• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studies on the Interaction of Perfluorononanoic Acid with Human Serum Albumin by Multi-Spectroscopic,Molecular Docking and Isothermal Titration Calorimetry Techniques

    2016-06-05 14:58:29HUTaoyingHUANGFangZHOUShanshanLIUYing
    光譜學(xué)與光譜分析 2016年12期
    關(guān)鍵詞:全氟親和力等溫

    HU Tao-ying,HUANG Fang,ZHOU Shan-shan,LIU Ying,2*

    1. College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China 2. Beijing Engineering Research Center of Food Environment and Public Health,Minzu University of China,Beijing 100081,China

    Studies on the Interaction of Perfluorononanoic Acid with Human Serum Albumin by Multi-Spectroscopic,Molecular Docking and Isothermal Titration Calorimetry Techniques

    HU Tao-ying1,HUANG Fang1,ZHOU Shan-shan1,LIU Ying1,2*

    1. College of Life and Environmental Sciences,Minzu University of China,Beijing 100081,China 2. Beijing Engineering Research Center of Food Environment and Public Health,Minzu University of China,Beijing 100081,China

    Perfluorononanoic acid (PFNA) is the third most frequently detected in serum among all perfluoroalkyl acids (PFAAs) which is a kind of toxic emerging environmental contaminant. The influence of PFNA on the conformation and even function of human serum albumin (HSA) is still just at the beginning of research. The attempt of this paper was to completely elucidate the interaction mechanism of PFNA with HSA by means of multi-spectroscopic,molecular docking and isothermal titration calorimetry (ITC) techniques. The inner filter effect of all fluorescence data in the paper was eliminated to get accurate binding parameters. The results showed that the fluorescence of HSA was quenched by PFNA through a combined quenching procedure of dynamic and static quenching. Through site marker competitive experiments,subdomain IIA of HSA had been assigned to possess the high-affinity binding site of PFNA. Furthermore,molecular docking reconfirmed that PFNA was bound in subdomain IIA mainly through polar force,hydrophobic interaction and halogen-bond,and the calculated free energy was -26.54 kJ·mol-1which indicated that the PFNA molecule exhibited large binding affinity towards HSA. The thermodynamic characterizations of two different classes of binding sites by ITC displayed that the first class with a higher affinity constant was dominated by an enthalpic contribution due to electrostatic interactions and halogen-bond,whereas the second class with a lower affinity constant was preponderated by hydrophobic interaction. The three-dimensional fluorescence revealed that the conformation of HSA was changed and the hydrophobicity of the Trp and Tyr residues microenvironment increased after formation of PFNA-HSA complex. The alterations of the protein secondary structure were quantitatively calculated from circular dichroism (CD) spectroscopy with reduction ofα-helix content about 14.3%,β-sheet 5.3%,β-turn 3.5%,and augment in random content from 14.4% to 37.5%. Above results revealed that the binding of PFNA with HSA can alter the secondary structure of HSA,further probably affecting HSA physiological function. The results can provide insights with the binding mechanism of PFNA with HSA and salient biophysical and biochemical clues on elucidating the transport and distribution of PFNA in vivo.

    Perfluorononanoic acid; Human serum albumin; Multi-spectroscopic techniques; Molecular docking; Isothermal titration calorimetry

    Introduction

    Human serum albumin (HSA) is a well-known target because of its availability of hydrophobic pockets inside the network and flexibility to adapt its shape. Over recent decades,many researches have centered on the interaction of HSA with various small molecules,such as drugs,metals,dyes,environmental hormone,pesticide and fertilizer,etc.[1],which will alter the distribution,free concentration,metabolism and elimination of the small molecule and consequently affect the levels of its activity and toxicity in organism[2].

    Perfluorononanoic acid (PFNA,structure shown in Fig.1) is a representative of the synthetic perfluoroalkyl acids (PFAAs) which are composed of hydrophobic and hydrophilic functional group[3],and widespread used as surfactants in firefighting foams,food packaging,polymer additives and water- and stain-resistant coatings,which are one large class of the active ingredients receiving comparatively little attention but used in large amounts throughout the world[4]. Numerous reports have shown that PFNA was the third most frequently detected in serum after perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)[5]. In recent years,most interaction studies of PFAAs with proteins have been focused on the eight carbon atoms of PFOS and PFOA[6]. However,toxicological researchers demonstrated that compared with PFOS and PFOA,PFNA was more likely to accumulate and express reproductive toxicity,hepatotoxicity and immunotoxicity[7]in vivo. Thus,the binding of PFNA to HSA affected conformation,physiological function and activity of HSA,and hindered the transport of endogenous materials. By far,only few trials have been reported on the binding of PFNA proteins[8],and they were insufficient on the binding mechanism,such as lacking the specific information about binding sites,mainly driving force,changes for conformation and secondary structure of protein,which are of great importance for perfectly demonstrating the interaction mechanism of PFNA with proteins.

    In this paper,the binding mechanism and thermodynamic characterization of PFNA-HSA interactions at molecular level is elucidated by multi-spectroscopic,molecular docking and isothermal titration calorimetry (ITC) approaches.

    1 Experimental

    1.1 Materials

    PFNA (Shanghai Aijie Biological Technology Co.,Ltd.,China) was dissolved and diluted to 1.0×10-3mol·L-1with ultrapure water,2.0×10-5mol·L-1HSA (Sigma,USA) working solution was prepared. The stock solutions of phenylbutazone and ibuprofen were prepared to 1.0×10-3mol·L-1. Phosphate buffer solution and 1.0 mol·L-1NaCl solution were used. All reagents were of analytical reagent grade and ultrapure water was used throughout the experiment.

