• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of synthesis parameters on the properties of LiFePO4/C cathode material☆

    2016-06-01 02:49:20ZhengweiXiaoYingjieZhangGuorongHu

    Zhengwei Xiao ,Yingjie Zhang ,*,Guorong Hu

    1 Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China

    2 School of Metallurgy and Environment,Central South University,Changsha 410083,China

    1.Introduction

    The issues of energy crisis and pollution are formidable to mankind and a sustainable development needs green energy supply.The burning of fossil fuels for heat and electricity generation has long seriously contributed to the rise in CO2concentration in atmosphere,resulting in drastic climate changes worldwide.At present,electric vehicles are regarded as the solution to CO2emission reduction through higher energy efficiency by making use of regenerative braking[1].However,this reduction is limited by the present electrical energy supply nearly 70%of which is generated by burning fossil fuels[2].Thus,the adoption of electric vehicles in cities to a certain degree can only transfer urban pollution to places where electricity is generated[3].The introduction of a green grid is the ultimate solution,but the solar and wind power is unstable due to weather changes and as a result causes fluctuations on the grid.Therefore,the increase in percentage of renewable power on the grid depends on the successful large-scale stationary storage of electrical energy[4].

    The lithium ion cell outperforms other battery systems,such as leadacid,Ni-Cd and Ni-MH,in many aspects,for example,cell voltage,gravimetric and volumetric energy density/power,cycle life and so on[5].Among the cathode materials for lithium ion cells,olivine-structured LiFePO4holds the desirable merits of abundant raw materials,nontoxicity,high thermal stability,suitable voltage of 3.45 V(vsLi+/Li)and theoretical capacity of 170 mA·h·g-1[6-8].It meets both demands of high energy density and environmental friendliness and is an adequate cathode for power battery and stationary storage of electrical energy generated by renewable power[9].The worst drawback of the cathode is its intrinsic low electronic conductivity and a viable solution is the application of LiFePO4/C composite[10].

    The adoption of Fe2+source FeC2O4·2H2O for LiFePO4/C synthesisviasolid state reaction possesses advantageous attributes of simple procedure and product with good electrochemical performance,which is in particular suitable for mass production of the cathode material[11].But FeC2O4·2H2O,along with FePO4·2H2O and Fe3(PO4)2·8H2O,contains crystal water,which tends to be lost and brings about the need of chemical analysis for stoichiometric use in LiFePO4/C preparation.In addition,the oxidation of Fe2+in FeC2O4·2H2O and Fe3(PO4)2·8H2O results in the same issue.Fe2O3is chemically stable,consists of no crystallized water and is an ideal iron source for producing LiFePO4/C.The ferric iron in Fe2O3must be reduced in LiFePO4formation,which is generally realized by use of carbon or carbon-containing reductants[12].In the study,Fe2O3,NH4H2PO4,Li2CO3and glucose(C6H12O6·H2O)are applied to LiFePO4/C synthesis and effects of synthesis parameters on the properties of LiFePO4/C are investigated.The interesting results of low sintering temperature favoring carbon maintenance in LiFePO4/C and ball-milling dispersive agent affecting the properties of LiFePO4/C are for the first time reported by the work.

    2.Experimental

    Stoichiometric Fe2O3,NH4H2PO4and Li2CO3and certain amount of glucose were mixed and ball-milled for 4 h in a dispersive agent to ensure homogenous mixing.The pulp was dried at 80°C overnight to vaporize volatile components.The dried mixture was pressed in a crucible and sintered for15 h in an argon atmosphere.Changes in sintering temperature,carbon content and dispersive agent were carried out for LiFePO4/C synthesis.Carbon content of LiFePO4/C was determined by dissolving LiFePO4/C in hydrochloric acid to collect insoluble carbon for calculating the mass percentage of dried carbon in LiFePO4/C.

    X-ray powder diffractions(XRD)of sintered products were performed on a Philips X-pert powder diffractometer using Cu Kαradiation.The morphology of samples was characterized using scanning electron microscopy(SEM)on a JSM-5600LV,JEOL.

    Button cells of 2025 type based on LiFePO4/C cathode were assembled in a glovebox.The charge-discharge process was realized galvanostatically on a LAND BTI-40 in 2.5-4.1 V.Electrolyte was 1 mol·L-1LiPF6dissolved in a mixed solvent of ethylene carbonate(EC),dimethyl carbonate(DMC)and ethylmethyl carbonate(EMC)with volume ratio of 1:1:1.Lithium disc was used as the anode electrode,and membrane was microporous polypropylene Celgard 2400.The cathode electrode consisted of LiFePO4/C,PVdF binder and acetylene black with mass ratio of 8:1:1.N-methyl pyrrolidinone was used as the organic solvent ground along with the three cathode ingredients to dissolve PVdF binder,and the obtained slurry was evenly spread on an Al foil current collector.The wet cathode electrode was dried under vacuum at 120°C overnight.Cathode discs with an area of 0.785 cm2and LiFePO4/C load of 2 mg each were punched for cell assembly.

    3.Results and Discussion

    Fig.1.XRD patterns of products sintered at different temperatures.Δ—Fe2O3,*—Li3PO4,□—Li3Fe2(PO4)3,○—Fe2P.

