• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studies on the Interaction of Perfluorononanoic Acid with Human Serum Albumin by Multi-Spectroscopic,Molecular Docking and Isothermal Titration Calorimetry Techniques

    2016-06-05 14:58:29HUTaoyingHUANGFangZHOUShanshanLIUYing
    光譜學(xué)與光譜分析 2016年12期
    關(guān)鍵詞:全氟親和力等溫

    HU Tao-ying,HUANG Fang,ZHOU Shan-shan,LIU Ying,2*

    1. College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China 2. Beijing Engineering Research Center of Food Environment and Public Health,Minzu University of China,Beijing 100081,China

    Studies on the Interaction of Perfluorononanoic Acid with Human Serum Albumin by Multi-Spectroscopic,Molecular Docking and Isothermal Titration Calorimetry Techniques

    HU Tao-ying1,HUANG Fang1,ZHOU Shan-shan1,LIU Ying1,2*

    1. College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China 2. Beijing Engineering Research Center of Food Environment and Public Health,Minzu University of China,Beijing 100081,China

    Perfluorononanoic acid (PFNA) is the third most frequently detected in serum among all perfluoroalkyl acids (PFAAs) which is a kind of toxic emerging environmental contaminant. The influence of PFNA on the conformation and even function of human serum albumin (HSA) is still just at the beginning of research. The attempt of this paper was to completely elucidate the interaction mechanism of PFNA with HSA by means of multi-spectroscopic,molecular docking and isothermal titration calorimetry (ITC) techniques. The inner filter effect of all fluorescence data in the paper was eliminated to get accurate binding parameters. The results showed that the fluorescence of HSA was quenched by PFNA through a combined quenching procedure of dynamic and static quenching. Through site marker competitive experiments,subdomain IIA of HSA had been assigned to possess the high-affinity binding site of PFNA. Furthermore,molecular docking reconfirmed that PFNA was bound in subdomain IIA mainly through polar force,hydrophobic interaction and halogen-bond,and the calculated free energy was -26.54 kJ·mol-1which indicated that the PFNA molecule exhibited large binding affinity towards HSA. The thermodynamic characterizations of two different classes of binding sites by ITC displayed that the first class with a higher affinity constant was dominated by an enthalpic contribution due to electrostatic interactions and halogen-bond,whereas the second class with a lower affinity constant was preponderated by hydrophobic interaction. The three-dimensional fluorescence revealed that the conformation of HSA was changed and the hydrophobicity of the Trp and Tyr residues microenvironment increased after formation of PFNA-HSA complex. The alterations of the protein secondary structure were quantitatively calculated from circular dichroism (CD) spectroscopy with reduction ofα-helix content about 14.3%,β-sheet 5.3%,β-turn 3.5%,and augment in random content from 14.4% to 37.5%. Above results revealed that the binding of PFNA with HSA can alter the secondary structure of HSA,further probably affecting HSA physiological function. The results can provide insights with the binding mechanism of PFNA with HSA and salient biophysical and biochemical clues on elucidating the transport and distribution of PFNA in vivo.

    Perfluorononanoic acid; Human serum albumin; Multi-spectroscopic techniques; Molecular docking; Isothermal titration calorimetry

    Introduction

    Human serum albumin (HSA) is a well-known target because of its availability of hydrophobic pockets inside the network and flexibility to adapt its shape. Over recent decades,many researches have centered on the interaction of HSA with various small molecules,such as drugs,metals,dyes,environmental hormone,pesticide and fertilizer,etc.[1],which will alter the distribution,free concentration,metabolism and elimination of the small molecule and consequently affect the levels of its activity and toxicity in organism[2].

    Perfluorononanoic acid (PFNA,structure shown in Fig.1) is a representative of the synthetic perfluoroalkyl acids (PFAAs) which are composed of hydrophobic and hydrophilic functional group[3],and widespread used as surfactants in firefighting foams,food packaging,polymer additives and water- and stain-resistant coatings,which are one large class of the active ingredients receiving comparatively little attention but used in large amounts throughout the world[4]. Numerous reports have shown that PFNA was the third most frequently detected in serum after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)[5]. In recent years,most interaction studies of PFAAs with proteins have been focused on the eight carbon atoms of PFOS and PFOA[6]. However,toxicological researchers demonstrated that compared with PFOS and PFOA,PFNA was more likely to accumulate and express reproductive toxicity,hepatotoxicity and immunotoxicity[7]in vivo. Thus,the binding of PFNA to HSA affected conformation,physiological function and activity of HSA,and hindered the transport of endogenous materials. By far,only few trials have been reported on the binding of PFNA proteins[8],and they were insufficient on the binding mechanism,such as lacking the specific information about binding sites,mainly driving force,changes for conformation and secondary structure of protein,which are of great importance for perfectly demonstrating the interaction mechanism of PFNA with proteins.

    In this paper,the binding mechanism and thermodynamic characterization of PFNA-HSA interactions at molecular level is elucidated by multi-spectroscopic,molecular docking and isothermal titration calorimetry (ITC) approaches.

    1 Experimental

    1.1 Materials

    PFNA (Shanghai Aijie Biological Technology Co.,Ltd.,China) was dissolved and diluted to 1.0×10-3mol·L-1with ultrapure water,2.0×10-5mol·L-1HSA (Sigma,USA) working solution was prepared. The stock solutions of phenylbutazone and ibuprofen were prepared to 1.0×10-3mol·L-1. Phosphate buffer solution and 1.0 mol·L-1NaCl solution were used. All reagents were of analytical reagent grade and ultrapure water was used throughout the experiment.