    1.2 Methods

    The methods and setting of parameters on fluorescence spectroscopy,UV-Vis spectroscopy,site marker competitive experiments,circular dichroism spectroscopy and molecular modeling are referred to literature [9].

    The steady state fluorescence anisotropy measurements were performed on an F-4500 spectrophotometer. The excitation wavelength was 295 nm in order to selectively excite the tryptophan residues of HSA,with slit widths of 5 nm for both excitation and emission. The steady-state anisotropy valuerwas defined as[10]:

    (1)

    Where,IVVandIVHare the intensities obtained with the excitation polarizer oriented vertically and the emission polarizer oriented in vertical and horizontal directions,respectively. TheGwas the correction factor for detector sensitivity to the polarization direction of the emission and defined as

    (2)

    Where,Irefers to the similar parameters as mentioned above for the horizontal position of the excitation polarizer.

    1.3 Isothermal titration calorimetry

    ITC of PFNA with HSA was performed using a Model Nano-ITC 2G biocalorimetry instrument (TA,USA) at 298 K. The direct analysis of ITC data curves for PFNA binding to HSA allowed the determination of binding stoichiometry (Ni) and enthalpy change (ΔHi) in theith class of binding site according to Eq.(3)[11]

    (3)

    whereQ(j) is the heat evolved afterjth injection,Mtthe total concentration of the protein,V0the active cell volume,andθithe fraction of sites occupied by PFNA. The heat released fromjth injection ΔQ(j) for an injection volumedVjis then given by the following equation[12]

    (4)

    Results were analyzed with either availability of one or two binding sites by NanoAnalyze v3.1.2 provided with the manufacturer.

    2 Results and discussions

    2.1 Steady state fluorescence

    Fig.1 showed the fluorescence emission spectra of HSA with various amounts of PFNA. The maximum intensity of HSA in absence of PFNA was observed at 351 nm with excitation at 280 nm,and further increasing in PFNA concentration caused a concentration dependent quenching of intrinsic fluorescence of HSA accompanied with a blue shift in the maxima from 351 to 347 nm. This suggested that there were interactions between PFNA and HSA,which was responsible for quenching the fluorescence of HSA.

    Fig.1 Fluorescence emission spectra of PFNA-HSA system,the inset is the structure of PFNA

    cHSA=2.0×10-6mol·L-1;cPFNA(×10-6mol·L-1)(1—7): 0,1.0,2.0,3.0,4.0,5.0,6.0; curve 8:cPFNA=1.0×10-6mol·L-1;T=298 K

    Fig.2 The Stern-Volmer plots for the PFNA-HSA system at different temperatures

    cPFNA(×10-6mol·L-1)(1—7): 0,1.0,2.0,3.0,4.0,5.0,6.0;cHSA=2.0×10-6mol·L-1

    2.2 Mechanisms of fluorescence quenching

    Stern-Volmer equation is used to explain the quenching mechanism[9]

    (5)

    WhereF0,F,Ksv,[Q] andτ0are seen literature [9],kqis the bimolecular quenching rate constant,and its maximum scattering collision quenching constant is 2.0×1010L·mol-1·s-1. The Stern-Volmer plots are shown in Fig.2,Ksvandkqat corresponding temperatures are listed in Table 1.

    Table 1 Stern-Volmer quenching constants for interaction of PFNA with HSA at different temperatures

    pHT/KKsv/(×104L·mol-1)kq/(×1012L·mol-1·s-1)R2988.078.070.99717.403038.438.430.997231010.1710.170.9982

    There was a good linear dependence betweenF0/Fand [Q]PFNA,Ksvvalues increased with increasing temperature,revealing the occurrence of dynamic quenching interaction between PFNA and HSA. Furthermore,the values ofkqwhich were all greater than the upper limit of 2.0×1010L·mol-1·s-1indicated that the static quenching may exist between them. Besides,the fluorescence spectra of HSA (Fig.1) not only decreased gradually with increasing PFNA but also obtained a blue shift (4 nm),manifesting a decrease in polarity of the microenvironment around the Trp residues after binding of PFNA with HSA. It was probably due to the growth of the compact structure of hydrophobic subdomain IIA where Trp-214 is placed. This phenomenon also reconfirmed that probable quenching mechanism of the intrinsic fluorescence of HSA was initiated by PFNA-HSA complex formation.

    Fluorescence anisotropy provides useful information on the changes in orientation of a small molecule upon binding with macromolecules. The anisotropy values (r) of PFNA (5.0×10-6mol·L-1) at three different HSA concentrations (0,1.0,5.0×10-6mol·L-1) were 0,0.103 and 0.126,respectively.rof a small molecule may vary from 0 (randomly oriented molecule) to 0.4 when there is no rotation or restricted motion of molecule. This augment in the anisotropy values with the addition of HSA deduced that a reduction of rotation freedom resulted from the complex formation between PFNA and HSA. In a word,the quenching mechanism of PFNA-HSA system should be a combined quenching process (including dynamic and static quenching)[13].

    2.3 Site marker competitive experiments

    Two site marker phenylbutazone (site Ⅰ in the subdomain ⅡA) and ibuprofen (site Ⅱ in the subdomain ⅢA) were used to identify bonding sites. The fluorescence of the complex was remarkably affected in presence of phenylbutazone,but remained invariant with ibuprofen. The result showed PFNA was to be bound to site Ⅰ in the subdomain ⅡA of HSA.

