• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal design of nanofiltration system for surface water treatment☆

    2016-06-12 03:47:56FeiBiHaiyangZhaoZhijunZhouLinZhangHuanlinChenCongjieGao
    Chinese Journal of Chemical Engineering 2016年12期

    Fei Bi,Haiyang Zhao ,Zhijun Zhou ,Lin Zhang ,*,Huanlin Chen ,Congjie Gao ,3

    1 Key Laboratory of Biomass Chemical Engineering of MOE,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    2 96657 Unit of the Armed Forces,Beijing 100011,China

    3 Ocean College,Zhejiang University of Technology,Hangzhou 310014,China

    1.Introduction

    Membrane-based processes,such as reverse osmosis(RO)and nanofiltration(NF),seem to be one of the most promising strategies for water treatment to relieve the urgency of water shortages worldwide[1,2].Previous researches suggested that the NF process is more suitable for surface water treatment than the RO process because it can guarantee the retention of trace minerals and requires lower energy consumption[3–6].

    Salt rejection,water yield,water recovery,and energy efficiency are the most important indexes to evaluate the performance and reason ability of the membrane systems in the process design.These indexes have a close relationship with the operation parameters and the membrane element arrangement.On the one hand,the operation parameters can affect system performance by changing the concentration polarization,which may worsen the membrane flux and salt rejection and intensify the membrane fouling if the upper boundary is reached(Table S1)[7,8].On the other hand,the element arrangement also has a significant impact on the performance of the membrane system;for example,the cascade arrangement provides a higher water recovery while the parallel arrangement can support a larger water yield[9,10].

    Currently,design ideas for the NF process mainly follow the service experience of the RO system.However,the separation mechanism of NF membranes differs from that of RO membranes[11],which results in a big difference in the salt rejection between NF and RO membranes[12].Furthermore,this difference can cause a distinction between NF and RO systems.The salt rejection of the NF system is quite different from that of an NF element because the salt rejection of the NF element is far from satisfactory and is sensitive to the ion concentration,ion types,and ion charges in the feed solution[13],while the salt rejection of the RO system is quite close to that of a single RO element owing to its almost total rejection of all ions.Therefore,the design of an NF system cannot totally depend on experience of RO systems due to the difference in the separation performance between NF and RO membranes.In our previous work[14],the maximum water recovery in the NF system was found to be quite different from that in the RO system.If the performance relationship between the NF system and a single NF element can be clarified,it will be helpful for the element screen and the element arrangement in real applications.

    In this work,the effect of operation parameters,such as water flow(Qf),operation pressure(P),and ratio of concentrate flow(Qc)to permeate flow(Qp),on the membrane performance will be discussed firstly.Then,based on the stable salt rejection(ro)and maximum water recovery(Rmax)of the NF system,the optimal design of the element arrangement in the NF system will be investigated in detail.

    2.Theoretical Background

    In the steady state of a membrane system,there is mass balance Eq.(1)and mass conservation Eq.(2):

    whereQf,Qp,andQcdenote the flows of feed water,permeate water,and concentrate water,respectively,andCf,Cp,andCcdenote the salt concentrations in feed water,permeate water,and concentrate water,respectively.

    Water recovery(R),the observed rejection(ro),and permeation flux(Jw)are described as Eqs.(3),(4),and(5),respectively:

    whereV,A,and Δtare the volume of permeated water,the membrane area,and the permeation time,respectively.

    In the RO system,the concentration polarization degree(CPD)is usually used to characterize the dynamic state near to the membrane surface,and is defined as:

    whereCmis the solute concentration near the membrane surface.CPD is difficult to measure in real experiments but can be calculated by available physical models[15].

    3.Experimental

    3.1.Materials

    Spiral NF membrane(NF1-2540 type,see Supporting Information)was purchased from Vontron,Beijing.Hollow fiber polysulfone(PSF)ultra filtration(UF)membrane was used at pretreatment with a molecular weight cutoff(MWCO)of 45000 and pure water yield of 2.0–3.5 m3·h-1.Sodium chloride and magnesium chloride(analytical grade)were purchased from Sinopharm Chemical Reagent Co.,China.

    3.2.Performance test of NF membrane for the simulated salty water

    Membrane performance was tested in a cross flow system similar to ourprevious work[14].The aqueous saltsolution was prepared as listed in Table 1 and used in the performance test in different conditions.The flow can be directly read from the flow gauge,and the salt rejection(namely observed rejection,ro)can be calculated by Eq.(4)[16].All data were collected at least in triplicate,and the results were averaged.

    Table 1Range of salt concentrations and test parameters

    3.3.Performance test of NF membrane for the real surface water

    Surface water was taken from the Qiantang River(Hangzhou,China),which is a freshwater river from inland to the East China Sea.The original water was filtrated by the sand leach and UF membrane in sequence and then went into the NF membrane module.In this work,the natural organic matters(NOMs)is characterized as UV254 and total organic carbon(TOC)[17].UV254 was measured by using a visible light-ultraviolet spectrophotometer(Spectrumlab 54,Lengguang Tech,China).TOC was measured by Liqui TOCII(Elementar Analysensystine,Germany).