    1.2 Methods

    The methods and setting of parameters on fluorescence spectroscopy,UV-Vis spectroscopy,site marker competitive experiments,circular dichroism spectroscopy and molecular modeling are referred to literature [9].

    The steady state fluorescence anisotropy measurements were performed on an F-4500 spectrophotometer. The excitation wavelength was 295 nm in order to selectively excite the tryptophan residues of HSA,with slit widths of 5 nm for both excitation and emission. The steady-state anisotropy valuerwas defined as[10]:

    (1)

    Where,IVVandIVHare the intensities obtained with the excitation polarizer oriented vertically and the emission polarizer oriented in vertical and horizontal directions,respectively. TheGwas the correction factor for detector sensitivity to the polarization direction of the emission and defined as

    (2)

    Where,Irefers to the similar parameters as mentioned above for the horizontal position of the excitation polarizer.

    1.3 Isothermal titration calorimetry

    ITC of PFNA with HSA was performed using a Model Nano-ITC 2G biocalorimetry instrument (TA,USA) at 298 K. The direct analysis of ITC data curves for PFNA binding to HSA allowed the determination of binding stoichiometry (Ni) and enthalpy change (ΔHi) in theith class of binding site according to Eq.(3)[11]

    (3)

    whereQ(j) is the heat evolved afterjth injection,Mtthe total concentration of the protein,V0the active cell volume,andθithe fraction of sites occupied by PFNA. The heat released fromjth injection ΔQ(j) for an injection volumedVjis then given by the following equation[12]

    (4)

    Results were analyzed with either availability of one or two binding sites by NanoAnalyze v3.1.2 provided with the manufacturer.

    2 Results and discussions

    2.1 Steady state fluorescence

    Fig.1 showed the fluorescence emission spectra of HSA with various amounts of PFNA. The maximum intensity of HSA in absence of PFNA was observed at 351 nm with excitation at 280 nm,and further increasing in PFNA concentration caused a concentration dependent quenching of intrinsic fluorescence of HSA accompanied with a blue shift in the maxima from 351 to 347 nm. This suggested that there were interactions between PFNA and HSA,which was responsible for quenching the fluorescence of HSA.

    Fig.1 Fluorescence emission spectra of PFNA-HSA system,the inset is the structure of PFNA

    cHSA=2.0×10-6mol·L-1;cPFNA(×10-6mol·L-1)(1—7): 0,1.0,2.0,3.0,4.0,5.0,6.0; curve 8:cPFNA=1.0×10-6mol·L-1;T=298 K

    Fig.2 The Stern-Volmer plots for the PFNA-HSA system at different temperatures

    cPFNA(×10-6mol·L-1)(1—7): 0,1.0,2.0,3.0,4.0,5.0,6.0;cHSA=2.0×10-6mol·L-1

    2.2 Mechanisms of fluorescence quenching

    Stern-Volmer equation is used to explain the quenching mechanism[9]

    (5)

    WhereF0,F,Ksv,[Q] andτ0are seen literature [9],kqis the bimolecular quenching rate constant,and its maximum scattering collision quenching constant is 2.0×1010L·mol-1·s-1. The Stern-Volmer plots are shown in Fig.2,Ksvandkqat corresponding temperatures are listed in Table 1.

    Table 1 Stern-Volmer quenching constants for interaction of PFNA with HSA at different temperatures

    pHT/KKsv/(×104L·mol-1)kq/(×1012L·mol-1·s-1)R2988.078.070.99717.403038.438.430.997231010.1710.170.9982

    There was a good linear dependence betweenF0/Fand [Q]PFNA,Ksvvalues increased with increasing temperature,revealing the occurrence of dynamic quenching interaction between PFNA and HSA. Furthermore,the values ofkqwhich were all greater than the upper limit of 2.0×1010L·mol-1·s-1indicated that the static quenching may exist between them. Besides,the fluorescence spectra of HSA (Fig.1) not only decreased gradually with increasing PFNA but also obtained a blue shift (4 nm),manifesting a decrease in polarity of the microenvironment around the Trp residues after binding of PFNA with HSA. It was probably due to the growth of the compact structure of hydrophobic subdomain IIA where Trp-214 is placed. This phenomenon also reconfirmed that probable quenching mechanism of the intrinsic fluorescence of HSA was initiated by PFNA-HSA complex formation.

    Fluorescence anisotropy provides useful information on the changes in orientation of a small molecule upon binding with macromolecules. The anisotropy values (r) of PFNA (5.0×10-6mol·L-1) at three different HSA concentrations (0,1.0,5.0×10-6mol·L-1) were 0,0.103 and 0.126,respectively.rof a small molecule may vary from 0 (randomly oriented molecule) to 0.4 when there is no rotation or restricted motion of molecule. This augment in the anisotropy values with the addition of HSA deduced that a reduction of rotation freedom resulted from the complex formation between PFNA and HSA. In a word,the quenching mechanism of PFNA-HSA system should be a combined quenching process (including dynamic and static quenching)[13].

    2.3 Site marker competitive experiments

    Two site marker phenylbutazone (site Ⅰ in the subdomain ⅡA) and ibuprofen (site Ⅱ in the subdomain ⅢA) were used to identify bonding sites. The fluorescence of the complex was remarkably affected in presence of phenylbutazone,but remained invariant with ibuprofen. The result showed PFNA was to be bound to site Ⅰ in the subdomain ⅡA of HSA.