    Fig.1 indicates that LiFePO4starts crystallizing even below 300°C.Fe2O3,NH4H2PO4,Li2CO3and glucose can be completely converted into LiFePO4/C at 500°C below which the main impurities in the sintered products are Fe2O3,Li3PO4and Li3Fe2(PO4)3.In particular at 300°C,Li3Fe2(PO4)3is detected,which is similar to the work by Ravet and co-workers.in which FePO4·2H2O instead of Fe2O3and NH4H2PO4was used as the Fe and PO4sources[13].For convenience,the samples obtained at 500 °C,600 °C,700 °C and 800 °C are designated as LiFePO4/C500,LiFePO4/C600,LiFePO4/C700and LiFePO4/C800,respectively.Both LiFePO4/C500and LiFePO4/C600exhibita diffraction pattern indexed to an orthorhombic crystal structure,space group Pnma.A high degree of crystallinity for LiFePO4synthesized at 600°C is proved by the sharp and perfect characteristic peaks in its XRD pattern.No impurity phases consisting of lithium,iron,and/or phosphorus are detected,suggesting a high purity for the samples prepared at both 500 °C and 600 °C.Thus,a temperature above 500°C is high enough for complete crystallization of LiFePO4.No characteristic diffraction peaks for crystalline carbon are revealed,indicating the amorphous form of the conductive reagent derived from the anaerobic pyrolysis of C6H12O6·H2O.

    With the elevation of sintering temperature in the range of 300-1000°C,the degree of crystallinity of LiFePO4increases,which is reflected in the smaller full width at half maximum(FWHM)of higher(311)peak of XRD pattern for LiFePO4obtained at a higher temperature.Meanwhile,a smaller FWHM endows a bigger crystallite size in accordance with the Scherrer equation.Thus,the elevation of temperature gives rise to the growth ofLiFePO4crystallites which tend to agglomerate harder.The samples sintered at 700 °C and 800 °C consist of Fe2P phase,as shown in Fig.1,and a higher temperature leads to a higher Fe2P content.As there is no Fe2P present in the samples obtained at 500°C and 600 °C,the phosphide formed above 600 °C must have been from Fe2+in LiFePO4instead of Fe3+[14]in the presence of carbon and PO4

    In this way,carbon is consumed on Fe2P formation.This can partially explain the carbon content reduction trend of 14.15%,11.03%and 6.95%for LiFePO4/C formed at 600 °C,700 °C and 800 °C,respectively.However,other reasons to be revealed should be responsible for the carbon content difference between LiFePO4/C500(17.33%)and LiFePO4/C600.The presence ofFe2P has been proved to contribute to the improvement on the electrochemical performance of LiFePO4due to its high electrical conductivity[15,16].In the case of LiFePO4/Fe2P composite,Fe2P forms conductive connections between LiFePO4particles,exhibiting a similar behavior to the conductive carbon in LiFePO4/C composite.

    Fig.2 indicates that sintering temperature exerts great influence on the morphology of LiFePO4/C,and the change is reflected mainly in two aspects,existence state of carbon and LiFePO4particle size.As indicated in Fig.2,as the sintering temperature increases in the range of 600-800°C the residual carbon in LiFePO4/C decreases.Accumulative amorphous carbon is seen in the SEM image of LiFePO4/C600,but the conductive carbon is only observed to form connections between LiFePO4particles in the samples prepared at 700 °C and 800 °C.

    Fig.2.SEM images of LiFePO4/C synthesized at 800 °C(a1 and a2),700 °C(b1 and b2)and 600 °C(c1 and c2)(arrows showing amorphous carbon).

    LiFePO4particle size increases significantly as the sintering temperature increases in the range of 600-800°C,which can be imputable to two principal reasons.Most primary particles in LiFePO4/C prepared at 600 °C are smaller than 1 μm which tend to fuse and agglomerate at elevated temperatures.The distinction between the smooth surface of LiFePO4in Fig.2(a2)and rough surface of LiFePO4in Fig.2(c2)gives the evidence for LiFePO4fusion.As discussed above,Fe2P formation consumes carbon whose loss makes the growth of LiFePO4particles more readily at higher temperatures since carbon is capable of inhibiting LiFePO4particle growth in LiFePO4/C preparation[17].

    As 500°Cis high enough to obtain pure LiFePO4,the charge-discharge performance of the samples synthesized at 500 °C,600 °C,700 °C and 800°Cis examined,as shown in Fig.3.With the increase in sintering temperature,the discharge voltage plateau increases for LiFePO4/C prepared,which can be attributed to the higher degree of crystallinity of LiFePO4made at a higher temperature and formation of conductive Fe2P above 600°C.Though it possesses the highest carbon content,LiFePO4/C500displays inferior plateau voltages and biggest polarization in charge-discharge process.This can be ascribed to the low degree of crystallinity of LiFePO4made at the low temperature.LiFePO4/C800displays a relatively low discharge capacity.It can be attributed to the heavy loss of conductive carbon at this elevated temperature and deviation of molar ratio for Li:Fe:P from 1:1:1 in LiFePO4/C caused by formation of Fe2P.In addition,higher temperature favors the growth of LiFePO4crystallites/particles and more severe agglomeration of LiFePO4/C primary and secondary particles.Bigger crystallites/particles lead to longer paths for Li+migration in electrochemical process,which is unfavorable for its electrochemical kinetics[18].LiFePO4/C700exhibits the best charge-discharge performance among all the samples,although its carbon content is lower than that of LiFePO4/C600and its Fe2P content and degree of crystallinity are smaller than those of LiFePO4/C800.The principal reason accounting for the phenomenon is the compromised degree of crystallinity of LiFePO4and contents of conductive Fe2P and carbon.