    3.4.Performance calculation of RO membrane by Simulation software

    Simulation software(IMS design 2010,provided by Hydranautics)was used to simulate the separation performance of the RO membrane in the saltsolution(200 mg·L-1)[18].ESPA2–8040 membrane was used to calculate the water recovery in the RO system with different element arrangements.The temperature and pH were set at 25°C and 7,respectively.By regulating the feed flow and permeate flow,the RO system was equilibrated with a maximum CPD of1.2,and then the water recovery was recorded as the maximum recovery(Rmax).In all the tests,at least five readings were recorded and the averaged results plotted.

    4.Results and Discussion

    4.1.Effect of concentrate fl ow,pressure,and Q c/Q p on the observed rejection

    In a single NF element,the observed rejection(ro)is usually affected by the operation pressure(P),concentrate flow(Qc),and the ratio ofQctoQp(Qc/Qp).Performance tests of the NF element in NaCl and MgSO4solutions under the same pressure showed that the observed rejection(ro)had a close relationship with the concentrate flow(Qc):the observed rejection(ro)of the NF element obviously improved when the concentrate flow(Qc)increased from 0 to 5 L·min-1and reached a plateau once the concentrate flow(Qc)was bigger than 5 L·min-1(Fig.1A and C).This is because as concentrate flow(Qc)increased,the permeate flow(Qp)decreased and the CPD became smaller.As a result,the observed rejection(ro)became higher.When the concentrate flow(Qc)became greater than 5 L·min-1(the cross- flow velocity and Reynolds number are 0.354 m·s-1and 7030.7,respectively),the concentration polarization almost disappeared and the observed rejection(ro)was close to the real rejection.However,an experimental test under different pressures suggested that the observed rejection(ro)may be barely affected by the pressure(P).It should be noted that the observed rejection(ro)was zero when the concentrate flow(Qc)was reduced,which means that the NF membrane was tested by dead-end rather than cross- flow filtration.In the dead-end filtration,the observed rejection(ro)of the NF membrane decreased rapidly and soon became zero.

    On the other hand,by regulating the feed flow(Qf)and operation pressure(P),the NF system can maintain a constant concentrate flow(Qc).The results showed that the observed rejection(ro)was independent ofQc/Qpand showed a very small improvement as the concentrate flow(Qc)was increased from 5 to 7 L·min-1(Fig.1B and D).This may be due to the fact that the CPD became insensitive toQc/Qponce the concentrate flow(Qc)exceeded 5 L·min-1.Here it can be concluded that the observed rejection(ro)was mainly affected by the concentrate flow(Qc)and approached a plateau after the concentrate flow(Qc)exceeded 5 L·min-1.This finding is very useful to simplify the process design of the NF system in real applications.

    Finally,observed rejections(ro)in the salt solution mixture showed a similar relationship with concentrate flow(Qc),operation pressure(P),and Qc/Qpcompared with the single salt solution(Fig.1E and F).It was found that observed rejection(ro)in the mixed solution was quite close to that in NaCl solution and different from that in MgSO4solution(Fig.S1),which indicated that the observed rejection(ro)in the mixed solution was mainly affected by the existence of the monovalent salt,namely NaCl.Therefore,in NF system design,the system rejection should be referred to the element rejection of monovalent salts if they exist.

    Fig.1.Effect of concentrate flow(A,C,and E)and Q c/Q p(B,D,and F)on the observed rejection in NaCl solution(A),(B);MgSO4 solution(C),(D);and mixed solution(E),(F),respectively(1 psi=6894.76 Pa).

    The permeate water from the UF system was used as the feed in the NF system in this work.The effect of the concentrate flow(Qc)on the observed rejection(ro)of inorganic salt was similar to that in the above simulated system(Fig.2A),and the observed rejection(ro)was approximately 40%,which was lower than that in the single salt solution and can be attributed to the easy permeation of NO3-in the real water.The observed rejection(ro)became constant when the concentrate flow(Qc)was greater than 5 L·min-1.Additionally,the observed rejection(ro)of NOMs was also tested in the form of TOC and UV254 as shown in Fig.2B and presented a similar profile to that shown in Fig.2A.The observed rejection(ro)for organics became stable at around 50%when the concentrate flow(Qc)was greater than 5 L·min-1.

    Fig.2.Effect of concentrate flow on the observed rejection of salt(A),UV254,and TOC(B)for real river water.

    4.2.Effect of concentrate flow,pressure,and Qc/Qp on the permeation flux

    The effects of concentrate flow(Qc),pressure(P),andQc/Qpon the permeation flux(Jw)have also been investigated,as shown in Fig.3.In all test solutions,by adjusting the flow(Qf)across the NF membrane and the operation pressure(P),it was found that the permeation flux(Jw)was barely changed under a specific pressure but increased slightly with decreases in concentrate flow(Figs.3A,C,and E).Although the concentrate flow(Qc)approached zero(dead-end filtration),the permeation flux(Jw)remained stable and did not vary with time.Since the concentrate flow(Qc)cannot affect the membrane flux(Jw),Qc/Qpis expected to have an irrelevant relationship with permeation flux(Jw).As shown in Figs.3B,D,and F,Qc/Qpshowed a negligible effect on the permeation flux(Jw)even thoughQc/Qpwas zero.