    2.4 Molecular docking

    In order to further determine the preferred binding sites of PFNA on HSA (PDB: 2BXN),molecular docking was carried out using AutoDock. The calculated free energy was -26.54 kJ·mol-1and the best energy ranked results are shown in Fig.3. The results showed that PFNA bound at subdomain ⅡA (site Ⅰ) [Fig.3(a)],which was consistent with the results observed in the site marker competitive experiments. PFNA molecule was surrounded by the hydrophobic chains and amino acid residues,such as Arg 218,Leu 219,Phe 223,Leu 260,Ala 261,Ile 264,Ser 287 and Val 293. Thus we can conclude that PFNA was able to fit well within the hydrophobic cavity of subdomain IIA. The docking result showed the existence of polar,hydrophobic interactions and halogen-bond between PFNA and HSA (Table 2). For example,O1 and O3 of PFNA interacted with Arg 222 through polar force. Hydrocarbon alkyl chains on Leu 219 and Ile 290 residues interacted with PFNA through hydrophobic interaction. Furthermore,it can be seen that there were four specific halogen-bonds of PFNA with Arg 257,Ser 287,Ile 290 and Ala 291 residues of HSA considering the distance between donor and acceptor atoms from 2.6 to 4.0,which played a crucial role in binding of PFNA to HSA.

    Fig.3 (a) The binding site of PFNA on HSA. HSA is shown in cartoon and PFNA is represented using spheres; (b) Enlarged binding mode between PFNA and HSA. HSA is shown in cartoon,the interacting side chains of HSA are displayed in surface mode and PFNA is represented using balls and sticks; (c) Molecular modeling of the interaction between PFNA and HSA. The atoms of PFNA are blue

    Table 2 The distances and driving forces between the PFNA atoms and the atoms of residues obtained by molecular docking

    2.5 Isothermal titration calorimetry measurement

    To explore the binding procedure and main driving force of PFNA to HSA,a representative calorimetric titration profile of PFNA with HSA is shown in Fig.4(a),the exothermicity and endothermicity of calorimetry peaks suggested that there were more than one binding process for PFNA-HSA interaction. Fig.4(b) shows the integrated heat profile after eliminating dilution heat of PFNA into buffer solution,the solid smooth line represents the best fit of experimental data using the standard nonlinear least-squares regression binding model which two classes of binding sites fitted well to calorimetric data. The thermodynamic parameters are the average of three independent experiments for the interaction of PFNA with HSA obtained from ITC (Table 3). From Table 3 can be seen that for the binding of PFNA to HSA,the number of second-class binding site (N2=9.95) on HSA molecules is higher than correspondingN1(3.33),whereas the second-class binding constant (Ka,2=4.58×104L·mol-1) is much smaller thanKa,1(22.71×104L·mol-1). Moreover,the binding events only occurred in subdomain IIA of HSA according to the results of site marker competitive experiments and molecular docking.

    Fig.4 (a) ITC titration profile of PFNA HSA binding; (b) Integrated heat profile of the calorimetric titration shown in panel A. The solid line represents the best nonlinear least-squares fit to the independent binding sites model

    Table 3 Binding constants and relative thermodynamic parameters of PFNA-HSA at 298 K

    As evident in Table 3,for the first binding site of this system,the both negative enthalpy (ΔH1) and entropy (ΔS1) changes indicated that this binding was an exothermic and entropy decreasing process. This can be explained by two factors: (1) the hydrated PFNA molecules should lose some water molecules when they approached to the binding sites and,simultaneously,the hydration layers on the surface of HSA molecules were partly destroyed. Both dehydration processes were endothermic and entropy increasing. (2) Directly electrostatic interaction of dipole groups of PFNA with peptide sections of HSA molecules,which caused exothermic effects and negative contribution to entropy. The experimentally negative enthalpy and entropy changes indicated that Factor (2) was evidently stronger than Factor (1) for this type of binding. Since seventeen electrophilic F-groups in PFNA can attract strongly the lone pair electrons of polar side groups of peptide chain,and partly PFNA molecules which were negatively charged under physiological condition interacted with the positively charged amino acids of HSA surface. Thus the strong electrostatic interactions gave rise to the strong negative values of enthalpic and entropic changes. Because the first class of binding was entropically opposed but enthalpically favored,the negative change of Gibbs free energy (ΔG1) was due to the contribution of heat effect and the process was mainly driven by enthalpy.

    The positive values of both ΔH2and ΔS2indicated that the second binding was an endothermic and entropy increasing process. This phenomenon can be explained by considering following reasons: firstly,when a PFNA molecule (partly) inserted itself into a hydrophobic cavity of HSA molecule formed by folding and twisting of peptide chain,the hydrophobic interaction between PFNA molecule and the cavity would cause a decrease in both the enthalpy and entropy. Secondly,the hydrophobic interaction led to some water molecules transferring into bulk solution from the hydrophobic cavity at the binding sites of HSA molecule,which was also exothermic but entropy increasing. Thirdly,accompanying the inserting of PFNA molecule into hydrophobic cavity,the original iceberg structure surrounding PFNA molecule was destroyed,which was endothermic and made a major positive contribution to the entropy. Because of the experimentally positive ΔH2and ΔS2,i.e.,entropy effect resulted in the negative change of Gibbs free energy (ΔG2),the second-class binding was entropy driven process. On the other hand,hydrophobic interaction between PFNA and HSA played a key role for this class of binding process as corroborated by the positive entropy changes (ΔS2) at complex formation.