    2.4 Molecular docking

    In order to further determine the preferred binding sites of PFNA on HSA (PDB: 2BXN),molecular docking was carried out using AutoDock. The calculated free energy was -26.54 kJ·mol-1and the best energy ranked results are shown in Fig.3. The results showed that PFNA bound at subdomain ⅡA (site Ⅰ) [Fig.3(a)],which was consistent with the results observed in the site marker competitive experiments. PFNA molecule was surrounded by the hydrophobic chains and amino acid residues,such as Arg 218,Leu 219,Phe 223,Leu 260,Ala 261,Ile 264,Ser 287 and Val 293. Thus we can conclude that PFNA was able to fit well within the hydrophobic cavity of subdomain IIA. The docking result showed the existence of polar,hydrophobic interactions and halogen-bond between PFNA and HSA (Table 2). For example,O1 and O3 of PFNA interacted with Arg 222 through polar force. Hydrocarbon alkyl chains on Leu 219 and Ile 290 residues interacted with PFNA through hydrophobic interaction. Furthermore,it can be seen that there were four specific halogen-bonds of PFNA with Arg 257,Ser 287,Ile 290 and Ala 291 residues of HSA considering the distance between donor and acceptor atoms from 2.6 to 4.0,which played a crucial role in binding of PFNA to HSA.

    Fig.3 (a) The binding site of PFNA on HSA. HSA is shown in cartoon and PFNA is represented using spheres; (b) Enlarged binding mode between PFNA and HSA. HSA is shown in cartoon,the interacting side chains of HSA are displayed in surface mode and PFNA is represented using balls and sticks; (c) Molecular modeling of the interaction between PFNA and HSA. The atoms of PFNA are blue

    Table 2 The distances and driving forces between the PFNA atoms and the atoms of residues obtained by molecular docking

    2.5 Isothermal titration calorimetry measurement

    To explore the binding procedure and main driving force of PFNA to HSA,a representative calorimetric titration profile of PFNA with HSA is shown in Fig.4(a),the exothermicity and endothermicity of calorimetry peaks suggested that there were more than one binding process for PFNA-HSA interaction. Fig.4(b) shows the integrated heat profile after eliminating dilution heat of PFNA into buffer solution,the solid smooth line represents the best fit of experimental data using the standard nonlinear least-squares regression binding model which two classes of binding sites fitted well to calorimetric data. The thermodynamic parameters are the average of three independent experiments for the interaction of PFNA with HSA obtained from ITC (Table 3). From Table 3 can be seen that for the binding of PFNA to HSA,the number of second-class binding site (N2=9.95) on HSA molecules is higher than correspondingN1(3.33),whereas the second-class binding constant (Ka,2=4.58×104L·mol-1) is much smaller thanKa,1(22.71×104L·mol-1). Moreover,the binding events only occurred in subdomain IIA of HSA according to the results of site marker competitive experiments and molecular docking.

    Fig.4 (a) ITC titration profile of PFNA HSA binding; (b) Integrated heat profile of the calorimetric titration shown in panel A. The solid line represents the best nonlinear least-squares fit to the independent binding sites model

    Table 3 Binding constants and relative thermodynamic parameters of PFNA-HSA at 298 K

    As evident in Table 3,for the first binding site of this system,the both negative enthalpy (ΔH1) and entropy (ΔS1) changes indicated that this binding was an exothermic and entropy decreasing process. This can be explained by two factors: (1) the hydrated PFNA molecules should lose some water molecules when they approached to the binding sites and,simultaneously,the hydration layers on the surface of HSA molecules were partly destroyed. Both dehydration processes were endothermic and entropy increasing. (2) Directly electrostatic interaction of dipole groups of PFNA with peptide sections of HSA molecules,which caused exothermic effects and negative contribution to entropy. The experimentally negative enthalpy and entropy changes indicated that Factor (2) was evidently stronger than Factor (1) for this type of binding. Since seventeen electrophilic F-groups in PFNA can attract strongly the lone pair electrons of polar side groups of peptide chain,and partly PFNA molecules which were negatively charged under physiological condition interacted with the positively charged amino acids of HSA surface. Thus the strong electrostatic interactions gave rise to the strong negative values of enthalpic and entropic changes. Because the first class of binding was entropically opposed but enthalpically favored,the negative change of Gibbs free energy (ΔG1) was due to the contribution of heat effect and the process was mainly driven by enthalpy.

    The positive values of both ΔH2and ΔS2indicated that the second binding was an endothermic and entropy increasing process. This phenomenon can be explained by considering following reasons: firstly,when a PFNA molecule (partly) inserted itself into a hydrophobic cavity of HSA molecule formed by folding and twisting of peptide chain,the hydrophobic interaction between PFNA molecule and the cavity would cause a decrease in both the enthalpy and entropy. Secondly,the hydrophobic interaction led to some water molecules transferring into bulk solution from the hydrophobic cavity at the binding sites of HSA molecule,which was also exothermic but entropy increasing. Thirdly,accompanying the inserting of PFNA molecule into hydrophobic cavity,the original iceberg structure surrounding PFNA molecule was destroyed,which was endothermic and made a major positive contribution to the entropy. Because of the experimentally positive ΔH2and ΔS2,i.e.,entropy effect resulted in the negative change of Gibbs free energy (ΔG2),the second-class binding was entropy driven process. On the other hand,hydrophobic interaction between PFNA and HSA played a key role for this class of binding process as corroborated by the positive entropy changes (ΔS2) at complex formation.