    An increased addition of glucose in preparation resulted in an increased carbon content in final product LiFePO4/C.Fig.4 shows the electrochemical performance of the samples with different carbon contents.It is demonstrated that when carbon content varies in the range of 6.02%-11.03%the discharge capacities and charge-discharge plateaus of the samples are similar,but the sample with 4.48%carbon content exhibits an obvious lower capacity and inferior plateau voltages.The samples with carbon contents of 11.03%,8.01%,6.02%and 4.48%deliver capacities of 150.2,152.1,146.7 and 137.6 mA·h·g-1,respectively,at 0.1C.The decrease in carbon content from 11.03%to 8.01%gives rise to an abnormal capacity increase of 2 mA·h·g-1.This can be attributed to too high a redox inactive carbon content reducing achievable capacity because the measured nominal capacity refers to that of LiFePO4/C but not that of pure LiFePO4in LiFePO4/C.A similar result[19]was observed by Tang and co-workers.

    Fig.3.Charge-discharge profiles and rate capability of LiFePO4/C synthesized at different temperatures.

    Fig.4.Charge-discharge profiles and rate capability of LiFePO4/C with different carbon contents.

    At1C,the trend is apparent that higher carbon contents lead to higher discharge capacities.The two samples with carbon contents of 11.03%and 8.01%display similar capacities but the former is slightly higher.The unfavorable intrinsic low conductivity limits the practical use of LiFePO4,but the introduction of carbon has become the simplest and effective solution to the problem.Highercarbon contents facilitate efficient use of redox active LiFePO4in charge-discharge process.However,more incorporated carbon greatly reduces the tap density of LiFePO4/C composite,resulting in lower volumetric and gravimetric energy densities.By considering both capacity and tap density,the LiFePO4/C sample with 8.01%carbon is preferred to the one with 11.03%carbon.

    Ethanol and acetone have been reported as grinding dispersive agents in ball-milling for LiFePO4/C synthesis[20,21].However,no work has compared their effect on the properties of the final products.In the study,ethanol,acetone and water were used respectively in ball-milling to mix and mechanically activate Fe2O3,NH4H2PO4,Li2CO3and glucose,and the as-prepared cathodes are designated as LiFePO4/Cethanol,LiFePO4/Cacetoneand LiFePO4/Cwater,respectively,for convenience.As indicated in Fig.5,the dispersive agent in milling is potent to affect the electrochemical performance of LiFePO4/C.First,the three samples exhibit distinct charge-discharge plateau voltages.The highest discharge voltage and lowest charge voltage are equivalent to the lowest polarization in charge-discharge process.Therefore,LiFePO4/Cacetoneshows superior plateau voltages to those obtained by using ethanol and water.Water is not suitable as a dispersive agent in milling,although it is the only one capable of dissolving glucose whose even distribution in ball-milled productfavors an even coating/mixing in LiFePO4/C.However,glucose melts at 130-150°C[22]and this property can ensure its good distribution to a certain extent in sintering.Both acetone and ethanol are qualified as dispersive agents in milling.The two samples synthesized by using the organic agents deliver a similar capacity at 0.1C,but at 1Cand 2C,the difference in discharge capacity for the two samples is distinct.LiFePO4/Cethanoland LiFePO4/Cacetoneexhibit an average of122.5 and 128.3 mA·h·g-1respectively at1Cin the first50 cycles,revealing a difference of 5.8 mA·h·g-1;at 2C,the corresponding data are 101.8 and 120.1 mA·h·g-1,revealing a difference of 18.3 mA·h·g-1which comprises 10%of the theoretical capacity of LiFePO4.Therefore,LiFePO4/Cacetonehas a superior rate capability to LiFePO4/Cethanol.

    In SEM images of both LiFePO4/Cethanoland LiFePO4/Cacetone,conductive carbon is observed to be present between and on the LiFePO4particles and the LiFePO4particles are revealed to distribute between carbon connections,as shown in Fig.6.Thus,in the secondary particles of both samples,the carbon presents as a whole which is embedded with micrometer-sized LiFePO4particles,resulting in the formation of a continuous conductive connection between the LiFePO4particles.In this way,a mutual embedding state and an interconnected matrix for the conductive carbon and LiFePO4particles is achieved in the as-prepared LiFePO4/C,which may lead to fast electron transfer and small polarization for the low conductivity cathode material.Faster electron kinetics and smaller polarization bring about a better rate capability for the LiFePO4/C electrode.

    Fig.5.Charge-discharge profiles and rate capability of LiFePO4/C synthesized with different dispersive agents.

    Micrometer-sized pores are seen in the secondary LiFePO4/C particles in Fig.6(a1)and(b1).These pores are capable of extending the available surface area and yield more sites for the electrochemical reaction which only proceeds at the points where active material,conductive carbon and electrolyte meet[23].LiFePO4/Cacetonediffers from LiFePO4/Cethanolin its more even carbon distribution than the latter,as shown in Fig.6(b1)and(b2).In LiFePO4/Cacetone,most LiFePO4particles are observed to be coated and well-connected by carbon,which is favorable for fast electron transfer incurred at high charge-discharge rates.Thus,at 1Cand 2C,LiFePO4/Cacetoneshows a much better charge-discharge performance than LiFePO4/Cethanol.