    2.6 Three-dimensional fluorescence spectra

    Fig.5 Three-dimensional fluorescence spectra for HSA and PFNA HSA complexcHSA=2.0×10-6 mol·L-1,cPFNA=2.0×10-6 mol·L-1; T=298 K

    2.7 Circular dichroism spectra

    Further evidence of conformational changes of HSA upon addition of PFNA was confirmed by CD spectroscopy (Fig.6). It was apparently observed that the CD bands of HSA were at 209 and 222 nm. The binding of PFNA to HSA caused only a decrease in negative band intensity without any significant shift of the peaks which implied that HSA had predominantlyα-helix in nature even after binding to PFNA. The secondary structural contents of HSA were expressed in terms of mean residue ellipticity (MRE) according to literature [14],the calculated results exhibited that PFNA caused decrease inα-helical content of HSA from 55.6% in free HSA to 41.3% at a molar ratio of PFNA to HSA of 15∶1,β-sheet from 13.5% to 8.2%,β-turn from 16.5% to 13.0%,and increase in random content of HSA from 14.4% to 37.5%. From above results,it was apparent that the binding of PFNA to HSA led to a secondary structure change of HSA with the loss of helical stability.

    Fig.6 The CD spectra of HSA in the absence and presence of PFNA

    cHSA=2.0×10-6mol·L-1; molar ratiosnPFNA∶nHSAfrom 1 to 3: 0∶1,10∶1,15∶1

    3 Conclusions

    The results indicated that PFNA could quench the intrinsic fluorescence of HSA through static and dynamic quenching process. It was worthy noted that the binding site was located in the hydrophobic pocket of subdomain IIA according to the competitive binding experiment and molecular docking studies. Furthermore,molecular docking offered a molecular level explanation with the ability to estimate the participation of specific chemical groups and their interactions in complex stabilization. The ITC results showed that binding occurred at two different classes of binding sites. It also demonstrated that both electrostatic and hydrophobic interactions were presented in the formation of PFNA-HSA complex,the former being more important when PFNA bound to the first class of binding site,whereas hydrophobic forces were generally predominant in the second class of site,as seen from entropy increases. As further revealed by three-dimensional fluorescence and CD spectra,PFNA caused microenvironmental and conformational changes of HSA. Investigation of PFNA-HSA interaction has a great significance for thoroughly understanding the interaction process of PFNA-HSA,the relationship of structure and function of HSA,and the chemical essence of the interaction between biomacromolecule and ligand.

    [1] Yang B J,Hao F,Li J R,et al. Food Chem. Toxicol.、2014,65: 227.

    [2] Deng F Y,Dong C Y,Liu Y. Mol. Biosyst.、2012,8(5): 1446.

    [3] Brieger A,Bienefeld N,Hasan R,et al. Toxicol. in Vitro、2011,25(4): 960.

    [4] Christian G D,Thomas A T. Environ. Health Persp.、1999,107: 907.

    [5] K?rrman A,Harada K H,Inoue K,et al. Environ. Int.、2009,35(4): 712.

    [6] Qin P F,Liu R T,Pan X R,et al. J. Agric. Food Chem.、2010,58(9): 5561.

    [7] Ohmori K,Kudo N,Katayama K,et al. Toxicology、2003,84(2-3): 135.

    [8] MacManus-Spencer L A,Tse M L,Hebert P C,et al. Anal. Chem.、2010,82(3): 974.

    [9] Hu T Y,Liu Y. J. Pharm. Biomed. Anal.、2015,107: 325.

    [10] Molina-Bolívar J A,Galisteo-González F,Ruiz C C,et al. J. Lumin.、2014,56: 141.

    [11] Sun X J,Xu X Y,Liu M,et al. J. Solution Chem.、2010,39(1): 77.

    [12] Cheema M A,Taboada P,Barbosa S,et al. J. Chem. Thermodyn.、2009,41(4): 439.

    [13] Li J H,Wang S M. J. Chem. Thermodyn.、2013,58: 206.

    [14] Matei I,Hillebrand M. J. Pharm. Biomed. Anal.、2010,51(3): 768.

    *通訊聯(lián)系人

    O657.3

    A

    光譜法聯(lián)合分子對接和等溫滴定微量熱法研究全氟壬酸與人血清白蛋白的相互作用

    胡濤英1、黃 芳1、周珊珊1,2、劉 穎1,2*

    1. 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院、北京 100081 2. 中央民族大學(xué)北京市食品環(huán)境與健康工程技術(shù)研究中心、北京 100081

    全氟壬酸(PFNA)是在血清中檢測到第三多的全氟烷酸類(PFAAs)新型有毒環(huán)境污染物。目前PFNA對人血清白蛋白(HSA)結(jié)構(gòu)甚至是功能的影響還處于起步階段、借助于多光譜、分子對接和等溫滴定微量熱(ITC)技術(shù)研究了PFNA和HSA相互作用的結(jié)合機理。所有熒光數(shù)據(jù)均進行了內(nèi)濾光校正以獲得更準確的結(jié)合參數(shù)。熒光結(jié)果表明PFNA通過動靜態(tài)猝滅方式可以猝滅HSA的內(nèi)源熒光。取代實驗和分子對接結(jié)果表明、PFNA主要通過極性鍵、疏水力和鹵素鍵鍵合在HSA亞域ⅡA疏水腔中、最佳對接自由能為-26.54 kJ·mol-1、表明PFNA分子與HSA有較大的結(jié)合親和力。ITC表明兩者的結(jié)合屬于兩類結(jié)合位點模型并給出了相應(yīng)的熱力學(xué)參數(shù):第一類結(jié)合位點有較大的親和力、屬于焓驅(qū)動、靜電力和鹵鍵作為主要驅(qū)動力; 第二類結(jié)合位點親和力較小、主要驅(qū)動力是疏水力。三維熒光光譜揭示PFNA與HSA生成復(fù)合物后、可以改變HSA的構(gòu)象、引起Trp和Tyr殘基微環(huán)境疏水性增強。圓二色譜(CD)定量測定了HSA與PFNA作用前后的二級結(jié)構(gòu)含量:α-螺旋、β-折疊和β-轉(zhuǎn)角含量分別降低14.3%、5.3%和3.5%、無規(guī)卷曲含量從14.4%增加到37.5%。以上結(jié)果表明、PFNA與HSA的結(jié)合可以改變HSA的二級結(jié)構(gòu)、進而可能影響HSA的生理功能。結(jié)果闡述了PFNA與HSA相互作用機理、并且為PFNA在體內(nèi)的運輸和分配提供了可靠的生物物理和生物化學(xué)的相關(guān)依據(jù)。