    In an NF single element,as discussed above,salt rejection(ro)will become stable if concentration flow(Qc)is greater than 5 L·min-1while permeation flux(Jw)remains constant under certain pressure.Additionally,the observed rejection(ro)in the mixed solution was mainly determined by the monovalent salt.In a large NF system(several membrane elements),the water recovery and membrane arrangement should be adjusted to guarantee stable rejection(ro)and flux(Jw)in each element.The maximum water recovery(Rmax)in the NF system has been analyzed systematically in our previous work[14],and the optimal membrane arrangement will be discussed as follows.

    4.3.Optimal arrangement of membrane elements in NF system

    In the RO system,the element arrangement was mainly determined by the water recovery(R)in the RO system and number of elements in each module[9,10].To avoid a high concentration polarization near the membrane surface,the water recovery(R)for each RO element should not be greater than 15%.The water recovery(R)for an RO system with different elements can be estimated by the simulation software[18].According to our previous report[14],the water recovery(R)for the NF element can exceed 25%with a ratio ofQc/Qpof 3:1 to maintain stable salt rejection(CPD<1.2).In the NF system,as mentioned above,the concentrate flow(Qc)should be greater than 5 L·min-1to support stable salt rejection for each element.By calculating the concentrate flow(Qc)from the last element of the NF system with a Qc/Qpratio of 3:1,the water recovery(R)for the NF system with different elements can also be estimated(Supporting Information).Since the observed rejection(ro)was mainly determined by the monovalent salt,NaCl solution was used as the representative substitute for CPD calculation.The comparison of the maximum water recovery values(Rmax)for the NF and RO systems with different elements is shown in Table 2.

    Fig.3.Effect of concentrate flow(A,C,and E)and Q c/Q p(B,D,and F)on the permeation flux in NaCl solution(A),(B);MgSO4 solution(C),(D);and mixed solution(E),(F),respectively(1 psi=6894.76 Pa).

    Table 2Comparison of maximum water recovery values in one-stage NF and RO systems

    Obviously,the water recovery(R)in the NF system is higher than that in the RO system with fixed path length.The water recoveries(R)in the NF system with path lengths of 2,3,and 4 m are close to those in the RO system with path lengths of 3,4,and 5 m,respectively.This means that the NF system can support a higher water recovery(R)than the RO system with the same length of water passageway.

    Generally,water recovery(R)in membrane systems should be higher than 75%when used in the treatment of river water with low salinity(100–500 mg·L-1),which requires RO and NF systems to have more than six elements.For the same water recovery,the NF system needs a shorter passageway length than the RO system,which leads to big differences in the pressure consumption and the system design between the RO and NF systems.

    Taking the simple element arrangement of one stage as an example,the feed pressures(P)in the NF and RO systems with six elements are 280 kPa and 640 kPa,respectively.These two systems have a similar pressure drop(ΔP)due to the production of the permeate water.This pressure drop(ΔP)accounts for less than 20.3%of the pressure in the RO system but more than 42.9%in the NF system.This indicates that NF will waste more energy if the NF system is designed directly based on the design principal of the RO system,which is not reasonable.

    The difference in the separation mechanism between the NF and RO membranes results in different constraint conditions in the design of these two systems.This means that the design of the NF system can refer to that of RO system but cannot be totally derived from the experience of the RO system.

    In the design of the RO system,there are two general important rules that should be noted and adapted to the design of the NF system[9,10]:one is that the membrane elements should be arranged in wedge shaped style(Fig.S3)and the other is that the number of the elements should be the same in each vessel.In a two-stage process,the arrangement of 2/5+1/6 can also meet the recovery requirement of 80%,but the designer usually chooses to use the arrangement of 2/6+1/6.In the three-stage process,element arrangements of 3/4+2/5+1/5,5/3+2/4+1/5,and 5/3+2/4+1/4 can support a water recovery(R)of 85%as well,while the arrangement of 3/5+2/5+1/5 was considered the best.According to the general design rules described above,the element arrangements in the RO and NF systems with high water recovery values are listed in Table 3.

    When the target recovery is lower than 80%,a two-stage arrangement is enough for both systems in spite of the difference in the number of elements and passageway length.However,the RO system needs a three-stage arrangement to meet the higher recovery requirement(≥85%),which is still within the capacity of the NF system with a two stage arrangement.Obviously,if the design of the NF system entirely follows that of the RO system,the NF system will be more complicated and will waste lots of assembly parts.