    The difference in electrochemical performance for the three samples synthesized with ethanol,acetone and water may originate from the different states of dispersion,segregation and agglomeration of particles in dried ball-milled products,which affects the following solid state reaction and the physical properties of finalproducts.The three dispersive agents possess different functional groups and distinct physical chemical properties.First,acetone has the lowest boiling point of 56.2°C and the wet ball-milled product can be dried up fastest to avoid severe segregation of ingredients in drying.Second,to micro/nano-sized particles,their aggregation and dispersion states in ball-milled pulp are directly correlated with their surface charge which is the measure of inter-particle electrostatic repulsive force and whose value is influenced greatly by pH[24].Owing to the difference in hydrogen bond forming abilities of different functional groups,water,ethanol and acetone can differently influence the surface charge of mechanically activated raw material particles in ball-milled pulp,and subsequently determine the agglomeration of particles during the drying process and finally the electrochemical performance of LiFePO4.Third,the pH value dependent on the dispersive agent determines the Zeta potential[25]of ball-milled particles.This potential then dictates the segregation and agglomeration of the wet ball-milled particles in drying.Different dispersive agents bring about different Zeta potentials but which cannot be precisely measured in non-aqueous solutions/suspensions.

    Fig.6.SEM images of LiFePO4/C synthesized with different dispersive agents:ethanol(a1 and a2)and acetone(b1 and b2)(arrows indicating amorphous carbon).

    4.Conclusions

    From above,it can be concluded that sintering temperature and carbon content must be carefully optimized for synthesizing LiFePO4/C with superior electrochemical performance and tap density.The increase in sintering temperature leads to a higher degree of crystallinity and bigger crystallite/particle size for LiFePO4,more Fe2P formation and lower carbon content in LiFePO4/C.700°C is the optimum sintering temperature.Higher carbon content in the range of 4.48%-11.03%leads to better rate capability for LiFePO4/C but impacts its tap density deleteriously.Acetone is a better dispersive agent in ball-milling than ethanol and water and may better alleviate segregation and agglomeration in the following drying, finally resulting in an idealcarbon existence state in LiFePO4/C.That is,an even distribution in the form of coating and connecting LiFePO4particles.LiFePO4/C synthesized at 700°C by using acetone as the dispersive agent exhibits an average of 153.8,128.3 and 121.0 mA·h·g-1at 0.1C,1Cand 2C,respectively,in the first 50 cycles.These synthesis parameters are worth further and more deeply studying for synthesis of LiFePO4/C with high quality.

    [1]J.Apt,S.B.Peterson,J.F.Whitacre,Battery vehicles reduce CO2emissions,Science333(6044)(2011)823.

    [2]S.Chu,A.Majumdar,Opportunities and challenges for a sustainable energy future,Nature488(7411)(2012)294-303.

    [3]R.F.Service,Battery FAQs,Science332(6037)(2011)1495.

    [4]B.Dunn,H.Kamath,J.M.Tarascon,Electrical energy storage for the grid:A battery of choices,Science334(6085)(2011)928-935.

    [5]Z.W.Xiao,G.R.Hu,K.Du,Z.D.Peng,A facile route for synthesis of LiFePO4/C cathode material with nano-sized primary particles,Chin.J.Chem.Eng.22(5)(2014)590-595.

    [6]K.D.Yang,F.X.Tan,F.Wang,Y.F.Long,Y.X.Wen,Response surface optimization for process parameters of LiFePO4/C preparation by carbothermal reduction technology,Chin.J.Chem.Eng.20(4)(2012)793-802.

    [7]W.L.Yu,Y.P.Zhao,Q.L.Rao,Rapid and continuous production of LiFePO4/C nanoparticles in super heated water,Chin.J.Chem.Eng.17(1)(2009)171-174.

    [8]Z.W.Xiao,G.R.Hu,K.Du,Z.D.Peng,X.R.Deng,High density LiFePO4/C composite cathode material for lithium ion batteries,Chin.J.Non-Ferrous Met.17(12)(2007)2040-2045(in Chinese).

    [9]Z.Yang,J.Zhang,M.C.W.Kintner-Meyer,X.Lu,D.Choi,J.P.Lemmon,J.Liu,Electrochemical energy storage for green grid,Chem.Rev.111(5)(2011)3577-3613.

    [10]J.Wang,X.Sun,Understanding and recent development of carbon coating on LiFePO4cathode materials for lithium-ion batteries,Energy Environ.Sci.5(1)(2012)5163-5185.

    [11]J.Zhang,J.Xie,C.Wu,G.Cao,X.Zhao,In-situ one-pot preparation of LiFePO4/carbonnano fibers composites and their electrochemical performance,J.Mater.Sci.Technol.27(11)(2011)1001-1005.

    [12]Z.W.Xiao,G.R.Hu,A novel synthesis of LiFePO4/C from Fe2O3without extra carbon or carbon-containing reductant,J.Cent.South Univ.21(6)(2014)2143-2149.

    [13]N.Ravet,M.Gauthier,K.Zaghib,J.B.Goodenough,A.Mauger,F.Gendron,C.M.Julien,Mechanism of the Fe3+reduction at low temperature for LiFePO4synthesis from a polymeric additive,Chem.Mater.19(10)(2007)2595-2602.

    [14]C.W.Kim,J.S.Park,K.S.Lee,Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4synthesized by mechanical alloying using Fe3+raw material,J.Power Sources163(1)(2006)144-150.

    [15]S.H.Wu,J.J.Shi,J.Y.Lin,Effects of Fe2P and Li3PO4additives on the cycling performance of LiFePO4/C composite cathode materials,J.Power Sources196(16)(2011)6676-6681.

    [16]M.M.Rahman,J.Z.Wang,R.Zeng,D.Wexler,H.K.Liu,LiFePO4-Fe2P-C composite cathode:an environmentally friendly promising electrode material for lithium-ion battery,J.Power Sources206(5)(2012)259-266.

    [17]J.K.Kim,J.W.Choi,G.Cheruvally,J.U.Kim,J.H.Ahn,G.B.Cho,K.W.Kim,H.J.Ahn,A modified mechanical activation synthesis for carbon-coated LiFePO4cathode in lithium batteries,Mater.Lett.61(18)(2007)3822-3825.