    全氟壬酸; 人血清白蛋白; 光譜法; 分子對接; 等溫滴定微量熱法

    2015-06-08、

    2015-10-29)

    2015-06-08; accepted:2015-10-29

    The National Natural Science Foundation of China (21177163),111 Project B08044,Special Guidance Fund of Building World First-class Universities (Disciplines) and Characteristic Development of Minzu University of China (2016,ydzxxk201619),Coordinate Development of First-Class and First-Class University Discipline Construction Funds (10301-0150200604),The Academic Team Construction Project of Minzu University of China (2015MDTD25C&13C),First-class Universities and First-class Discipline Construction Transitional Funds Under Special Funding (10301-01404031,2015),2015MDTD08C

    10.3964/j.issn.1000-0593(2016)12-4141-07

    Biography:HU Tao-ying,(1989—),Master of College of Life and Environmental Science,Minzu University of China e-mail: hty0945020@163.com *Corresponding author e-mail: liuying4300@163.com

    猜你喜歡
    全氟親和力等溫
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    EPDM/PP基TPV非等溫結(jié)晶行為的研究
    高端訪談節(jié)目如何提升親和力
    新聞傳播(2018年11期)2018-08-29 08:15:30
    高端訪談節(jié)目如何提升親和力探索
    新聞傳播(2018年13期)2018-08-29 01:06:52
    親和力在播音主持中的作用探究
    新聞傳播(2016年9期)2016-09-26 12:20:34
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    快速檢測豬鏈球菌的環(huán)介導(dǎo)等溫擴增方法
    納米CaCO3對FEP非等溫結(jié)晶動力學(xué)的影響
    中國塑料(2015年3期)2015-11-27 03:41:54
    將親和力應(yīng)用于播音主持中的方法探討
    新聞傳播(2015年7期)2015-07-18 11:09:57
    男女无遮挡免费网站观看| 亚洲精品乱码久久久v下载方式| 国产免费一区二区三区四区乱码| 成人无遮挡网站| 99热6这里只有精品| 美女视频免费永久观看网站| 国产精品久久久久成人av| 高清不卡的av网站| 丰满乱子伦码专区| 中文精品一卡2卡3卡4更新| 日韩精品有码人妻一区| 爱豆传媒免费全集在线观看| 黑人高潮一二区| 久久久国产一区二区| 一级片'在线观看视频| 色视频在线一区二区三区| 91在线精品国自产拍蜜月| 亚洲精品av麻豆狂野| 美女cb高潮喷水在线观看| 国产精品99久久99久久久不卡 | av国产久精品久网站免费入址| 狂野欧美激情性xxxx在线观看| 免费久久久久久久精品成人欧美视频 | 卡戴珊不雅视频在线播放| 一级毛片我不卡| 亚洲四区av| 久久韩国三级中文字幕| 午夜免费鲁丝| 国产精品欧美亚洲77777| xxx大片免费视频| av又黄又爽大尺度在线免费看| 各种免费的搞黄视频| 精品久久国产蜜桃| 国产高清国产精品国产三级| 国产高清有码在线观看视频| 一二三四中文在线观看免费高清| 亚洲婷婷狠狠爱综合网| 国产免费一区二区三区四区乱码| 亚洲av免费高清在线观看| 丝袜脚勾引网站| 精品一区二区三区视频在线| 三级国产精品片| 午夜精品国产一区二区电影| 国产在线视频一区二区| 国产成人91sexporn| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 最近中文字幕2019免费版| 亚洲伊人久久精品综合| 老司机亚洲免费影院| 一级爰片在线观看| 天堂中文最新版在线下载| 最近最新中文字幕免费大全7| 国产免费视频播放在线视频| 亚洲,一卡二卡三卡| 国产一区二区三区综合在线观看 | 中文字幕免费在线视频6| 嘟嘟电影网在线观看| 九色亚洲精品在线播放| 狂野欧美白嫩少妇大欣赏| tube8黄色片| 欧美三级亚洲精品| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美色中文字幕在线| 