Q.Sun,Y.Kong,Influences of pore sizes on the catalytic activity of Fe-MCM-41 in hydroxylation of phenol,Asian J.Chem.25(16)(2013)9087–9091.

    [18]C.Wu,Y.Kong,F.Gao,Y.Wu,Y.Lu,J.Wang,L.Dong,Synthesis,characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content,Microporous Mesoporous Mater.113(1–3)(2008)163–170.

    [19]Q.Sun,W.Leng,Z.Li,Y.Xu,Effect of surface Fe2O3clusters on the photocatalytic activity of TiO2for phenol degradation in water,J.Hazard.Mater.229(2012)224–232.

    [20]J.J.Murcia,M.C.Hidalgo,J.A.Navío,J.Ara?a,J.M.Do?a-Rodríguez,Study of the phenol photocatalytic degradation over TiO2modified by sulfation, fluorination,and platinum nanoparticles photodeposition,Appl.Catal.B Environ.179(2015)305–312.

    [21]Y.N.Tan,C.L.Wong,A.R.Mohamed,Hydrothermal treatment of fluorinated titanium dioxide:Photocatalytic degradation of phenol,Asia Pac.J.Chem.Eng.7(6)(2012)877–885.

    [22]J.K.Zhou,L.Lv,J.Q.Yu,H.L.Li,P.Z.Guo,H.Sun,X.S.Zhao,Synthesis of self-organized polycrystalline F-doped TiO2hollow microspheres and their photocatalytic activity under visible light,J.Phys.Chem.C112(14)(2008)5316–5321.

    [23]H.Kim,W.Choi,Effects of surface fluorination of TiO2on photocatalytic oxidation of gaseous acetaldehyde,Appl.Catal.B Environ.69(3–4)(2007)127–132.

    [24]Y.Zhang,F.Lv,T.Wu,L.Yu,R.Zhang,B.Shen,X.Meng,Z.Ye,P.K.Chu,F and Fe codoped TiO2with enhanced visible light photocatalytic activity,J.Sol-Gel Sci.Technol.59(2)(2011)387–391.

    [25]X.Wang,R.Yu,P.Wang,F.Chen,H.Yu,Co-modification of F-and Fe(III)ions as a facile strategy towards effective separation of photogenerated electrons and holes,Appl.Surf.Sci.351(2015)66–73.

    [26]C.Adana,A.Bahamonde,I.Oller,S.Malato,A.Martinez-Arias,Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts,Appl.Catal.B Environ.144(2014)269–276.

    [27]J.Li,J.Xu,W.-L.Dai,H.Li,K.Fan,One-pot synthesis of twist-like helix tungsten–nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol,Appl.Catal.B Environ.82(3–4)(2008)233–243.

    [28]W.Yu,X.Liu,L.Pan,J.Li,J.Liu,J.Zhang,P.Li,C.Chen,Z.Sun,Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2,Appl.Surf.Sci.319(2014)107–112.

    [29]N.R.Mathews,M.A.Cortes Jacome,C.Angeles-Chavez,J.A.Toledo Antonio,Fe doped TiO2powder synthesized by sol gel method:Structural and photocatalytic characterization,J.Mater.Sci.Mater.Electron.26(8)(2014)5574–5584.

    [30]T.Yamashita,P.Hayes,Analysis of XPS spectra of Fe2+and Fe3+ions in oxide materials,Appl.Surf.Sci.254(8)(2008)2441–2449.

    [31]Y.Wang,S.Wang,H.Zhang,X.Gao,J.Yang,L.Wang,Brookite TiO2decorated α-Fe2O3nanoheterostructures with rod morphologies for gas sensor application,J.Mater.Chem.A2(21)(2014)7935.

    [32]Y.Niu,M.Xing,J.Zhang,B.Tian,Visible light activated sulfur and iron co-doped TiO2photocatalyst for the photocatalytic degradation of phenol,Catal.Today201(2013)159–166.

    [33]J.-Q.Li,D.-F.Wang,Z.-Y.Guo,Z.-F.Zhu,Preparation,characterization and visible light-driven photocatalytic activity of Fe-incorporated TiO2microspheres photocatalysts,Appl.Surf.Sci.263(2012)382–388.

    [34]X.Xiong,Y.Xu,Synergetic effect of Pt and borate on the TiO2-photocatalyzed degradation of phenol in water,J.Phys.Chem.C120(7)(2016)3906–3912.