    [18]A.Singhal,G.Skandan,G.Amatucci,F.Badway,N.Ye,A.Manthiram,H.Ye,J.J.Xu,Nanostructured electrodes for next generation rechargeable electrochemical devices,J.Power Sources129(1)(2004)38-44.

    [19]Y.L.Ruan,Z.Y.Tang,B.M.Huang,Effect of carbon content on electrochemical properties of LiFePO4/C composite cathode,Chin.J.Chem.Eng.13(5)(2005)686-690.

    [20]Z.G.Xie,Electrochemical performance of cathode material LiFePO4of lithium ion batteries,Chin.J.Appl.Chem.24(2)(2007)238-240(in Chinese).

    [21]Y.L.Ruan,Z.Y.Tang,Effects on the structure and electrochemical performance of LiFePO4by Zr4+doping,Electrochemistry12(3)(2006)315-318(in Chinese).

    [22]M.Hurtta,I.Pitkanen,J.Knuutinen,Melting behavior of D-sucrose,D-glucose and D-fructose,Carbohydr.Res.339(13)(2004)2267-2273.

    [23]M.S.Whittingham,Lithium batteries and cathode materials,Chem.Rev.104(10)(2004)4271-4301.

    [24]S.Sakthivel,V.Venkatesan,B.Krishnan,B.Pitchumani,Influence of suspension stability on wet grinding for production of mineral nanoparticle,Particuology6(2)(2008)120-124.

    [25]A.Martin,F.Martinez,J.Malfeito,L.Palacio,P.Pradanos,A.Hernandez,Zeta potential of membranes as a function of pH:optimization of isoelectric point evaluation,J.Membr.Sci.213(1-2)(2003)225-230.