    Table 3Comparison of element arrangements in NF and RO syste ms

    5.Conclusions

    Salt rejection of NF membrane is quite different from that of RO membrane,which leads to a big difference between the performance of the NF and RO systems.In our previous report,the maximum water recovery(Rmax)in the NF system was found to be quite different from that in the RO system.In this work,the separation performances and optimal arrangement of the NF system have been investigated.The observed rejection(ro)of the NF membrane was hardly affected by the pressure but was greatly affected by the concentrate flow(Qc).When the concentrate flow(Qc)was greater than 5 L·min-1,the observed rejection(ro)became nearly constant.At the same time,the membrane flux of the NF element is quite stable regardless of the water flow across the membrane surface.These findings are useful to guide the process design of the NF system.The two-stage arrangement is sufficient for the NF system to reach a water recovery of more than 85%,but a three-stage arrangement is required for the RO system to reach the same water recovery.

    Nomenclature

    A effective area of membrane,m2

    Ccsalt concentrations in concentrate water,mg·L-1

    Cfsalt concentrations in feed water,mg·L-1

    Cmsolute concentration near the membrane surface,mg·L-1

    Cpsalt concentrations in permeate water,mg·L-1

    Jwpermeation flux,L·m-2·h-1

    Poperation pressure,Pa

    Qcconcentrate flow,L·min-1

    Qc/Qpratio ofQctoQp

    Qffeed flow,L·min-1

    Qppermeate flow,L·min-1

    Rwater recovery,%

    Rmaxmaximum water recovery,%

    roobserved rejection,%

    Vvolume of permeated water,L

    Ywater yield,%

    ΔPpressure drop,Pa

    Δtpermeation time,h

    Supplementary Material

    Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.cjche.2016.05.012.

    [1]M.A.Shannon,P.W.Bohn,M.Elimelech,J.G.Georgiadis,B.J.Marinas,A.M.Mayes,Science and technology for water purification in the coming decades,Nature452(2008)301–310.

    [2]A.Pérez-González,A.M.Urtiaga,R.Ortiz,I.Ibá?ez,State of the art and review on the treatment technologies of water reverse osmosis concentrates,Water Res.46(2012)267–283.

    [3]A.de la Rubia,M.Rodrigues,V.M.Leon,D.Prats,Removal of natural organic matter and THM formation potential by ultra-and nanofiltration of surface water,Water Res.42(2008)714–722.

    [4]A.Orecki,M.Tomaszewska,K.Karakulski,A.W.Morawski,Surface water treatment by the nanofiltration method,Desalination162(2004)47–54.

    [5]M.F.Abid,S.K.Al-Naseri,Q.F.Al-Sallehy,S.N.Abdulla,K.T.Rashid,Desalination of Iraqi surface water using nanofiltration membranes,Desalin.Water Treat.29(2011)174–180.

    [6]J.R.Petersen,Composite reverse osmosis and nanofiltration membranes,J.Membr.Sci.83(1993)81–150.

    [7]J.W.Nam,J.Y.Park,J.H.Kim,S.Kwon,K.Chon,E.J.Lee,H.S.Kim,A.Jang,The evaluation on concentration polarization for effective monitoring of membrane fouling in seawater reverse osmosis membrane system,J.Ind.Eng.Chem.20(2014)2354–2358.

    [8]M.S.H.Bader,Nanofiltration for oil- fields water injection operations:Analysis of concentration polarization,Desalination201(2006)106–113.

    [9]Hydranautics Company,RO and NF membrane product and technology manual,2008.

    [10]Dow Chemical Company,FLIMTECTM RO and NF membrane elements product and technology manual,2008.

    [11]K.Doederer,M.J.Farre,M.Pidou,H.S.Weinberg,W.Gernjak,Rejection of disinfection by-products by RO and NF membranes:Influence of solute properties and operational parameters,J.Membr.Sci.467(2014)195–205.

    [12]J.W.Wang,D.S.Dlamini,A.K.Mishra,M.T.M.Pendergast,M.C.Y.Wong,B.B.Mamba,V.Freger,A.R.D.Verliefde,E.M.V.Hoek,A critical review of transport through osmotic membranes,J.Membr.Sci.454(2014)516–537.

    [13]J.Luo,Y.Wan,Effects of pH and salt on nanofiltration—A critical review,J.Membr.Sci.438(2013)18–28.

    [14]F.Bi,H.Zhao,L.Zhang,Q.Ye,H.Chen,C.Gao,Discussion on calculation of maximum water recovery in nanofiltration system,Desalination332(2014)142–146.

    [15]I.Sutzkover,D.Hasson,R.Semiat,Simple technique for measuring the concentration polarization level in a reverse osmosis system,Desalination131(2000)117–127.

    [16]H.Zhao,S.Qiu,L.Wu,L.Zhang,H.Chen,C.Gao,Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes,J.Membr.Sci.450(2014)249–256.

    [17]A.Matilainen,E.T.Gjessing,T.Lahtinen,L.Hed,A.Bhatnagar,M.Sillanp??,An overview of the methods used in the characterisation of natural organic matter(NOM)in relation to drinking water treatment,Chemosphere83(2011)1431–1442.

    [18]Hydranautics Company,RODESIGN help manual,2007.