    [35]Q.Sun,W.Leng,Z.Li,Y.Xu,Effect of surface Fe2O3clusters on the photocatalytic activity of TiO2for phenol degradation in water,J.Hazard.Mater.229-230(2012)224–232.

    [36]H.Zhang,L.-H.Guo,D.Wang,L.Zhao,B.Wan,Light-induced efficient molecular oxygen activation on a Cu(II)-grafted TiO2/graphene photocatalyst for phenol degradation,ACS Appl.Mater.Interfaces7(3)(2015)1816–1823.

    [37]S.H.Borji,S.Nasseri,A.H.Mahvi,R.Nabizadeh,A.H.Javadi,Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2and TiO2nanoparticles,J.Environ.Health Sci.Eng.12(2014).

    [38]Y.Yao,F.Lu,Y.Zhu,F.Wei,X.Liu,C.Lian,S.Wang,Magnetic core-shell CuFe2O4@C3N4hybrids for visible light photocatalysis of Orange II,J.Hazard.Mater.297(2015)224–233.

    [39]Z.Guo,R.Ma,G.Li,Degradation of phenol by nanomaterial TiO2in wastewater,Chem.Eng.J.119(1)(2006)55–59.

    [40]C.-H.Chiou,C.-Y.Wu,R.-S.Juang,Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2process,Chem.Eng.J.139(2)(2008)322–329.

    [41]A.Adak,A.Pal,M.Bandyopadhyay,Removal of phenol from water environment by surfactant-modified alumina through adsolubilization,Colloids Surf.A Physicochem.Eng.Asp.277(1–3)(2006)63–68.

    [42]N.Kashif,F.Ouyang,Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2,J.Environ.Sci.21(4)(2009)527–533.

    [43]A.A.Yawalkar,D.S.Bhatkhande,V.G.Pangarkar,A.Beenackers,Solar-assisted photochemical and photocatalytic degradation of phenol,J.Chem.Technol.Biotechnol.76(4)(2001)363–370.