    男女啪啪激烈高潮av片| 有码 亚洲区| 91久久精品国产一区二区三区| 日本-黄色视频高清免费观看| 国产精品久久久av美女十八| av女优亚洲男人天堂| 99久久综合免费| 青春草视频在线免费观看| 99九九在线精品视频| 两个人看的免费小视频| 国产精品免费大片| av天堂久久9| 国产亚洲午夜精品一区二区久久| 免费久久久久久久精品成人欧美视频| 国产精品亚洲av一区麻豆 | 精品第一国产精品| 七月丁香在线播放| 少妇的丰满在线观看| 精品久久久久久电影网| 精品国产一区二区久久| 极品人妻少妇av视频| 亚洲国产欧美在线一区| 欧美中文综合在线视频| av天堂久久9| 精品久久久精品久久久| 性色av一级| 国产在线一区二区三区精| 两个人免费观看高清视频| 免费在线观看完整版高清| 人人妻人人澡人人爽人人夜夜| 人体艺术视频欧美日本| 亚洲精品aⅴ在线观看| 18在线观看网站| 日本wwww免费看| 国产成人91sexporn| 成人黄色视频免费在线看| 人人妻人人澡人人看| 丝袜人妻中文字幕| 99香蕉大伊视频| 观看av在线不卡| 日韩大片免费观看网站| 十分钟在线观看高清视频www| 欧美精品一区二区大全| 精品国产一区二区三区久久久樱花| 欧美激情高清一区二区三区 | a级片在线免费高清观看视频| 成年人免费黄色播放视频| 国产精品一区二区在线观看99| 亚洲,欧美,日韩| 在线天堂中文资源库| 久久久久久久久久久久大奶| 26uuu在线亚洲综合色| www.熟女人妻精品国产| 人妻人人澡人人爽人人| 超碰97精品在线观看| 久久人人97超碰香蕉20202| 久久这里有精品视频免费| 成人免费观看视频高清| 成人毛片a级毛片在线播放| 黄片无遮挡物在线观看| 有码 亚洲区| 婷婷色综合www| 一区二区三区乱码不卡18| 免费看av在线观看网站| 精品一区二区三卡| 十八禁网站网址无遮挡| 久久久亚洲精品成人影院| 如日韩欧美国产精品一区二区三区| 欧美日韩精品成人综合77777| 欧美日韩亚洲国产一区二区在线观看 | 久久狼人影院| 欧美激情 高清一区二区三区| 国产精品一区二区在线观看99| 婷婷色麻豆天堂久久| 国产国语露脸激情在线看| 国产男女内射视频| 亚洲精品av麻豆狂野| 高清不卡的av网站| www日本在线高清视频| 777久久人妻少妇嫩草av网站| 午夜精品国产一区二区电影| 老熟女久久久| 国产成人aa在线观看| 亚洲成人一二三区av| 日韩电影二区| 久久久久精品人妻al黑| 99国产精品免费福利视频| 成人亚洲欧美一区二区av| www.av在线官网国产| 男女啪啪激烈高潮av片| 国产精品秋霞免费鲁丝片| 久久久国产一区二区| 一二三四中文在线观看免费高清| 丰满迷人的少妇在线观看| 永久免费av网站大全| 天天躁夜夜躁狠狠久久av| 超色免费av| 久久精品aⅴ一区二区三区四区 | 亚洲精品日本国产第一区| 亚洲av男天堂| 一本—道久久a久久精品蜜桃钙片| 久久 成人 亚洲| 国语对白做爰xxxⅹ性视频网站| 国产在线免费精品| 国产精品一区二区在线观看99| 欧美精品一区二区免费开放| 男女边吃奶边做爰视频| 午夜老司机福利剧场| 麻豆乱淫一区二区| 国产精品香港三级国产av潘金莲 | 免费在线观看视频国产中文字幕亚洲 | 自线自在国产av| 国产精品久久久av美女十八| 国产免费现黄频在线看| 国产精品一国产av| 亚洲精品国产一区二区精华液| 大片免费播放器 马上看| 春色校园在线视频观看| 久久精品久久久久久久性| 巨乳人妻的诱惑在线观看| 免费观看av网站的网址| 男人操女人黄网站| 亚洲av福利一区| 日韩成人av中文字幕在线观看| 欧美日韩av久久| 在线观看免费视频网站a站| 欧美在线黄色| 性高湖久久久久久久久免费观看| 电影成人av| 免费观看在线日韩| 国产麻豆69| 成人手机av| 日韩视频在线欧美| 美女午夜性视频免费| 国产精品蜜桃在线观看| 国产又色又爽无遮挡免| 人体艺术视频欧美日本| 人成视频在线观看免费观看| 国产免费福利视频在线观看| 免费播放大片免费观看视频在线观看| 国产极品天堂在线| 亚洲三区欧美一区| 妹子高潮喷水视频| 一个人免费看片子| 午夜福利,免费看| 精品福利永久在线观看| av福利片在线| 久久久国产一区二区| 91精品国产国语对白视频| 亚洲欧美中文字幕日韩二区| 成年av动漫网址| 亚洲国产精品999| 美女脱内裤让男人舔精品视频| 亚洲人成电影观看| 中文字幕色久视频| 久久韩国三级中文字幕| 日韩中文字幕欧美一区二区 | 中国三级夫妇交换| 国产av国产精品国产| 国产成人aa在线观看| 日本欧美视频一区| 久久久久国产网址| 制服诱惑二区| 激情五月婷婷亚洲| 国产成人免费无遮挡视频| 亚洲精品成人av观看孕妇| 日韩视频在线欧美| 亚洲经典国产精华液单| 亚洲精品,欧美精品| 极品人妻少妇av视频| 日日爽夜夜爽网站| 国产精品国产三级国产专区5o| 亚洲国产毛片av蜜桃av| 国产白丝娇喘喷水9色精品| 亚洲国产av新网站| 在线观看美女被高潮喷水网站| 日韩 亚洲 欧美在线| av视频免费观看在线观看| 男的添女的下面高潮视频| 成年女人毛片免费观看观看9 | 在线免费观看不下载黄p国产| 国产精品国产三级国产专区5o| 在线观看免费视频网站a站| 欧美av亚洲av综合av国产av | 中文字幕人妻丝袜一区二区 | 欧美亚洲 丝袜 人妻 在线| 免费不卡的大黄色大毛片视频在线观看| 一级毛片我不卡| 精品亚洲成国产av| videosex国产| 最近最新中文字幕免费大全7| 中文字幕av电影在线播放| 热re99久久国产66热| 99热国产这里只有精品6| 自拍欧美九色日韩亚洲蝌蚪91| 国产福利在线免费观看视频| 亚洲激情五月婷婷啪啪| 国产成人免费观看mmmm| 咕卡用的链子| 久久精品国产鲁丝片午夜精品| 99精国产麻豆久久婷婷| 久久精品亚洲av国产电影网| 搡老乐熟女国产| 一二三四在线观看免费中文在| 天天躁狠狠躁夜夜躁狠狠躁| 深夜精品福利| 亚洲激情五月婷婷啪啪| 国产男人的电影天堂91| 黄片无遮挡物在线观看| 日本vs欧美在线观看视频| 亚洲国产最新在线播放| 国产欧美日韩一区二区三区在线| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕| 国产亚洲午夜精品一区二区久久| 少妇 在线观看| h视频一区二区三区| 天堂中文最新版在线下载| 精品一区二区免费观看| 国产日韩一区二区三区精品不卡| 色婷婷久久久亚洲欧美| 久久久久久久亚洲中文字幕| av.