    欧美成人a在线观看| 嫩草影视91久久| 99久国产av精品| 99在线视频只有这里精品首页| 精品乱码久久久久久99久播| 欧美最新免费一区二区三区 | 窝窝影院91人妻| 国产亚洲欧美98| 亚洲av成人av| 国产欧美日韩一区二区三| 男人舔奶头视频| 日韩中文字幕欧美一区二区| 国产高潮美女av| netflix在线观看网站| 精品久久久久久久久久久久久| 午夜精品久久久久久毛片777| www.www免费av| 一个人免费在线观看的高清视频| 搡女人真爽免费视频火全软件 | 久久精品国产亚洲av涩爱 | 人人妻人人澡欧美一区二区| 女人高潮潮喷娇喘18禁视频| 成人国产一区最新在线观看| 成人18禁在线播放| 色播亚洲综合网| 又粗又爽又猛毛片免费看| 国产黄色小视频在线观看| 欧美av亚洲av综合av国产av| 亚洲国产精品合色在线| 内地一区二区视频在线| 别揉我奶头~嗯~啊~动态视频| 黄片小视频在线播放| 精品人妻偷拍中文字幕| 色综合婷婷激情| 日韩欧美在线二视频| 在线观看日韩欧美| 性色avwww在线观看| 国产精品 国内视频| 在线观看午夜福利视频| 国产私拍福利视频在线观看| 欧美日韩黄片免| av福利片在线观看| 一个人看的www免费观看视频| 9191精品国产免费久久| 国产真实乱freesex| 桃红色精品国产亚洲av| 午夜激情福利司机影院| 色av中文字幕| 中文字幕熟女人妻在线| 亚洲欧美日韩无卡精品| 午夜福利在线在线| 国产乱人视频| 99久久久亚洲精品蜜臀av| 一区二区三区高清视频在线| 国产精品综合久久久久久久免费| 极品教师在线免费播放| 高清日韩中文字幕在线| 亚洲精品日韩av片在线观看 | 高清毛片免费观看视频网站| 丁香欧美五月| 全区人妻精品视频| 亚洲在线观看片| 欧美丝袜亚洲另类 | 天堂网av新在线| 国产v大片淫在线免费观看| 久久九九热精品免费| 亚洲av第一区精品v没综合| 美女高潮喷水抽搐中文字幕| 丁香欧美五月| 日本免费一区二区三区高清不卡| 岛国在线观看网站| 国产午夜精品论理片| 国产成人啪精品午夜网站| 成年人黄色毛片网站| 老鸭窝网址在线观看| 免费av毛片视频| 亚洲欧美日韩东京热| 国产高清videossex| 久久久国产成人免费| 九九热线精品视视频播放| 国产精品98久久久久久宅男小说| 成人欧美大片| 久久国产精品人妻蜜桃| 日本一本二区三区精品| 人妻丰满熟妇av一区二区三区| 熟女少妇亚洲综合色aaa.| 久久亚洲真实| 91久久精品国产一区二区成人 | 757午夜福利合集在线观看| 精品人妻一区二区三区麻豆 | 一进一出抽搐gif免费好疼| 亚洲国产精品合色在线| 尤物成人国产欧美一区二区三区| 久久午夜亚洲精品久久| 亚洲精品粉嫩美女一区| 少妇人妻一区二区三区视频| 午夜两性在线视频| av专区在线播放| 性欧美人与动物交配| 午夜福利免费观看在线| av女优亚洲男人天堂| 18禁在线播放成人免费| 国产精品一区二区三区四区久久| 五月伊人婷婷丁香| av在线蜜桃| 中文亚洲av片在线观看爽| 亚洲欧美日韩东京热| 亚洲中文日韩欧美视频| 国产 一区 欧美 日韩| 欧美成人免费av一区二区三区| 91麻豆av在线| 69人妻影院| 精品乱码久久久久久99久播| 97碰自拍视频| 亚洲中文字幕日韩| 窝窝影院91人妻| 超碰av人人做人人爽久久 | av中文乱码字幕在线| 国产老妇女一区| 一本精品99久久精品77| 国产69精品久久久久777片| 黄片大片在线免费观看| 女人十人毛片免费观看3o分钟| or卡值多少钱| 久久久久久久久久黄片| 在线观看一区二区三区| 色在线成人网| 午夜福利高清视频| 精品一区二区三区人妻视频| 欧美另类亚洲清纯唯美| 久9热在线精品视频| 最后的刺客免费高清国语| 欧美bdsm另类| 手机成人av网站| 国产欧美日韩精品一区二区| 99久久精品一区二区三区| 国产精品久久久久久久久免 | 日韩欧美国产一区二区入口| 国产一区二区三区视频了| 岛国在线观看网站| 国产精品99久久久久久久久| 真人做人爱边吃奶动态| 国产成人av激情在线播放| 尤物成人国产欧美一区二区三区| 精品午夜福利视频在线观看一区| 在线看三级毛片| 欧美色视频一区免费| 青草久久国产| 久久天躁狠狠躁夜夜2o2o| 欧美在线一区亚洲| 99热只有精品国产| 美女大奶头视频| 午夜福利在线在线| 91av网一区二区| 香蕉久久夜色| 日韩高清综合在线| 岛国在线免费视频观看| 十八禁人妻一区二区| 亚洲av免费高清在线观看| 在线观看日韩欧美| 免费在线观看成人毛片| 欧美色欧美亚洲另类二区| 午夜精品久久久久久毛片777| 狂野欧美激情性xxxx| 国内久久婷婷六月综合欲色啪| 18禁裸乳无遮挡免费网站照片| 日日干狠狠操夜夜爽| 国产精品 国内视频| 一个人观看的视频www高清免费观看| 叶爱在线成人免费视频播放| 国产av不卡久久| 99精品欧美一区二区三区四区| 国产免费av片在线观看野外av| www.