    2.6 Three-dimensional fluorescence spectra

    Fig.5 Three-dimensional fluorescence spectra for HSA and PFNA HSA complexcHSA=2.0×10-6 mol·L-1,cPFNA=2.0×10-6 mol·L-1; T=298 K

    2.7 Circular dichroism spectra

    Further evidence of conformational changes of HSA upon addition of PFNA was confirmed by CD spectroscopy (Fig.6). It was apparently observed that the CD bands of HSA were at 209 and 222 nm. The binding of PFNA to HSA caused only a decrease in negative band intensity without any significant shift of the peaks which implied that HSA had predominantlyα-helix in nature even after binding to PFNA. The secondary structural contents of HSA were expressed in terms of mean residue ellipticity (MRE) according to literature [14],the calculated results exhibited that PFNA caused decrease inα-helical content of HSA from 55.6% in free HSA to 41.3% at a molar ratio of PFNA to HSA of 15∶1,β-sheet from 13.5% to 8.2%,β-turn from 16.5% to 13.0%,and increase in random content of HSA from 14.4% to 37.5%. From above results,it was apparent that the binding of PFNA to HSA led to a secondary structure change of HSA with the loss of helical stability.

    Fig.6 The CD spectra of HSA in the absence and presence of PFNA

    cHSA=2.0×10-6mol·L-1; molar ratiosnPFNA∶nHSAfrom 1 to 3: 0∶1,10∶1,15∶1

    3 Conclusions

    The results indicated that PFNA could quench the intrinsic fluorescence of HSA through static and dynamic quenching process. It was worthy noted that the binding site was located in the hydrophobic pocket of subdomain IIA according to the competitive binding experiment and molecular docking studies. Furthermore,molecular docking offered a molecular level explanation with the ability to estimate the participation of specific chemical groups and their interactions in complex stabilization. The ITC results showed that binding occurred at two different classes of binding sites. It also demonstrated that both electrostatic and hydrophobic interactions were presented in the formation of PFNA-HSA complex,the former being more important when PFNA bound to the first class of binding site,whereas hydrophobic forces were generally predominant in the second class of site,as seen from entropy increases. As further revealed by three-dimensional fluorescence and CD spectra,PFNA caused microenvironmental and conformational changes of HSA. Investigation of PFNA-HSA interaction has a great significance for thoroughly understanding the interaction process of PFNA-HSA,the relationship of structure and function of HSA,and the chemical essence of the interaction between biomacromolecule and ligand.

    [1] Yang B J,Hao F,Li J R,et al. Food Chem. Toxicol.、2014,65: 227.

    [2] Deng F Y,Dong C Y,Liu Y. Mol. Biosyst.、2012,8(5): 1446.

    [3] Brieger A,Bienefeld N,Hasan R,et al. Toxicol. in Vitro、2011,25(4): 960.

    [4] Christian G D,Thomas A T. Environ. Health Persp.、1999,107: 907.

    [5] K?rrman A,Harada K H,Inoue K,et al. Environ. Int.、2009,35(4): 712.

    [6] Qin P F,Liu R T,Pan X R,et al. J. Agric. Food Chem.、2010,58(9): 5561.

    [7] Ohmori K,Kudo N,Katayama K,et al. Toxicology、2003,84(2-3): 135.

    [8] MacManus-Spencer L A,Tse M L,Hebert P C,et al. Anal. Chem.、2010,82(3): 974.

    [9] Hu T Y,Liu Y. J. Pharm. Biomed. Anal.、2015,107: 325.

    [10] Molina-Bolívar J A,Galisteo-González F,Ruiz C C,et al. J. Lumin.、2014,56: 141.

    [11] Sun X J,Xu X Y,Liu M,et al. J. Solution Chem.、2010,39(1): 77.

    [12] Cheema M A,Taboada P,Barbosa S,et al. J. Chem. Thermodyn.、2009,41(4): 439.

    [13] Li J H,Wang S M. J. Chem. Thermodyn.、2013,58: 206.

    [14] Matei I,Hillebrand M. J. Pharm. Biomed. Anal.、2010,51(3): 768.

    *通訊聯(lián)系人

    O657.3

    A

    光譜法聯(lián)合分子對接和等溫滴定微量熱法研究全氟壬酸與人血清白蛋白的相互作用

    胡濤英1、黃 芳1、周珊珊1,2、劉 穎1,2*

    1. 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院、北京 100081 2. 中央民族大學(xué)北京市食品環(huán)境與健康工程技術(shù)研究中心、北京 100081

    全氟壬酸(PFNA)是在血清中檢測到第三多的全氟烷酸類(PFAAs)新型有毒環(huán)境污染物。目前PFNA對人血清白蛋白(HSA)結(jié)構(gòu)甚至是功能的影響還處于起步階段、借助于多光譜、分子對接和等溫滴定微量熱(ITC)技術(shù)研究了PFNA和HSA相互作用的結(jié)合機理。所有熒光數(shù)據(jù)均進行了內(nèi)濾光校正以獲得更準確的結(jié)合參數(shù)。熒光結(jié)果表明PFNA通過動靜態(tài)猝滅方式可以猝滅HSA的內(nèi)源熒光。取代實驗和分子對接結(jié)果表明、PFNA主要通過極性鍵、疏水力和鹵素鍵鍵合在HSA亞域ⅡA疏水腔中、最佳對接自由能為-26.54 kJ·mol-1、表明PFNA分子與HSA有較大的結(jié)合親和力。ITC表明兩者的結(jié)合屬于兩類結(jié)合位點模型并給出了相應(yīng)的熱力學(xué)參數(shù):第一類結(jié)合位點有較大的親和力、屬于焓驅(qū)動、靜電力和鹵鍵作為主要驅(qū)動力; 第二類結(jié)合位點親和力較小、主要驅(qū)動力是疏水力。三維熒光光譜揭示PFNA與HSA生成復(fù)合物后、可以改變HSA的構(gòu)象、引起Trp和Tyr殘基微環(huán)境疏水性增強。圓二色譜(CD)定量測定了HSA與PFNA作用前后的二級結(jié)構(gòu)含量:α-螺旋、β-折疊和β-轉(zhuǎn)角含量分別降低14.3%、5.3%和3.5%、無規(guī)卷曲含量從14.4%增加到37.5%。以上結(jié)果表明、PFNA與HSA的結(jié)合可以改變HSA的二級結(jié)構(gòu)、進而可能影響HSA的生理功能。結(jié)果闡述了PFNA與HSA相互作用機理、并且為PFNA在體內(nèi)的運輸和分配提供了可靠的生物物理和生物化學(xué)的相關(guān)依據(jù)。