    黄片大片在线免费观看| 精品一区二区三区视频在线观看免费 | 亚洲性夜色夜夜综合| 亚洲国产欧美一区二区综合| 久久精品国产99精品国产亚洲性色 | 欧美日韩av久久| 男女午夜视频在线观看| 久久久水蜜桃国产精品网| 亚洲一区二区三区欧美精品| √禁漫天堂资源中文www| 黑人操中国人逼视频| 中文字幕av电影在线播放| 黄色成人免费大全| av视频免费观看在线观看| 国产亚洲欧美在线一区二区| 69精品国产乱码久久久| 国产1区2区3区精品| 日本黄色视频三级网站网址 | 狠狠婷婷综合久久久久久88av| 亚洲天堂av无毛| 国产激情久久老熟女| 99九九在线精品视频| 亚洲 国产 在线| 亚洲第一av免费看| 久久中文看片网| 国产精品 国内视频| 婷婷丁香在线五月| 手机成人av网站| 亚洲国产看品久久| 久久亚洲真实| 亚洲欧洲精品一区二区精品久久久| 欧美精品啪啪一区二区三区| 亚洲精品久久成人aⅴ小说| 免费观看人在逋| 精品一区二区三区四区五区乱码| 大片免费播放器 马上看| 悠悠久久av| 免费在线观看完整版高清| 男女之事视频高清在线观看| 亚洲五月婷婷丁香| 视频在线观看一区二区三区| 超色免费av| 高清毛片免费观看视频网站 | 国产不卡av网站在线观看| 欧美变态另类bdsm刘玥| av在线播放免费不卡| 亚洲第一青青草原| 久久精品人人爽人人爽视色| 人成视频在线观看免费观看| 亚洲五月婷婷丁香| 色婷婷av一区二区三区视频| 亚洲综合色网址| 国产高清国产精品国产三级| av国产精品久久久久影院| 女人爽到高潮嗷嗷叫在线视频| 变态另类成人亚洲欧美熟女 | 亚洲精品自拍成人| 国产成人av激情在线播放| 亚洲精品成人av观看孕妇| 考比视频在线观看| 国产色视频综合| 国产精品一区二区在线不卡| 美女视频免费永久观看网站| 日韩三级视频一区二区三区| 久久香蕉激情| 一本久久精品| 国产真人三级小视频在线观看| 亚洲av第一区精品v没综合| 国产精品亚洲av一区麻豆| 一本久久精品| 国产免费av片在线观看野外av| 夜夜爽天天搞| 9色porny在线观看| 18禁观看日本| 一夜夜www| av又黄又爽大尺度在线免费看| 一本久久精品| 精品视频人人做人人爽| 最近最新免费中文字幕在线| 国产成人啪精品午夜网站| 色老头精品视频在线观看| 搡老岳熟女国产| 肉色欧美久久久久久久蜜桃| 亚洲欧洲日产国产| 悠悠久久av| 成人免费观看视频高清| 大码成人一级视频| 国产亚洲av高清不卡| 亚洲视频免费观看视频| tocl精华| 精品国产国语对白av| 男女午夜视频在线观看| 麻豆av在线久日| 国产一区二区 视频在线| 一区二区三区激情视频| videosex国产| 老司机福利观看| 欧美人与性动交α欧美软件| 久热这里只有精品99| av网站免费在线观看视频| 2018国产大陆天天弄谢| 热re99久久精品国产66热6| 亚洲熟妇熟女久久| 久久久久久亚洲精品国产蜜桃av| 变态另类成人亚洲欧美熟女 | 精品卡一卡二卡四卡免费| 午夜精品国产一区二区电影| 视频区欧美日本亚洲| 日本vs欧美在线观看视频| 美国免费a级毛片| 在线观看人妻少妇| 日韩大码丰满熟妇| 久久青草综合色| www.自偷自拍.com| 精品福利永久在线观看| 黄色a级毛片大全视频| 国产欧美日韩一区二区三区在线| 满18在线观看网站| 9色porny在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久久久久久大奶| 国产99久久九九免费精品| 老熟女久久久| 亚洲国产欧美一区二区综合| 黄色a级毛片大全视频| 亚洲 国产 在线| 中文字幕另类日韩欧美亚洲嫩草| 精品第一国产精品| 亚洲av成人不卡在线观看播放网| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 女性被躁到高潮视频| 日韩欧美一区视频在线观看| a在线观看视频网站| 亚洲 欧美一区二区三区| 久久人人97超碰香蕉20202| 久久中文字幕人妻熟女| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 黄频高清免费视频| 精品第一国产精品| 一个人免费看片子| 香蕉国产在线看| 久久 成人 亚洲| 亚洲伊人色综图| 亚洲av日韩在线播放| 黑人猛操日本美女一级片| 999久久久精品免费观看国产| videosex国产| 男女高潮啪啪啪动态图| 乱人伦中国视频| 亚洲av日韩在线播放| 久久影院123| 悠悠久久av| 99国产综合亚洲精品| www.精华液| 亚洲成人免费电影在线观看| 大陆偷拍与自拍| 777米奇影视久久| 老司机在亚洲福利影院| 国产精品.