色视频.com| 久久99热这里只有精品18| 亚洲av免费在线观看| 亚洲精品美女久久久久99蜜臀| 国产一区二区激情短视频| 综合色av麻豆| 欧美日韩乱码在线| 色播亚洲综合网| 给我免费播放毛片高清在线观看| 99精品久久久久人妻精品| 日本黄色片子视频| aaaaa片日本免费| 欧美日韩福利视频一区二区| 国产69精品久久久久777片| 欧美一级毛片孕妇| 在线播放国产精品三级| 日本免费a在线| 国产三级黄色录像| 噜噜噜噜噜久久久久久91| a在线观看视频网站| 亚洲第一欧美日韩一区二区三区| av黄色大香蕉| 脱女人内裤的视频| 国内精品久久久久精免费| 亚洲成av人片免费观看| 国产亚洲欧美98| 日日夜夜操网爽| 久久精品国产亚洲av涩爱 | 亚洲成av人片免费观看| 最新在线观看一区二区三区| 欧美最黄视频在线播放免费| av福利片在线观看| av欧美777| 日韩欧美免费精品| 欧美乱妇无乱码| 给我免费播放毛片高清在线观看| 精品一区二区三区视频在线 | 亚洲专区国产一区二区| 亚洲人成网站在线播放欧美日韩| 欧美日韩精品网址| 久久久久国产精品人妻aⅴ院| 波多野结衣巨乳人妻| 国产探花在线观看一区二区| 欧美最黄视频在线播放免费| 在线观看舔阴道视频| 国产亚洲精品av在线| 久久久精品大字幕| 丁香六月欧美| 国产精品亚洲美女久久久| 国产亚洲精品av在线| 国产探花极品一区二区| 国语自产精品视频在线第100页| 国产黄片美女视频| 夜夜看夜夜爽夜夜摸| 精品国产超薄肉色丝袜足j| 日韩人妻高清精品专区| 精品人妻偷拍中文字幕| 男女午夜视频在线观看| 香蕉av资源在线| 宅男免费午夜| 乱人视频在线观看| 亚洲国产精品成人综合色| 一本久久中文字幕| 久久久久性生活片| 成年女人毛片免费观看观看9| 成人18禁在线播放| 一级毛片女人18水好多| 韩国av一区二区三区四区| 欧美最新免费一区二区三区 | 亚洲第一电影网av| 人妻丰满熟妇av一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲精品一卡2卡三卡4卡5卡| 人人妻,人人澡人人爽秒播| 国产精品久久久人人做人人爽| 久久久久久国产a免费观看| 18禁美女被吸乳视频| 俺也久久电影网| 国产成人av教育| 成人18禁在线播放| 欧美高清成人免费视频www| 9191精品国产免费久久| 成人国产综合亚洲| 亚洲 欧美 日韩 在线 免费| 日韩欧美精品v在线| 精品国产美女av久久久久小说| 九色成人免费人妻av| 日本a在线网址| 久久午夜亚洲精品久久| 女人被狂操c到高潮| 国产色爽女视频免费观看| 午夜日韩欧美国产| 小说图片视频综合网站| 亚洲精品一区av在线观看| 美女黄网站色视频| 中亚洲国语对白在线视频| 国产美女午夜福利| 高清在线国产一区| 脱女人内裤的视频| 老司机在亚洲福利影院| 欧美+亚洲+日韩+国产| av欧美777| 日韩欧美三级三区| 18禁美女被吸乳视频| 99久久无色码亚洲精品果冻| 色播亚洲综合网| 亚洲av五月六月丁香网| 亚洲国产欧美网| 久久久久免费精品人妻一区二区| 亚洲电影在线观看av| 精品不卡国产一区二区三区| 国产熟女xx| 无限看片的www在线观看| 久久精品国产综合久久久| 日韩欧美在线乱码| 国产精品亚洲美女久久久| netflix在线观看网站| 欧美一级毛片孕妇| 国产在视频线在精品| 亚洲自拍偷在线| 神马国产精品三级电影在线观看| 亚洲成人免费电影在线观看| 在线十欧美十亚洲十日本专区| 三级男女做爰猛烈吃奶摸视频| 老司机在亚洲福利影院| 成年版毛片免费区| h日本视频在线播放| 亚洲中文日韩欧美视频| 怎么达到女性高潮| 中文字幕久久专区| 18+在线观看网站| 欧美日韩国产亚洲二区| 国产亚洲精品一区二区www| 日本熟妇午夜| 免费av不卡在线播放| 国产午夜福利久久久久久| 日本黄大片高清| 久久香蕉精品热| 日韩欧美 国产精品| 日韩免费av在线播放| 久久精品91蜜桃| 在线观看av片永久免费下载| 欧美日本亚洲视频在线播放| av中文乱码字幕在线| avwww免费| 国产主播在线观看一区二区| 亚洲av美国av| 亚洲av成人av| 18禁在线播放成人免费| 制服丝袜大香蕉在线| 淫秽高清视频在线观看| 超碰av人人做人人爽久久 | 日本黄色视频三级网站网址| 午夜福利在线观看免费完整高清在 | 久久久久国产精品人妻aⅴ院| 99久久九九国产精品国产免费| 国产精品1区2区在线观看.