    全氟壬酸; 人血清白蛋白; 光譜法; 分子對接; 等溫滴定微量熱法

    2015-06-08、

    2015-10-29)

    2015-06-08; accepted:2015-10-29

    The National Natural Science Foundation of China (21177163),111 Project B08044,Special Guidance Fund of Building World First-class Universities (Disciplines) and Characteristic Development of Minzu University of China (2016,ydzxxk201619),Coordinate Development of First-Class and First-Class University Discipline Construction Funds (10301-0150200604),The Academic Team Construction Project of Minzu University of China (2015MDTD25C&13C),First-class Universities and First-class Discipline Construction Transitional Funds Under Special Funding (10301-01404031,2015),2015MDTD08C

    10.3964/j.issn.1000-0593(2016)12-4141-07

    Biography:HU Tao-ying,(1989—),Master of College of Life and Environmental Science,Minzu University of China e-mail: hty0945020@163.com *Corresponding author e-mail: liuying4300@163.com

    猜你喜歡
    全氟親和力等溫
    全氟烷基化合物暴露與成年人抑郁癥間的關(guān)系:基于NHANES 2005~2018
    EPDM/PP基TPV非等溫結(jié)晶行為的研究
    高端訪談節(jié)目如何提升親和力
    新聞傳播(2018年11期)2018-08-29 08:15:30
    高端訪談節(jié)目如何提升親和力探索
    新聞傳播(2018年13期)2018-08-29 01:06:52
    親和力在播音主持中的作用探究
    新聞傳播(2016年9期)2016-09-26 12:20:34
    1種制備全氟聚醚羧酸的方法
    1種制備全氟烯醚磺酰氟化合物的方法
    快速檢測豬鏈球菌的環(huán)介導(dǎo)等溫擴增方法
    納米CaCO3對FEP非等溫結(jié)晶動力學(xué)的影響
    中國塑料(2015年3期)2015-11-27 03:41:54
    將親和力應(yīng)用于播音主持中的方法探討
    新聞傳播(2015年7期)2015-07-18 11:09:57
    www.精华液| 亚洲精品在线美女| 精品久久久久久久久久免费视频| 老鸭窝网址在线观看| 琪琪午夜伦伦电影理论片6080| 久久精品夜夜夜夜夜久久蜜豆| 久久久国产欧美日韩av| 亚洲欧美日韩东京热| 啦啦啦观看免费观看视频高清| www.精华液| 黄色片一级片一级黄色片| 男女视频在线观看网站免费| 午夜亚洲福利在线播放| 黄色女人牲交| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久九九精品二区国产| 不卡一级毛片| 一本综合久久免费| 国产高清videossex| 高清在线国产一区| 最近最新免费中文字幕在线| 噜噜噜噜噜久久久久久91| 日韩欧美精品v在线| 亚洲中文字幕日韩| 欧美日本视频| 午夜精品一区二区三区免费看| 中文在线观看免费www的网站| 国产久久久一区二区三区| 三级国产精品欧美在线观看 | 午夜福利高清视频| 99国产精品一区二区三区| 国产1区2区3区精品| 国产综合懂色| 91麻豆av在线| 在线看三级毛片| 亚洲色图 男人天堂 中文字幕| 69av精品久久久久久| 国产亚洲欧美在线一区二区| 久久久久久久久久黄片| 草草在线视频免费看| 无遮挡黄片免费观看| 伊人久久大香线蕉亚洲五| 午夜福利在线在线| 大型黄色视频在线免费观看| 亚洲专区国产一区二区| 久久午夜综合久久蜜桃| 男人和女人高潮做爰伦理| 亚洲精品色激情综合| 1000部很黄的大片| 亚洲精品一卡2卡三卡4卡5卡| 变态另类成人亚洲欧美熟女| 三级国产精品欧美在线观看 | 天天躁日日操中文字幕| 亚洲黑人精品在线| 国产精品久久久久久人妻精品电影| 国产成人福利小说| 中文字幕人妻丝袜一区二区| 中文字幕人成人乱码亚洲影| 久久久久久人人人人人| 女同久久另类99精品国产91| 又紧又爽又黄一区二区| 欧美高清成人免费视频www| 日韩大尺度精品在线看网址| 一本精品99久久精品77| 精品久久久久久久久久久久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧洲精品一区二区精品久久久| 国产综合懂色| 亚洲欧美日韩高清在线视频| 看黄色毛片网站| 成人高潮视频无遮挡免费网站| 