在线天堂| 精品一区二区免费观看| 大片免费播放器 马上看| 免费黄网站久久成人精品| 亚洲av电影在线进入| 男女下面插进去视频免费观看| 中文精品一卡2卡3卡4更新| 国产在视频线精品| 久久精品夜色国产| 国产不卡av网站在线观看| 成人毛片a级毛片在线播放| 一级毛片电影观看| 午夜激情av网站| 国产淫语在线视频| 欧美激情极品国产一区二区三区| 视频区图区小说| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 美女脱内裤让男人舔精品视频| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久成人av| 日韩一区二区视频免费看| 在线观看免费日韩欧美大片| 自拍欧美九色日韩亚洲蝌蚪91| 日韩av在线免费看完整版不卡| 亚洲美女黄色视频免费看| 国语对白做爰xxxⅹ性视频网站| 午夜免费男女啪啪视频观看| 欧美日韩成人在线一区二区| 色播在线永久视频| 欧美变态另类bdsm刘玥| av福利片在线| 日韩免费高清中文字幕av| 日韩精品免费视频一区二区三区| 如日韩欧美国产精品一区二区三区| 人人澡人人妻人| 久久久久久久亚洲中文字幕| 制服诱惑二区| 五月天丁香电影| 精品少妇黑人巨大在线播放| 777米奇影视久久| 欧美日韩av久久| 女性生殖器流出的白浆| 欧美精品国产亚洲| 春色校园在线视频观看| 久久这里有精品视频免费| 国产 一区精品| 国产成人免费无遮挡视频| 午夜福利视频在线观看免费| 亚洲av中文av极速乱| 亚洲,一卡二卡三卡| 高清在线视频一区二区三区| 伦理电影大哥的女人| 亚洲欧洲国产日韩| 亚洲欧美一区二区三区久久| 国产午夜精品一二区理论片| 久久99蜜桃精品久久| 性色avwww在线观看| 人妻一区二区av| 国产97色在线日韩免费| 韩国高清视频一区二区三区| 国产av码专区亚洲av| 日本欧美国产在线视频| 999久久久国产精品视频| 精品国产乱码久久久久久男人| 久久人人爽av亚洲精品天堂| 天天影视国产精品| 国产精品av久久久久免费| 又粗又硬又长又爽又黄的视频| 久久久精品区二区三区| 狠狠婷婷综合久久久久久88av| 少妇的丰满在线观看| 老司机亚洲免费影院| 秋霞伦理黄片| 欧美人与性动交α欧美精品济南到 | 亚洲av.av天堂| 久久久久国产精品人妻一区二区| 91精品三级在线观看| 可以免费在线观看a视频的电影网站 | 久久韩国三级中文字幕| 午夜福利一区二区在线看| 国产精品秋霞免费鲁丝片| 欧美日韩av久久| 亚洲人成77777在线视频| 伦理电影免费视频| 秋霞在线观看毛片| 亚洲成色77777| 国产片内射在线| 国产日韩欧美亚洲二区| 久久99蜜桃精品久久| 久久毛片免费看一区二区三区| 亚洲伊人久久精品综合| 精品国产超薄肉色丝袜足j| 99精国产麻豆久久婷婷| 精品第一国产精品| 国产日韩欧美在线精品| 久久精品国产自在天天线| 九色亚洲精品在线播放| 国产精品av久久久久免费| 看免费av毛片| 波多野结衣av一区二区av| 国产精品偷伦视频观看了| 亚洲欧美一区二区三区久久| 人人妻人人爽人人添夜夜欢视频| 国产亚洲欧美精品永久| 熟妇人妻不卡中文字幕| 一级,二级,三级黄色视频| 久久精品国产综合久久久| 亚洲国产精品999| 有码 亚洲区| 丁香六月天网| 看非洲黑人一级黄片| 99热全是精品| 国产成人精品久久二区二区91 | 最近中文字幕高清免费大全6| 男人添女人高潮全过程视频| 最新的欧美精品一区二区| 精品卡一卡二卡四卡免费| 久久久精品免费免费高清| 日韩大片免费观看网站| 久久久久国产精品人妻一区二区| 国产精品不卡视频一区二区| 精品午夜福利在线看| 激情视频va一区二区三区| 午夜福利在线观看免费完整高清在| 亚洲色图综合在线观看| 精品一区二区三卡| 少妇人妻 视频| 精品国产超薄肉色丝袜足j| 欧美精品一区二区大全| 最近最新中文字幕免费大全7| 久久精品国产综合久久久| 国产又色又爽无遮挡免| 桃花免费在线播放| 国产日韩欧美视频二区| 国产av码专区亚洲av| 欧美国产精品一级二级三级| 18禁观看日本| 亚洲av中文av极速乱| 超碰成人久久| 亚洲久久久国产精品| 亚洲欧洲精品一区二区精品久久久 | 街头女战士在线观看网站| 亚洲情色 制服丝袜| 亚洲av在线观看美女高潮| 亚洲美女黄色视频免费看| 亚洲欧美日韩另类电影网站| 美女高潮到喷水免费观看| 中国国产av一级| 久热这里只有精品99| 爱豆传媒免费全集在线观看| 999久久久国产精品视频| 2022亚洲国产成人精品| 久久韩国三级中文字幕| 久热这里只有精品99| 人人妻人人澡人人看| 老司机亚洲免费影院| 国精品久久久久久国模美| 免费黄频网站在线观看国产| 视频在线观看一区二区三区| 春色校园在线视频观看| 岛国毛片在线播放| 国产精品欧美亚洲77777| 999久久久国产精品视频| av网站免费在线观看视频| 免费观看性生交大片5| 亚洲三级黄色毛片| 久久久久精品久久久久真实原创| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| 亚洲精品国产色婷婷电影| 新久久久久国产一级毛片| 国产极品天堂在线| 久久 成人 亚洲| 人妻一区二区av| 亚洲av福利一区| 自线自在国产av| 久久99精品国语久久久| 老司机亚洲免费影院| 久久久国产精品麻豆| 一级毛片电影观看| 高清在线视频一区二区三区| 亚洲精品自拍成人| 99九九在线精品视频| 国产一区二区三区综合在线观看| 