| av福利片在线观看| 亚洲精品在线美女| 国产精品影院久久| av欧美777| 一二三四社区在线视频社区8| 午夜福利免费观看在线| 91久久精品国产一区二区成人 | 18美女黄网站色大片免费观看| 别揉我奶头~嗯~啊~动态视频| 成人无遮挡网站| 久久九九热精品免费| 国产视频内射| 国产精品久久电影中文字幕| 日日摸夜夜添夜夜添小说| 国产精品一区二区免费欧美| 国产精品野战在线观看| 欧美日韩国产亚洲二区| 亚洲av二区三区四区| 亚洲成人久久性| 精品久久久久久,| 久久香蕉国产精品| 久久久精品欧美日韩精品| 日韩欧美免费精品| 亚洲内射少妇av| a级毛片a级免费在线| 免费搜索国产男女视频| 成人无遮挡网站| 亚洲av免费高清在线观看| xxxwww97欧美| 女警被强在线播放| 亚洲人成网站在线播| 国产在视频线在精品| 一本精品99久久精品77| 成人欧美大片| 国产伦一二天堂av在线观看| 又紧又爽又黄一区二区| 99久久九九国产精品国产免费| 人人妻人人澡欧美一区二区| 国产精品久久久久久亚洲av鲁大| 我的老师免费观看完整版| 老汉色∧v一级毛片| 国产精品久久久久久亚洲av鲁大| 久久婷婷人人爽人人干人人爱| 99国产综合亚洲精品| 亚洲av日韩精品久久久久久密| 免费人成视频x8x8入口观看| 久久久国产成人免费| 欧美一级毛片孕妇| 亚洲最大成人中文| 99久久九九国产精品国产免费| 国产爱豆传媒在线观看| 午夜影院日韩av| 一进一出好大好爽视频| 亚洲精品成人久久久久久| 97超视频在线观看视频| 老汉色av国产亚洲站长工具| 国产午夜精品论理片| 一级黄色大片毛片| 国内少妇人妻偷人精品xxx网站| 搡女人真爽免费视频火全软件 | 麻豆成人午夜福利视频| 国产精品 欧美亚洲| 成人欧美大片| 亚洲无线观看免费| 国产男靠女视频免费网站| 最好的美女福利视频网| 国内揄拍国产精品人妻在线| 色综合亚洲欧美另类图片| 在线天堂最新版资源| 久久精品91蜜桃| 两个人的视频大全免费| 久久精品国产自在天天线| av欧美777| 久久99热这里只有精品18| 欧美黑人欧美精品刺激| 亚洲av美国av| 国产私拍福利视频在线观看| 国产欧美日韩精品亚洲av| 欧美性猛交黑人性爽| 欧美成人a在线观看| 午夜老司机福利剧场| 日韩高清综合在线| 女警被强在线播放| 国产单亲对白刺激| 精品久久久久久久久久久久久| 国产精品永久免费网站| 尤物成人国产欧美一区二区三区| 免费人成在线观看视频色| 两性午夜刺激爽爽歪歪视频在线观看| 成年女人看的毛片在线观看| 成人高潮视频无遮挡免费网站| 欧美高清成人免费视频www| 午夜免费男女啪啪视频观看 | 久久6这里有精品| 久久性视频一级片| e午夜精品久久久久久久| 成熟少妇高潮喷水视频| 亚洲精品乱码久久久v下载方式 | xxx96com| 9191精品国产免费久久| 人妻夜夜爽99麻豆av| 国产蜜桃级精品一区二区三区| 色综合亚洲欧美另类图片| 亚洲美女视频黄频| 嫩草影院精品99| 午夜福利视频1000在线观看| 亚洲一区高清亚洲精品| 观看免费一级毛片| 成人永久免费在线观看视频| 亚洲精品在线美女| 亚洲激情在线av| 亚洲成人中文字幕在线播放| 亚洲国产欧洲综合997久久,| 99国产精品一区二区蜜桃av| 俺也久久电影网| 精品久久久久久久久久久久久| av专区在线播放| 亚洲最大成人中文| 亚洲一区二区三区色噜噜| 一区福利在线观看| 亚洲五月天丁香| 亚洲精品乱码久久久v下载方式 | а√天堂www在线а√下载| 在线观看午夜福利视频| 99在线视频只有这里精品首页| 国产精品一区二区免费欧美| 久久精品国产综合久久久| 免费看a级黄色片| 国产精品爽爽va在线观看网站| 一进一出抽搐动态| 高潮久久久久久久久久久不卡| 国产黄片美女视频| 久久精品国产自在天天线| 狠狠狠狠99中文字幕| 狂野欧美激情性xxxx| 成人高潮视频无遮挡免费网站| 无遮挡黄片免费观看| 19禁男女啪啪无遮挡网站| 日韩有码中文字幕| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 