黄色日韩在线| 我的老师免费观看完整版| 好男人电影高清在线观看| 午夜影院日韩av| 黄色女人牲交| 久久香蕉国产精品| 男女之事视频高清在线观看| 桃红色精品国产亚洲av| 精品无人区乱码1区二区| 午夜激情福利司机影院| 欧美中文综合在线视频| 久久午夜综合久久蜜桃| 一区二区三区国产精品乱码| 黑人操中国人逼视频| 亚洲欧美日韩东京热| 熟女电影av网| 国内少妇人妻偷人精品xxx网站 | 精品一区二区三区视频在线 | 欧美3d第一页| 欧美另类亚洲清纯唯美| 热99re8久久精品国产| 后天国语完整版免费观看| 老鸭窝网址在线观看| 观看美女的网站| 99国产综合亚洲精品| 九色成人免费人妻av| 草草在线视频免费看| 国产精品免费一区二区三区在线| 国产精品久久久久久精品电影| 黄片小视频在线播放| 神马国产精品三级电影在线观看| 精品国产亚洲在线| 老司机在亚洲福利影院| 熟妇人妻久久中文字幕3abv| 窝窝影院91人妻| 国产aⅴ精品一区二区三区波| 亚洲欧美精品综合久久99| bbb黄色大片| 1024手机看黄色片| 亚洲人成伊人成综合网2020| 熟女人妻精品中文字幕| 可以在线观看的亚洲视频| 亚洲成人久久爱视频| 国产麻豆成人av免费视频| 可以在线观看的亚洲视频| 一本一本综合久久| 亚洲成av人片免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品成人综合色| 俄罗斯特黄特色一大片| 综合色av麻豆| 亚洲av日韩精品久久久久久密| 国产91精品成人一区二区三区| 国产精品免费一区二区三区在线| 男女午夜视频在线观看| 国产乱人视频| 色哟哟哟哟哟哟| 麻豆久久精品国产亚洲av| 日本黄色视频三级网站网址| 黑人巨大精品欧美一区二区mp4| 婷婷精品国产亚洲av| 国语自产精品视频在线第100页| 少妇熟女aⅴ在线视频| 国产伦一二天堂av在线观看| 欧美日本视频| 好看av亚洲va欧美ⅴa在| netflix在线观看网站| 欧美激情久久久久久爽电影| 欧美绝顶高潮抽搐喷水| 成人永久免费在线观看视频| 无限看片的www在线观看| 国产亚洲精品一区二区www| 国产精品99久久久久久久久| 搡老熟女国产l中国老女人| 国产伦一二天堂av在线观看| 欧美激情久久久久久爽电影| 全区人妻精品视频| 91字幕亚洲| 日本免费一区二区三区高清不卡| 999久久久国产精品视频| 村上凉子中文字幕在线| av国产免费在线观看| 国产真人三级小视频在线观看| 国产高清激情床上av| 国产精品九九99| 91av网站免费观看| 在线观看美女被高潮喷水网站 | 亚洲国产欧美一区二区综合| 国产成人精品无人区| www.www免费av| 中文字幕精品亚洲无线码一区| aaaaa片日本免费| 99久久成人亚洲精品观看| 看黄色毛片网站| 欧美绝顶高潮抽搐喷水| 亚洲av五月六月丁香网| 国产精品98久久久久久宅男小说| 人妻夜夜爽99麻豆av| 国产精品久久久久久久电影 | 欧美激情久久久久久爽电影| 人妻夜夜爽99麻豆av| 国产一区在线观看成人免费| 97超视频在线观看视频| 免费大片18禁| 最近最新中文字幕大全免费视频| 黄频高清免费视频| 国产伦人伦偷精品视频| 日韩av在线大香蕉| 国产精品久久久久久人妻精品电影| 这个男人来自地球电影免费观看| 亚洲色图 男人天堂 中文字幕| 桃色一区二区三区在线观看| 校园春色视频在线观看| 久久国产精品人妻蜜桃| 看黄色毛片网站| 国产毛片a区久久久久| 中文亚洲av片在线观看爽| 久久欧美精品欧美久久欧美| 少妇人妻一区二区三区视频| 99久久精品热视频| 老汉色av国产亚洲站长工具| 欧美性猛交╳xxx乱大交人| 91av网站免费观看| 18美女黄网站色大片免费观看| 禁无遮挡网站| aaaaa片日本免费| 午夜成年电影在线免费观看| 一级毛片精品| 国产精品一区二区三区四区免费观看 | 国产不卡一卡二| 成在线人永久免费视频| 精品一区二区三区视频在线 | 亚洲在线观看片| 女同久久另类99精品国产91| www日本黄色视频网| 色吧在线观看| 香蕉丝袜av| 午夜精品久久久久久毛片777| 法律面前人人平等表现在哪些方面| 韩国av一区二区三区四区| 亚洲精品在线美女| 亚洲美女视频黄频| 日韩欧美免费精品| 无人区码免费观看不卡| 久久久久久久久免费视频了| 国产乱人伦免费视频| 在线视频色国产色| 国产精品自产拍在线观看55亚洲| 久久久国产成人免费| 观看免费一级毛片| av天堂中文字幕网| 精华霜和精华液先用哪个| 最近视频中文字幕2019在线8| 亚洲精品在线美女| 啦啦啦免费观看视频1| 色综合亚洲欧美另类图片| av视频在线观看入口| 亚洲欧美激情综合另类| 成人欧美大片| 不卡一级毛片| 色吧在线观看| 精品久久久久久久末码| 校园春色视频在线观看| 国产精品99久久久久久久久| av天堂在线播放| 女生性感内裤真人,穿戴方法视频| 日本一二三区视频观看| 高清在线国产一区| 欧美日韩精品网址| 99re在线观看精品视频| 叶爱在线成人免费视频播放| 午夜激情福利司机影院| 一区二区三区国产精品乱码| 亚洲美女黄片视频| 久久亚洲真实| 日本三级黄在线观看| 成人高潮视频无遮挡免费网站| 精品人妻1区二区| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全电影3| av天堂中文字幕网| 九九久久精品国产亚洲av麻豆 | 欧美另类亚洲清纯唯美| 超碰成人久久| 久久久国产欧美日韩av| 