久久久| 久久久久视频综合| 成人av一区二区三区在线看| 性高湖久久久久久久久免费观看| 日韩有码中文字幕| 伦理电影免费视频| 日日摸夜夜添夜夜添小说| 久久国产亚洲av麻豆专区| 午夜福利影视在线免费观看| 中文亚洲av片在线观看爽 | 91成人精品电影| 成年人免费黄色播放视频| 交换朋友夫妻互换小说| 国产精品.久久久| 久久午夜亚洲精品久久| 国产亚洲午夜精品一区二区久久| 超碰成人久久| 丁香六月天网| 国产一区二区三区综合在线观看| 久久精品成人免费网站| 18禁裸乳无遮挡动漫免费视频| 黄色成人免费大全| 精品国产一区二区三区久久久樱花| av又黄又爽大尺度在线免费看| 午夜两性在线视频| 欧美激情高清一区二区三区| www.熟女人妻精品国产| 丁香六月天网| 亚洲一卡2卡3卡4卡5卡精品中文| 777久久人妻少妇嫩草av网站| 亚洲久久久国产精品| 国产精品亚洲av一区麻豆| 国产日韩欧美视频二区| 免费观看av网站的网址| 精品国内亚洲2022精品成人 | 精品乱码久久久久久99久播| 狂野欧美激情性xxxx| 丰满饥渴人妻一区二区三| 国产男女超爽视频在线观看| av一本久久久久| 午夜精品国产一区二区电影| a在线观看视频网站| 精品国产国语对白av| 国产精品国产av在线观看| 亚洲人成电影免费在线| 亚洲欧美激情在线| 久久中文字幕人妻熟女| 久久99热这里只频精品6学生| 丁香欧美五月| 香蕉国产在线看| 老司机深夜福利视频在线观看| 日韩欧美一区二区三区在线观看 | 亚洲精品乱久久久久久| 男人舔女人的私密视频| 汤姆久久久久久久影院中文字幕| 女性被躁到高潮视频| 国产一区二区三区综合在线观看| 久久久久精品国产欧美久久久| 天天躁夜夜躁狠狠躁躁| 欧美亚洲 丝袜 人妻 在线| 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 国产精品秋霞免费鲁丝片| 9热在线视频观看99| 国产一区二区激情短视频| 多毛熟女@视频| www.自偷自拍.com| 制服诱惑二区| 亚洲午夜精品一区,二区,三区| 国产在线免费精品| 久久久久久久久免费视频了| 一区福利在线观看| 女人精品久久久久毛片| 好男人电影高清在线观看| a级毛片在线看网站| 大片免费播放器 马上看| 一进一出好大好爽视频| 大片电影免费在线观看免费| 老熟女久久久| tocl精华| 亚洲三区欧美一区| 欧美在线一区亚洲| 一本久久精品| 露出奶头的视频| 久久久久精品国产欧美久久久| 免费看a级黄色片| 亚洲av国产av综合av卡| 热99国产精品久久久久久7| 日本精品一区二区三区蜜桃| 国产片内射在线| 无遮挡黄片免费观看| 久久精品亚洲av国产电影网| 在线十欧美十亚洲十日本专区| 男女床上黄色一级片免费看| 69精品国产乱码久久久| 黄色丝袜av网址大全| 精品福利观看| 久久中文看片网| 久久久国产成人免费| 欧美成人免费av一区二区三区 | 男人操女人黄网站| www.熟女人妻精品国产| 亚洲欧美激情在线| 日本精品一区二区三区蜜桃| 男人操女人黄网站| 中文字幕av电影在线播放| 婷婷成人精品国产| 欧美日本中文国产一区发布| 美女主播在线视频| 亚洲色图综合在线观看| 另类精品久久| 女人久久www免费人成看片| 国产一区二区在线观看av| 91九色精品人成在线观看| 国产三级黄色录像| 91成年电影在线观看| 伦理电影免费视频| 色在线成人网| 99久久国产精品久久久| 久久久精品区二区三区| 国产精品 国内视频| av电影中文网址| 日本精品一区二区三区蜜桃| 亚洲欧洲精品一区二区精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 日本撒尿小便嘘嘘汇集6| 亚洲精品国产区一区二| 亚洲五月婷婷丁香| 亚洲色图av天堂| 欧美日韩亚洲综合一区二区三区_| 免费在线观看日本一区| 深夜精品福利| 正在播放国产对白刺激| 国产不卡一卡二| 性少妇av在线| av线在线观看网站| 久9热在线精品视频| 777久久人妻少妇嫩草av网站| 久久人妻福利社区极品人妻图片| 热re99久久国产66热| 免费在线观看完整版高清| 午夜久久久在线观看| 一个人免费看片子| 十分钟在线观看高清视频www| 国产高清视频在线播放一区| 久久性视频一级片| 国产亚洲av高清不卡| 天天操日日干夜夜撸| netflix在线观看网站| 一二三四社区在线视频社区8| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 日韩一卡2卡3卡4卡2021年| 飞空精品影院首页| 午夜精品久久久久久毛片777| 麻豆成人av在线观看| 