国产私拍福利视频在线观看| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 婷婷精品国产亚洲av在线| 国产黄a三级三级三级人| 毛片女人毛片| 国产伦精品一区二区三区四那| 亚洲av五月六月丁香网| av国产免费在线观看| 国产精品女同一区二区软件 | 精品一区二区三区视频在线 | 亚洲av二区三区四区| 中文字幕人成人乱码亚洲影| 女生性感内裤真人,穿戴方法视频| 少妇人妻精品综合一区二区 | 国产真实伦视频高清在线观看 | 熟女人妻精品中文字幕| 国产精品永久免费网站| 熟女电影av网| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区亚洲| 亚洲人与动物交配视频| 国产探花极品一区二区| 午夜影院日韩av| 嫩草影院精品99| aaaaa片日本免费| 搡老熟女国产l中国老女人| ponron亚洲| 长腿黑丝高跟| 久久久国产精品麻豆| 美女 人体艺术 gogo| 亚洲中文日韩欧美视频| 欧美又色又爽又黄视频| a级毛片a级免费在线| 亚洲国产色片| 精品国内亚洲2022精品成人| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美一区二区三区在线观看| 一夜夜www| 欧美中文综合在线视频| 国产精品1区2区在线观看.| 97超视频在线观看视频| 俺也久久电影网| 精品一区二区三区av网在线观看| 香蕉久久夜色| 无限看片的www在线观看| 十八禁人妻一区二区| 99热这里只有精品一区| 青草久久国产| 99精品在免费线老司机午夜| 亚洲中文字幕一区二区三区有码在线看| 男女午夜视频在线观看| 噜噜噜噜噜久久久久久91| 久久人妻av系列| 日本黄色视频三级网站网址| 精品一区二区三区人妻视频| 亚洲熟妇中文字幕五十中出| 国模一区二区三区四区视频| 欧美日韩福利视频一区二区| 国产av麻豆久久久久久久| 成人av一区二区三区在线看| 黄片小视频在线播放| 夜夜爽天天搞| 欧美大码av| 88av欧美| 一区二区三区激情视频| 亚洲国产欧美人成| 久久久久性生活片| 日韩欧美在线乱码| 国产主播在线观看一区二区| 美女cb高潮喷水在线观看| 人妻久久中文字幕网| 亚洲一区二区三区色噜噜| 琪琪午夜伦伦电影理论片6080| 欧美日韩福利视频一区二区| 亚洲人成伊人成综合网2020| 国产美女午夜福利| 怎么达到女性高潮| 日本黄大片高清| 国产av不卡久久| 特大巨黑吊av在线直播| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 毛片女人毛片| 麻豆国产av国片精品| 法律面前人人平等表现在哪些方面| 久久精品国产综合久久久| 内射极品少妇av片p| 国产精品一区二区免费欧美| 白带黄色成豆腐渣| 综合色av麻豆| 蜜桃亚洲精品一区二区三区| 18禁黄网站禁片免费观看直播| 真人一进一出gif抽搐免费| 伊人久久精品亚洲午夜| 激情在线观看视频在线高清| 香蕉av资源在线| 欧美色视频一区免费| av福利片在线观看| 国产精品1区2区在线观看.| 国产av在哪里看| 免费观看人在逋| 精品99又大又爽又粗少妇毛片 | 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 国产欧美日韩精品亚洲av| 亚洲精品456在线播放app | 可以在线观看毛片的网站| 国内精品一区二区在线观看| 成人特级黄色片久久久久久久| 亚洲国产欧洲综合997久久,| 国产真实乱freesex| 午夜两性在线视频| 国产精品爽爽va在线观看网站| 18禁裸乳无遮挡免费网站照片| 欧美极品一区二区三区四区| 久久国产精品影院| 天天添夜夜摸| 亚洲在线观看片| eeuss影院久久| 午夜精品久久久久久毛片777| 亚洲va日本ⅴa欧美va伊人久久| 男女下面进入的视频免费午夜| 久久性视频一级片| 国产激情欧美一区二区| www日本在线高清视频| 高清日韩中文字幕在线| 久99久视频精品免费| 日韩精品中文字幕看吧| 19禁男女啪啪无遮挡网站| 精品午夜福利视频在线观看一区| 国产老妇女一区| 国产真人三级小视频在线观看| 国模一区二区三区四区视频| 国产伦一二天堂av在线观看| 久久久久久久午夜电影| 欧美国产日韩亚洲一区| 大型黄色视频在线免费观看| 午夜老司机福利剧场| 熟妇人妻久久中文字幕3abv| 欧美午夜高清在线| 首页视频小说图片口味搜索| 老司机在亚洲福利影院| www.999成人在线观看|