亚洲四区av| 如何舔出高潮| 免费av不卡在线播放| 日韩制服骚丝袜av| 在线 av 中文字幕| 亚洲欧美成人精品一区二区| 欧美精品一区二区免费开放| 欧美日韩国产mv在线观看视频| av在线app专区| 老司机影院毛片| 极品人妻少妇av视频| 亚洲高清免费不卡视频| 国产色爽女视频免费观看| 狠狠婷婷综合久久久久久88av| 国产精品国产三级国产av玫瑰| 一级毛片我不卡| 在线观看一区二区三区激情| 亚洲精品视频女| 成人漫画全彩无遮挡| 妹子高潮喷水视频| 色网站视频免费| 亚洲国产av影院在线观看| 亚洲国产最新在线播放| 少妇的逼水好多| 天天躁夜夜躁狠狠久久av| 高清av免费在线| 亚洲欧美一区二区三区国产| 国产一区二区三区综合在线观看 | 国产精品久久久久久av不卡| 久久国产精品男人的天堂亚洲 | 欧美少妇被猛烈插入视频| 午夜激情福利司机影院| 欧美人与善性xxx| 看非洲黑人一级黄片| 午夜福利视频精品| 在线观看免费视频网站a站| 国产永久视频网站| 国产日韩一区二区三区精品不卡 | 午夜日本视频在线| 国产成人a∨麻豆精品| 丁香六月天网| 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 丁香六月天网| 亚洲av欧美aⅴ国产| 国产亚洲最大av| 韩国高清视频一区二区三区| 久久精品人人爽人人爽视色| av免费在线看不卡| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡| 最黄视频免费看| 亚洲高清免费不卡视频| 午夜视频国产福利| 搡女人真爽免费视频火全软件| 王馨瑶露胸无遮挡在线观看| 久久这里有精品视频免费| 久久久午夜欧美精品| 国产成人av激情在线播放 | 久久99蜜桃精品久久| 久久久久久久精品精品| 乱人伦中国视频| 国产免费福利视频在线观看| 久久综合国产亚洲精品| 91成人精品电影| 高清黄色对白视频在线免费看| 国产亚洲最大av| 欧美成人精品欧美一级黄| 国产精品一区二区在线观看99| 十分钟在线观看高清视频www| 成年人午夜在线观看视频| 国产午夜精品一二区理论片| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 久久亚洲国产成人精品v| av福利片在线| 男人爽女人下面视频在线观看| 成年女人在线观看亚洲视频| 欧美人与性动交α欧美精品济南到 | 免费观看av网站的网址| 97在线视频观看| 999精品在线视频| 亚洲无线观看免费| 国产永久视频网站| 婷婷成人精品国产| 91精品国产九色| 午夜视频国产福利| 久久鲁丝午夜福利片| 美女大奶头黄色视频| 亚洲一级一片aⅴ在线观看| 高清不卡的av网站| 国产精品嫩草影院av在线观看| 欧美成人午夜免费资源| kizo精华| 日韩av不卡免费在线播放| 国产欧美另类精品又又久久亚洲欧美| 国精品久久久久久国模美| 国产精品国产三级国产专区5o| 国产淫语在线视频| 国产精品久久久久久久电影| 欧美日韩视频精品一区| 国产片内射在线| 国产精品嫩草影院av在线观看| 老熟女久久久| 国产男女超爽视频在线观看| 少妇丰满av| 91在线精品国自产拍蜜月| 欧美成人精品欧美一级黄| 日本黄色日本黄色录像| 婷婷色综合大香蕉| 黄色怎么调成土黄色| 国产爽快片一区二区三区| 女性生殖器流出的白浆| 国产一区二区在线观看av| 精品国产国语对白av| av在线app专区| 熟女电影av网| 成人黄色视频免费在线看| 亚洲情色 制服丝袜| 免费黄色在线免费观看| 在线观看人妻少妇| 久久精品人人爽人人爽视色| 街头女战士在线观看网站| 久久久精品94久久精品| 国产精品嫩草影院av在线观看| 精品亚洲成国产av| 免费大片黄手机在线观看| 一区在线观看完整版| 观看美女的网站| 蜜桃国产av成人99| 亚洲国产精品一区二区三区在线| 日本黄大片高清| av在线app专区| 亚洲经典国产精华液单| 成人国产麻豆网| 一级毛片电影观看| 国产成人av激情在线播放 | av卡一久久| 中文字幕制服av| 在线精品无人区一区二区三| 2022亚洲国产成人精品| 有码 亚洲区| 一本一本综合久久| 高清在线视频一区二区三区| 久久亚洲国产成人精品v| 亚洲精品视频女| 亚洲av.av天堂| 一本久久精品| 欧美成人午夜免费资源| 亚洲成色77777| 国产熟女午夜一区二区三区 | 久久精品国产亚洲av涩爱| 亚洲精品日韩av片在线观看| 视频中文字幕在线观看| 精品一区二区三卡| 亚洲伊人久久精品综合| 女的被弄到高潮叫床怎么办| 大话2 男鬼变身卡| 精品久久久精品久久久| 久久鲁丝午夜福利片| 午夜久久久在线观看| 狠狠精品人妻久久久久久综合| 天天操日日干夜夜撸| 免费观看性生交大片5| 久久国产精品男人的天堂亚洲 | 久久97久久精品| 亚洲人成网站在线播| 一级毛片aaaaaa免费看小| 免费观看的影片在线观看| 三上悠亚av全集在线观看| 亚洲经典国产精华液单| 亚洲怡红院男人天堂| 天美传媒精品一区二区| 午夜激情av网站| 国产日韩欧美亚洲二区| av网站免费在线观看视频| 国国产精品蜜臀av免费| 亚洲五月色婷婷综合| 国产伦理片在线播放av一区| 肉色欧美久久久久久久蜜桃| 七月丁香在线播放| 