偷拍熟女少妇极品色| 亚洲成a人片在线一区二区| 9191精品国产免费久久| 日韩人妻高清精品专区| 19禁男女啪啪无遮挡网站| 成人av在线播放网站| 成人一区二区视频在线观看| 我的老师免费观看完整版| 天堂动漫精品| 精品一区二区三区视频在线 | 天堂av国产一区二区熟女人妻| 国产高清视频在线播放一区| 亚洲国产欧洲综合997久久,| 男人和女人高潮做爰伦理| 亚洲欧美日韩高清在线视频| 国产一区二区三区视频了| 男女床上黄色一级片免费看| www.www免费av| av黄色大香蕉| 亚洲专区国产一区二区| 99久久精品热视频| 久久久久国内视频| 国产高清videossex| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| 亚洲色图 男人天堂 中文字幕| 啦啦啦观看免费观看视频高清| 不卡一级毛片| 长腿黑丝高跟| 日韩有码中文字幕| 一级毛片精品| www.自偷自拍.com| 露出奶头的视频| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品一区二区www| 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 中出人妻视频一区二区| 757午夜福利合集在线观看| 少妇丰满av| 午夜福利在线观看吧| 最新美女视频免费是黄的| 亚洲熟女毛片儿| 五月玫瑰六月丁香| 精品熟女少妇八av免费久了| 丁香六月欧美| 午夜免费成人在线视频| 国产精品女同一区二区软件 | 看免费av毛片| 又粗又爽又猛毛片免费看| 听说在线观看完整版免费高清| 两人在一起打扑克的视频| 特级一级黄色大片| 在线观看一区二区三区| 天天躁日日操中文字幕| 久久国产精品人妻蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 久久中文字幕一级| 精品久久久久久久久久久久久| 欧美一区二区精品小视频在线| 天天添夜夜摸| 美女cb高潮喷水在线观看 | 日韩欧美 国产精品| 国产一区二区在线观看日韩 | 久久国产精品影院| 久久久久亚洲av毛片大全| 国产私拍福利视频在线观看| 成在线人永久免费视频| 毛片女人毛片| 91麻豆av在线| 麻豆一二三区av精品| 一级黄色大片毛片| 女人高潮潮喷娇喘18禁视频| 亚洲精品粉嫩美女一区| 又大又爽又粗| 亚洲国产中文字幕在线视频| www日本在线高清视频| 亚洲自拍偷在线| 免费看美女性在线毛片视频| 三级毛片av免费| 麻豆一二三区av精品| 久久久久久人人人人人| 国产欧美日韩精品亚洲av| 香蕉国产在线看| 国产高清三级在线| 成人特级黄色片久久久久久久| 草草在线视频免费看| 一个人观看的视频www高清免费观看 | 久久精品夜夜夜夜夜久久蜜豆| 国产黄色小视频在线观看| 欧美色欧美亚洲另类二区| 色综合婷婷激情| 国产三级中文精品| 亚洲无线在线观看| 非洲黑人性xxxx精品又粗又长| 一级毛片精品| 国产乱人视频| 成人特级av手机在线观看| 99精品久久久久人妻精品| 久久久精品大字幕| 身体一侧抽搐| 九色成人免费人妻av| 精品熟女少妇八av免费久了| 美女被艹到高潮喷水动态| 国内少妇人妻偷人精品xxx网站 | 两个人看的免费小视频| 国产精品亚洲一级av第二区| 国产91精品成人一区二区三区| 又大又爽又粗| 观看免费一级毛片| 动漫黄色视频在线观看| 国产精品一区二区三区四区久久| 欧美乱妇无乱码| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 国产午夜精品久久久久久| 国产成人av教育| 国产熟女xx| 亚洲成人中文字幕在线播放| 欧美激情在线99| 日本在线视频免费播放| 99视频精品全部免费 在线 | 国内久久婷婷六月综合欲色啪| 在线a可以看的网站| 精品乱码久久久久久99久播| 欧美成狂野欧美在线观看| 亚洲 欧美一区二区三区| 亚洲 国产 在线| 亚洲狠狠婷婷综合久久图片| 性欧美人与动物交配| 成人国产综合亚洲| 国产精品久久久久久精品电影| 嫁个100分男人电影在线观看| 午夜精品一区二区三区免费看| 国产精品综合久久久久久久免费| 久久久久久国产a免费观看| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 国产成人系列免费观看| 啪啪无遮挡十八禁网站| 观看免费一级毛片| 国产精品综合久久久久久久免费| 一个人免费在线观看的高清视频| 国产97色在线日韩免费| 国产毛片a区久久久久| 免费av毛片视频| 国产欧美日韩一区二区精品| 久久久久国产精品人妻aⅴ院| 啦啦啦免费观看视频1| 久久亚洲真实| 亚洲在线自拍视频| 久久久久亚洲av毛片大全| 91在线精品国自产拍蜜月 | 天堂影院成人在线观看| 两个人的视频大全免费| 俄罗斯特黄特色一大片| 国产成人啪精品午夜网站| 不卡一级毛片| 极品教师在线免费播放| 亚洲精品乱码久久久v下载方式 | 色哟哟哟哟哟哟| 黄色视频,在线免费观看| 蜜桃久久精品国产亚洲av| 999久久久精品免费观看国产| 久久久国产精品麻豆| 精品久久蜜臀av无| 国产精品久久久久久久电影 | 最近视频中文字幕2019在线8| 一卡2卡三卡四卡精品乱码亚洲| 欧美三级亚洲精品| 中文字幕熟女人妻在线| 国产精品久久电影中文字幕| 国内精品美女久久久久久| 国产精品av久久久久免费| 日本在线视频免费播放| 久久久久久九九精品二区国产| 91av网站免费观看| 