高清黄色对白视频在线免费看| 欧美乱码精品一区二区三区| 老司机影院毛片| 国产成人av激情在线播放| 另类亚洲欧美激情| 国产精品 欧美亚洲| 巨乳人妻的诱惑在线观看| 操美女的视频在线观看| 日韩欧美国产一区二区入口| 视频区图区小说| 国产成人欧美| 欧美乱妇无乱码| 一二三四在线观看免费中文在| 国产福利在线免费观看视频| 免费在线观看视频国产中文字幕亚洲| 免费女性裸体啪啪无遮挡网站| 色综合婷婷激情| 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频| 精品乱码久久久久久99久播| 成人18禁高潮啪啪吃奶动态图| 久久久精品免费免费高清| 久久久久久亚洲精品国产蜜桃av| 色在线成人网| 成年女人毛片免费观看观看9 | 99国产极品粉嫩在线观看| 在线观看免费午夜福利视频| 91字幕亚洲| 中文字幕人妻熟女乱码| 亚洲专区中文字幕在线| 国产极品粉嫩免费观看在线| 亚洲国产成人一精品久久久| 欧美成狂野欧美在线观看| 变态另类成人亚洲欧美熟女 | 欧美日韩黄片免| 丝袜人妻中文字幕| 一边摸一边抽搐一进一出视频| 亚洲欧美一区二区三区黑人| 成年人午夜在线观看视频| 日韩视频一区二区在线观看| 国产在视频线精品| 亚洲精品中文字幕一二三四区 | 99riav亚洲国产免费| 一级a爱视频在线免费观看| 人成视频在线观看免费观看| av免费在线观看网站| 亚洲av日韩在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲熟女毛片儿| 国产黄色免费在线视频| 夜夜骑夜夜射夜夜干| 亚洲成人国产一区在线观看| 日韩精品免费视频一区二区三区| 色94色欧美一区二区| kizo精华| 久9热在线精品视频| 中文字幕高清在线视频| 久热这里只有精品99| 欧美日韩福利视频一区二区| 一本大道久久a久久精品| 国产欧美日韩一区二区三| 视频区图区小说| 777久久人妻少妇嫩草av网站| 成人免费观看视频高清| 免费久久久久久久精品成人欧美视频| 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| 国产亚洲午夜精品一区二区久久| 老熟妇仑乱视频hdxx| 精品人妻1区二区| 国产精品 国内视频| 少妇猛男粗大的猛烈进出视频| 国产91精品成人一区二区三区 | 在线观看免费视频网站a站| 国产精品久久电影中文字幕 | 日本精品一区二区三区蜜桃| 午夜福利在线观看吧| 丁香六月欧美| 国产成人系列免费观看| 亚洲av国产av综合av卡| 丁香六月欧美| 精品人妻在线不人妻| aaaaa片日本免费| 一级a爱视频在线免费观看| 精品国产一区二区三区久久久樱花| 成人18禁在线播放| 国产男靠女视频免费网站| 波多野结衣一区麻豆| 女性被躁到高潮视频| 捣出白浆h1v1| 国产97色在线日韩免费| 侵犯人妻中文字幕一二三四区| 人人妻人人澡人人爽人人夜夜| 久久久精品94久久精品| 亚洲精品国产一区二区精华液| 狠狠精品人妻久久久久久综合| 1024视频免费在线观看| 一区二区三区乱码不卡18| 黄片小视频在线播放| 少妇的丰满在线观看| 麻豆乱淫一区二区| 国产一区二区三区在线臀色熟女 | 国产欧美亚洲国产| 久久影院123| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 国产精品国产高清国产av | 亚洲av第一区精品v没综合| 99国产精品99久久久久| 黄片小视频在线播放| 大码成人一级视频| 人人妻,人人澡人人爽秒播| 国产精品 国内视频| 精品高清国产在线一区| 国产精品免费一区二区三区在线 | 两性夫妻黄色片| 精品久久久精品久久久| 欧美黄色片欧美黄色片| 日韩一卡2卡3卡4卡2021年| 亚洲熟女毛片儿| av网站免费在线观看视频| 亚洲午夜理论影院| 国产免费av片在线观看野外av| 日韩大片免费观看网站| 纯流量卡能插随身wifi吗| 欧美亚洲 丝袜 人妻 在线| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 国产精品 国内视频| 黄色毛片三级朝国网站| 搡老岳熟女国产| 日本一区二区免费在线视频| 亚洲午夜精品一区,二区,三区| 视频区欧美日本亚洲| 久久热在线av| 国产精品香港三级国产av潘金莲| 成人黄色视频免费在线看| 国产精品99久久99久久久不卡| 久久人妻福利社区极品人妻图片| 亚洲精品国产一区二区精华液| 999久久久精品免费观看国产| 亚洲熟女精品中文字幕| 欧美+亚洲+日韩+国产| 国产单亲对白刺激| avwww免费| 欧美久久黑人一区二区| 