亚洲欧美日韩另类电影网站| 中国美白少妇内射xxxbb| 一区二区三区精品91| 黑人猛操日本美女一级片| 在线免费观看不下载黄p国产| 不卡视频在线观看欧美| 夫妻性生交免费视频一级片| 男女高潮啪啪啪动态图| 三级国产精品片| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 国产在视频线精品| 国产亚洲av片在线观看秒播厂| 国产成人精品无人区| 精品久久国产蜜桃| 亚洲欧美日韩另类电影网站| 国产一区二区三区综合在线观看 | 亚洲激情五月婷婷啪啪| 亚洲欧洲精品一区二区精品久久久 | 国产男女内射视频| 午夜激情av网站| 18+在线观看网站| freevideosex欧美| 亚洲精品久久午夜乱码| 欧美成人午夜免费资源| 国产探花极品一区二区| av在线观看视频网站免费| 国产高清有码在线观看视频| 久久精品国产a三级三级三级| 亚洲第一区二区三区不卡| 97在线视频观看| 丁香六月天网| 国产精品秋霞免费鲁丝片| 人妻系列 视频| 日本黄大片高清| 国产精品久久久久久av不卡| 五月开心婷婷网| 在线观看美女被高潮喷水网站| 青春草视频在线免费观看| 亚洲怡红院男人天堂| 亚洲精品456在线播放app| 母亲3免费完整高清在线观看 | 一级片'在线观看视频| 亚洲国产精品国产精品| 国产极品粉嫩免费观看在线 | 亚洲精品aⅴ在线观看| 好男人视频免费观看在线| 国产一区二区三区综合在线观看 | 欧美丝袜亚洲另类| 欧美亚洲 丝袜 人妻 在线| 午夜91福利影院| 精品久久久噜噜| 国产精品国产三级专区第一集| 超色免费av| 精品久久久久久久久亚洲| 成年人午夜在线观看视频| 少妇高潮的动态图| 99热国产这里只有精品6| 一区二区三区免费毛片| 97在线人人人人妻| 边亲边吃奶的免费视频| 久久午夜福利片| 久久婷婷青草| 少妇丰满av| 国内精品宾馆在线| 久久精品国产亚洲av涩爱| 免费播放大片免费观看视频在线观看| 亚洲欧洲国产日韩| 久久久久国产精品人妻一区二区| 看十八女毛片水多多多| 欧美日韩精品成人综合77777| 精品国产国语对白av| 91精品一卡2卡3卡4卡| 亚洲欧美成人综合另类久久久| 午夜福利影视在线免费观看| 久热这里只有精品99| 免费观看a级毛片全部| 能在线免费看毛片的网站| 国产成人a∨麻豆精品| 亚洲国产精品国产精品| 欧美精品人与动牲交sv欧美| 黄色怎么调成土黄色| 日日啪夜夜爽| 久久免费观看电影| 欧美日韩视频高清一区二区三区二| 亚洲人成网站在线播| 亚洲国产精品一区二区三区在线| 狂野欧美激情性xxxx在线观看| 亚洲av不卡在线观看| 国产熟女欧美一区二区| 亚洲av电影在线观看一区二区三区| 飞空精品影院首页| 久久人妻熟女aⅴ| 搡老乐熟女国产| 亚洲av在线观看美女高潮| 午夜日本视频在线| 色视频在线一区二区三区| 欧美另类一区| 青春草国产在线视频| 热99久久久久精品小说推荐| 中文字幕亚洲精品专区| 久久狼人影院| 如日韩欧美国产精品一区二区三区 | 人人妻人人澡人人看| 能在线免费看毛片的网站| 精品人妻在线不人妻| 最黄视频免费看| av不卡在线播放| 色5月婷婷丁香| 日韩制服骚丝袜av| 国产成人aa在线观看| 国产精品.久久久| 九色成人免费人妻av| 久热久热在线精品观看| 精品人妻偷拍中文字幕| 日本欧美国产在线视频| 亚洲成色77777| 色视频在线一区二区三区| 久久这里有精品视频免费| 亚洲综合色惰| 韩国高清视频一区二区三区| 久久久久久久久久久免费av| 色吧在线观看| 亚洲av综合色区一区| 两个人的视频大全免费| 丝袜美足系列| 蜜桃在线观看..| 大片电影免费在线观看免费| 亚洲精品国产av蜜桃| 制服丝袜香蕉在线| 夫妻午夜视频| 熟妇人妻不卡中文字幕| 22中文网久久字幕| 最后的刺客免费高清国语| 国产成人一区二区在线| 一级片'在线观看视频| 免费看av在线观看网站| 亚洲欧美精品自产自拍| 黄片播放在线免费| 涩涩av久久男人的天堂| av网站免费在线观看视频| 国产成人a∨麻豆精品| 一级毛片aaaaaa免费看小| 久久免费观看电影| 久久ye,这里只有精品| 亚洲图色成人| 国产成人精品久久久久久| 日本猛色少妇xxxxx猛交久久| 国产亚洲一区二区精品| 狠狠婷婷综合久久久久久88av| 黄片播放在线免费| 精品亚洲成a人片在线观看| 亚洲精品亚洲一区二区| 美女福利国产在线| 日日摸夜夜添夜夜添av毛片| 成人国语在线视频| 特大巨黑吊av在线直播| 免费观看av网站的网址| 久久97久久精品| 赤兔流量卡办理| 免费播放大片免费观看视频在线观看| 少妇人妻精品综合一区二区| 亚洲中文av在线| 久久午夜综合久久蜜桃| 亚洲欧美色中文字幕在线| 国产一区二区在线观看日韩| 国产精品久久久久成人av| 亚洲少妇的诱惑av| 亚洲精品,欧美精品| 日本欧美国产在线视频| 久久久国产精品麻豆| 欧美国产精品一级二级三级| 天天影视国产精品| 欧美国产精品一级二级三级| 国产精品不卡视频一区二区| 国产av国产精品国产| 日韩熟女老妇一区二区性免费视频| 精品国产国语对白av| 久久人妻熟女aⅴ| 简卡轻食公司| 日本av免费视频播放| 国产爽快片一区二区三区| av免费在线看不卡| 日韩欧美一区视频在线观看| 综合色丁香网| 夫妻性生交免费视频一级片| 