中文字幕最新亚洲高清| 成人国产一区最新在线观看| 日韩av在线大香蕉| 脱女人内裤的视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美一级毛片孕妇| 男人舔奶头视频| 日韩有码中文字幕| 麻豆成人av在线观看| 亚洲熟妇中文字幕五十中出| 久久久久性生活片| 国产乱人伦免费视频| 一二三四社区在线视频社区8| xxxwww97欧美| 亚洲精品一卡2卡三卡4卡5卡| 搡老妇女老女人老熟妇| 国产av一区在线观看免费| 身体一侧抽搐| 欧美日韩乱码在线| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 久久天躁狠狠躁夜夜2o2o| 91老司机精品| 人人妻,人人澡人人爽秒播| 制服丝袜大香蕉在线| 国产精品 欧美亚洲| 身体一侧抽搐| 国产精品精品国产色婷婷| 校园春色视频在线观看| 一区二区三区激情视频| 床上黄色一级片| 热99在线观看视频| 日本黄色片子视频| 小说图片视频综合网站| 国产欧美日韩精品亚洲av| 久久久久性生活片| 国产一区二区三区视频了| 国产成人精品无人区| 亚洲无线观看免费| 99精品欧美一区二区三区四区| 亚洲av电影不卡..在线观看| 亚洲 国产 在线| 母亲3免费完整高清在线观看| 久久久久久久久中文| 久久天堂一区二区三区四区| 99热6这里只有精品| 亚洲熟女毛片儿| 亚洲七黄色美女视频| 成人一区二区视频在线观看| 热99在线观看视频| 日本撒尿小便嘘嘘汇集6| 欧美三级亚洲精品| 亚洲av第一区精品v没综合| 可以在线观看毛片的网站| 99久久精品热视频| 首页视频小说图片口味搜索| 人妻夜夜爽99麻豆av| 嫩草影院入口| 好看av亚洲va欧美ⅴa在| 免费高清视频大片| svipshipincom国产片| 亚洲美女黄片视频| 别揉我奶头~嗯~啊~动态视频| 成年版毛片免费区| 天天添夜夜摸| 欧美最黄视频在线播放免费| 在线永久观看黄色视频| 免费看日本二区| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 两性夫妻黄色片| 国产精品乱码一区二三区的特点| 中文字幕人妻丝袜一区二区| 成年女人毛片免费观看观看9| 不卡一级毛片| 久久久久久久精品吃奶| 天堂av国产一区二区熟女人妻| 国产主播在线观看一区二区| 狂野欧美白嫩少妇大欣赏| 一二三四在线观看免费中文在| 一个人免费在线观看的高清视频| 欧美国产日韩亚洲一区| 国产av在哪里看| 久99久视频精品免费| 亚洲美女视频黄频| 成年免费大片在线观看| 国产一级毛片七仙女欲春2| 久久亚洲真实| 免费看光身美女| av在线天堂中文字幕| 可以在线观看毛片的网站| 在线免费观看的www视频| svipshipincom国产片| 亚洲成人中文字幕在线播放| aaaaa片日本免费| 精品电影一区二区在线| tocl精华| 日本黄色视频三级网站网址| 亚洲精华国产精华精| www日本在线高清视频| 偷拍熟女少妇极品色| 少妇的逼水好多| 亚洲精品粉嫩美女一区| 亚洲av成人精品一区久久| 一进一出好大好爽视频| 亚洲国产中文字幕在线视频| 搡老岳熟女国产| 国产69精品久久久久777片 | 美女cb高潮喷水在线观看 | 亚洲国产精品成人综合色| 国产免费男女视频| 俄罗斯特黄特色一大片| 色综合婷婷激情| 欧美一区二区国产精品久久精品| 精品一区二区三区av网在线观看| 久久婷婷人人爽人人干人人爱| 欧美极品一区二区三区四区| 一级a爱片免费观看的视频| 亚洲成a人片在线一区二区| 日韩欧美国产一区二区入口| 别揉我奶头~嗯~啊~动态视频| 免费在线观看视频国产中文字幕亚洲| 美女黄网站色视频| 一本精品99久久精品77| 久久久国产欧美日韩av| 男人的好看免费观看在线视频| 免费无遮挡裸体视频| 91久久精品国产一区二区成人 | 亚洲国产中文字幕在线视频| 亚洲国产看品久久| 校园春色视频在线观看| 男人舔女人下体高潮全视频| 校园春色视频在线观看| 日韩 欧美 亚洲 中文字幕| 老司机福利观看| 最新中文字幕久久久久 | 欧美激情久久久久久爽电影| 国产高清有码在线观看视频| 欧美精品啪啪一区二区三区| 亚洲欧美日韩卡通动漫| 欧美激情久久久久久爽电影| 91久久精品国产一区二区成人 | 伦理电影免费视频| 1024香蕉在线观看| 久久热在线av| 九色成人免费人妻av| 中文字幕av在线有码专区| 性色av乱码一区二区三区2| 在线观看一区二区三区| 国产麻豆成人av免费视频| 国产三级中文精品| aaaaa片日本免费| 女人高潮潮喷娇喘18禁视频| 中文字幕精品亚洲无线码一区| 97碰自拍视频| 久久久久性生活片| 国产三级在线视频| 国产成人欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷丁香在线五月| 日本 av在线| 天堂影院成人在线观看| 亚洲国产欧洲综合997久久,| 啦啦啦观看免费观看视频高清| 久久久水蜜桃国产精品网| 国产激情偷乱视频一区二区| 成人特级av手机在线观看| 国产亚洲精品av在线| 少妇裸体淫交视频免费看高清| 老司机深夜福利视频在线观看| 国产伦人伦偷精品视频| 国产毛片a区久久久久| 中亚洲国语对白在线视频| 午夜两性在线视频| 精品欧美国产一区二区三| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 两个人的视频大全免费| 国产麻豆成人av免费视频|