一个人免费在线观看的高清视频| 欧美激情久久久久久爽电影 | 精品福利观看| 成人黄色视频免费在线看| 好男人电影高清在线观看| 三级毛片av免费| 国产又爽黄色视频| 最近最新中文字幕大全电影3 | 亚洲九九香蕉| 亚洲专区国产一区二区| 99香蕉大伊视频| 在线观看人妻少妇| √禁漫天堂资源中文www| 亚洲第一青青草原| 色综合婷婷激情| 国产成人精品久久二区二区91| 一级a爱视频在线免费观看| 成人黄色视频免费在线看| 精品亚洲乱码少妇综合久久| 国产男女内射视频| 国产一区二区三区综合在线观看| 无限看片的www在线观看| 午夜福利在线观看吧| 12—13女人毛片做爰片一| 成人国产av品久久久| 日韩中文字幕视频在线看片| 国产av一区二区精品久久| 久久99热这里只频精品6学生| 国产亚洲欧美在线一区二区| 香蕉久久夜色| 丝袜人妻中文字幕| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久电影中文字幕 | 亚洲九九香蕉| 精品少妇一区二区三区视频日本电影| 美女主播在线视频| 国产xxxxx性猛交| 欧美久久黑人一区二区| 99国产综合亚洲精品| 亚洲欧美精品综合一区二区三区| 日韩有码中文字幕| 精品国产一区二区三区四区第35| 色视频在线一区二区三区| 精品国产一区二区三区久久久樱花| 水蜜桃什么品种好| 中文欧美无线码| 涩涩av久久男人的天堂| 色尼玛亚洲综合影院| 国产精品九九99| 757午夜福利合集在线观看| 久久九九热精品免费| 精品亚洲成a人片在线观看| 国产精品免费大片| 19禁男女啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 亚洲一区二区三区欧美精品| 亚洲av成人不卡在线观看播放网| 午夜成年电影在线免费观看| 五月开心婷婷网| 欧美激情久久久久久爽电影 | 无遮挡黄片免费观看| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 一级a爱视频在线免费观看| 人人妻人人澡人人看| 精品一品国产午夜福利视频| 亚洲欧美日韩高清在线视频 | 亚洲中文字幕日韩| 亚洲国产av新网站| 久久天堂一区二区三区四区| 精品少妇内射三级| 亚洲av国产av综合av卡| 国产男靠女视频免费网站| 国产片内射在线| 一个人免费在线观看的高清视频| 久久国产精品影院| 无人区码免费观看不卡 | 啦啦啦在线免费观看视频4| 国产一区二区三区在线臀色熟女 | 亚洲专区字幕在线| a在线观看视频网站| 极品少妇高潮喷水抽搐| 制服人妻中文乱码| 精品久久久久久久毛片微露脸| 亚洲精品一卡2卡三卡4卡5卡| 在线观看免费日韩欧美大片| 天天躁狠狠躁夜夜躁狠狠躁| 黄色a级毛片大全视频| 精品免费久久久久久久清纯 | 一个人免费看片子| 法律面前人人平等表现在哪些方面| 女人久久www免费人成看片| 国产精品99久久99久久久不卡| 热99re8久久精品国产| av视频免费观看在线观看| 亚洲av片天天在线观看| 亚洲一区二区三区欧美精品| 涩涩av久久男人的天堂| 久久久久久久久免费视频了| 日本a在线网址| 免费在线观看影片大全网站| av又黄又爽大尺度在线免费看| 日本黄色日本黄色录像| 9热在线视频观看99| 国产成人av教育| 亚洲视频免费观看视频| 亚洲专区字幕在线| 一区在线观看完整版| 国产又爽黄色视频| 国产免费视频播放在线视频| 天天操日日干夜夜撸| www.自偷自拍.com| 国产精品一区二区在线不卡| 肉色欧美久久久久久久蜜桃| 免费在线观看影片大全网站| 欧美中文综合在线视频| 亚洲人成77777在线视频| 日韩中文字幕欧美一区二区| 欧美黄色淫秽网站| 国产一区二区三区综合在线观看| 精品福利观看| 操美女的视频在线观看| 亚洲久久久国产精品| 手机成人av网站| 极品人妻少妇av视频| 亚洲成人国产一区在线观看| 国产精品熟女久久久久浪| 免费在线观看黄色视频的| 久久久欧美国产精品| 国产精品久久久久成人av| 亚洲色图 男人天堂 中文字幕| 一区二区三区乱码不卡18| 亚洲五月婷婷丁香| 精品一区二区三卡| 国产成人精品久久二区二区免费| 这个男人来自地球电影免费观看| 国产精品麻豆人妻色哟哟久久| 日日爽夜夜爽网站| 最新的欧美精品一区二区| 免费少妇av软件| 热re99久久国产66热| 中文欧美无线码| av欧美777| 色播在线永久视频| 国产精品偷伦视频观看了| 男女无遮挡免费网站观看| netflix在线观看网站| 制服诱惑二区| 80岁老熟妇乱子伦牲交| 亚洲专区字幕在线| 国产精品美女特级片免费视频播放器 | 人成视频在线观看免费观看| 人人妻,人人澡人人爽秒播|