亚洲精品日本国产第一区| 久久热精品热| 婷婷成人精品国产| 久久久久久久久大av| 午夜影院在线不卡| 久久影院123| 久久久久国产网址| 最后的刺客免费高清国语| 亚洲国产精品一区二区三区在线| 人妻系列 视频| 精品久久久久久久久亚洲| 十八禁高潮呻吟视频| 亚洲综合色网址| 免费看不卡的av| 欧美性感艳星| 免费高清在线观看日韩| a 毛片基地| 黄片无遮挡物在线观看| 在线亚洲精品国产二区图片欧美 | 丝袜喷水一区| 国产视频首页在线观看| 亚洲中文av在线| 中文字幕精品免费在线观看视频 | a级毛片免费高清观看在线播放| 国产精品不卡视频一区二区| 男男h啪啪无遮挡| 亚洲第一区二区三区不卡| 久久久久国产精品人妻一区二区| 最黄视频免费看| 91成人精品电影| 国产精品欧美亚洲77777| 欧美激情国产日韩精品一区| 性色avwww在线观看| 成人毛片a级毛片在线播放| 在线观看www视频免费| 亚洲美女视频黄频| 精品一品国产午夜福利视频| 最近中文字幕高清免费大全6| 久久精品国产a三级三级三级| 国产精品国产三级国产av玫瑰| 午夜免费观看性视频| 免费大片18禁| 国产男女超爽视频在线观看| av女优亚洲男人天堂| 亚洲精品,欧美精品| 内地一区二区视频在线| 免费久久久久久久精品成人欧美视频 | 97在线人人人人妻| 欧美少妇被猛烈插入视频| 久久久久国产网址| 免费日韩欧美在线观看| 欧美精品一区二区免费开放| 国产亚洲精品第一综合不卡 | 国产欧美亚洲国产| 人妻人人澡人人爽人人| 亚洲av中文av极速乱| 午夜精品国产一区二区电影| 啦啦啦在线观看免费高清www| 久久精品熟女亚洲av麻豆精品| 色视频在线一区二区三区| 九九在线视频观看精品| 亚洲精品成人av观看孕妇| 又大又黄又爽视频免费| 成年女人在线观看亚洲视频| 91在线精品国自产拍蜜月| 精品熟女少妇av免费看| 国产精品一二三区在线看| 国产一区二区在线观看av| 99久久精品一区二区三区| 校园人妻丝袜中文字幕| 久久人妻熟女aⅴ| 天堂俺去俺来也www色官网| 人人妻人人澡人人看| 日韩精品免费视频一区二区三区 | 午夜福利影视在线免费观看| 日产精品乱码卡一卡2卡三| 国产深夜福利视频在线观看| 亚洲欧洲日产国产| 岛国毛片在线播放| 欧美日韩av久久| 国产一区二区在线观看日韩| 精品一区二区三卡| av在线播放精品| 高清黄色对白视频在线免费看| 热re99久久精品国产66热6| 99久久中文字幕三级久久日本| 男女无遮挡免费网站观看| 激情五月婷婷亚洲| 人妻一区二区av| 高清av免费在线| 一二三四中文在线观看免费高清| 高清视频免费观看一区二区| 久久影院123| 久久av网站| 成人漫画全彩无遮挡| 18+在线观看网站| 一级二级三级毛片免费看| 国产成人一区二区在线| 久久精品国产自在天天线| 久久综合国产亚洲精品| 91精品三级在线观看| 黄色毛片三级朝国网站| 亚洲成色77777| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区免费观看| 天美传媒精品一区二区| 久久精品国产a三级三级三级| 免费观看a级毛片全部| 自线自在国产av| 精品国产一区二区久久| av黄色大香蕉| 亚州av有码| 免费人成在线观看视频色| 国产亚洲最大av| 99re6热这里在线精品视频| 亚洲精品久久午夜乱码| 成人免费观看视频高清| 性色avwww在线观看| 高清黄色对白视频在线免费看| 丝袜脚勾引网站| 最新的欧美精品一区二区| 国产精品久久久久久精品古装| 最新中文字幕久久久久| 中文字幕人妻熟人妻熟丝袜美| 中国三级夫妇交换| 黄色欧美视频在线观看| 激情五月婷婷亚洲| 99国产精品免费福利视频| 91精品国产国语对白视频| 99视频精品全部免费 在线| 在线 av 中文字幕| 视频在线观看一区二区三区| 日本黄色片子视频| 最黄视频免费看| av在线app专区| 中文精品一卡2卡3卡4更新| 日韩一区二区视频免费看| 免费观看性生交大片5| av网站免费在线观看视频| 99久久人妻综合| 黑人欧美特级aaaaaa片| 永久网站在线| 18禁观看日本| 国产亚洲最大av| 肉色欧美久久久久久久蜜桃| 国产精品蜜桃在线观看| 国产亚洲欧美精品永久| 国产精品一区二区在线观看99| 99热这里只有是精品在线观看| 五月玫瑰六月丁香| 岛国毛片在线播放| 99热6这里只有精品| 免费不卡的大黄色大毛片视频在线观看| 十八禁网站网址无遮挡| 日韩 亚洲 欧美在线| 我的女老师完整版在线观看| 久久精品国产亚洲av涩爱| 欧美精品亚洲一区二区| 一级毛片 在线播放| 久久精品国产亚洲av涩爱| 国产 精品1| www.色视频.com| 国产探花极品一区二区| 亚洲欧美一区二区三区国产| 色吧在线观看| www.av在线官网国产| 99热全是精品| 啦啦啦在线观看免费高清www| 成人亚洲精品一区在线观看| 国产精品国产三级国产专区5o| 亚洲av福利一区| 成人免费观看视频高清| 国产亚洲一区二区精品| 九色成人免费人妻av| 最近中文字幕2019免费版| 如何舔出高潮| 国产高清国产精品国产三级| 在线看a的网站| 伊人久久国产一区二区| 日本av手机在线免费观看| 天天躁夜夜躁狠狠久久av| 国产高清三级在线| 久久国产亚洲av麻豆专区| 18在线观看网站|