欧美国产精品一级二级三级| 欧美精品高潮呻吟av久久| 亚洲欧洲国产日韩| 韩国av在线不卡| 黄频高清免费视频| 久久青草综合色| 人妻 亚洲 视频| 久久久久国产一级毛片高清牌| av线在线观看网站| 中文字幕人妻熟女乱码| 国产日韩欧美视频二区| 美女大奶头黄色视频| 国产精品久久久久久精品电影小说| 国产成人精品久久二区二区91 | 免费观看无遮挡的男女| 国产有黄有色有爽视频| 水蜜桃什么品种好| 如日韩欧美国产精品一区二区三区| 女的被弄到高潮叫床怎么办| av免费在线看不卡| 一区福利在线观看| 欧美日韩视频高清一区二区三区二| 黄色一级大片看看| 亚洲综合精品二区| 男女下面插进去视频免费观看| 免费黄色在线免费观看| 亚洲av国产av综合av卡| 一级a爱视频在线免费观看| 久久99蜜桃精品久久| 狠狠精品人妻久久久久久综合| 婷婷色麻豆天堂久久| 国产av精品麻豆| 日本av手机在线免费观看| 在线观看免费视频网站a站| 桃花免费在线播放| 中文字幕亚洲精品专区| 国产黄频视频在线观看| 热re99久久精品国产66热6| 久久国产精品大桥未久av| 亚洲精品av麻豆狂野| 午夜福利,免费看| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 波多野结衣一区麻豆| 性色av一级| a级毛片在线看网站| av女优亚洲男人天堂| 久久人妻熟女aⅴ| 亚洲国产最新在线播放| 美女脱内裤让男人舔精品视频| 一级毛片我不卡| 精品国产露脸久久av麻豆| 国语对白做爰xxxⅹ性视频网站| 国产高清不卡午夜福利| 色播在线永久视频| 亚洲人成77777在线视频| 久久韩国三级中文字幕| 岛国毛片在线播放| 久久97久久精品| 久久久欧美国产精品| 国产精品三级大全| h视频一区二区三区| 丰满乱子伦码专区| 赤兔流量卡办理| 国产视频首页在线观看| 女人高潮潮喷娇喘18禁视频| 看非洲黑人一级黄片| 午夜精品国产一区二区电影| 国产欧美日韩综合在线一区二区| 国产精品久久久久久精品古装| 18在线观看网站| 建设人人有责人人尽责人人享有的| 日韩一本色道免费dvd| 久久人人爽人人片av| 男女边摸边吃奶| 欧美国产精品va在线观看不卡| 日本免费在线观看一区| 亚洲欧美清纯卡通| 国产有黄有色有爽视频| 美国免费a级毛片| 亚洲成av片中文字幕在线观看 | 久久精品久久精品一区二区三区| 亚洲第一av免费看| 精品国产一区二区久久| 国产一级毛片在线| 另类亚洲欧美激情| 日本vs欧美在线观看视频| 午夜福利视频在线观看免费| 777米奇影视久久| 一区二区日韩欧美中文字幕| 成人漫画全彩无遮挡| 国产在线视频一区二区| 毛片一级片免费看久久久久| 五月开心婷婷网| 9191精品国产免费久久| 女人久久www免费人成看片| 精品少妇内射三级| 午夜福利在线免费观看网站| 在线观看免费高清a一片| 成年人免费黄色播放视频| 亚洲精品久久午夜乱码| 五月开心婷婷网| 色播在线永久视频| 人体艺术视频欧美日本| 午夜福利影视在线免费观看| 国产av码专区亚洲av| 嫩草影院入口| 国产欧美亚洲国产| 免费观看无遮挡的男女| 国产一区二区激情短视频 | 美女福利国产在线| 不卡视频在线观看欧美| 国产成人av激情在线播放| 亚洲第一青青草原| 制服人妻中文乱码| 精品国产一区二区三区四区第35| av网站在线播放免费| 一区二区日韩欧美中文字幕| 男女高潮啪啪啪动态图| 国产精品麻豆人妻色哟哟久久| 国产成人免费观看mmmm| 亚洲伊人色综图| 性少妇av在线| 欧美成人午夜免费资源| 欧美bdsm另类| 午夜精品国产一区二区电影| 日本午夜av视频| 成人二区视频| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 久久99精品国语久久久| 久久人人爽人人片av| 亚洲精品自拍成人| 国产成人aa在线观看| 男的添女的下面高潮视频| 美女国产高潮福利片在线看| 久久精品国产亚洲av高清一级| 亚洲一区中文字幕在线| 一级毛片黄色毛片免费观看视频| av卡一久久| 90打野战视频偷拍视频| 日日摸夜夜添夜夜爱| 99re6热这里在线精品视频| 久久久久久久久免费视频了| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久精品精品| 欧美激情 高清一区二区三区| av一本久久久久| 精品一区二区三卡| 日韩三级伦理在线观看| av在线app专区| 69精品国产乱码久久久| 婷婷成人精品国产| 91国产中文字幕| 黄网站色视频无遮挡免费观看| 日韩av不卡免费在线播放| 国产精品99久久99久久久不卡 | 成人免费观看视频高清| av国产精品久久久久影院| 人人妻人人澡人人爽人人夜夜| 亚洲精品日本国产第一区| 欧美日韩成人在线一区二区| 18禁观看日本| 日韩中文字幕视频在线看片| 免费少妇av软件| 高清av免费在线| 国产av一区二区精品久久| 两个人看的免费小视频| 黄色一级大片看看| 婷婷色综合www| 视频在线观看一区二区三区| 婷婷色av中文字幕| 美女国产视频在线观看| 国产淫语在线视频| 在线观看美女被高潮喷水网站| 伦理电影大哥的女人| av电影中文网址| 日韩av在线免费看完整版不卡| 欧美成人精品欧美一级黄| 久久久久精品久久久久真实原创| 丝袜喷水一区| 男女高潮啪啪啪动态图| 91精品三级在线观看| 精品卡一卡二卡四卡免费| 国产免费福利视频在线观看| 青春草国产在线视频| 国产国语露脸激情在线看| 亚洲第一av免费看| 国产人伦9x9x在线观看 | 成人漫画全彩无遮挡| 成人亚洲精品一区在线观看| 老司机亚洲免费影院| 超色免费av| 久久久久久人人人人人| 一级毛片 在线播放| 秋霞伦理黄片| 综合色丁香网| 精品国产一区二区三区久久久樱花| 97人妻天天添夜夜摸| 街头女战士在线观看网站| 另类精品久久| 国产精品秋霞免费鲁丝片| 国产又爽黄色视频| 多毛熟女@视频| 国产一区二区三区综合在线观看| 王馨瑶露胸无遮挡在线观看| 永久免费av网站大全| 精品国产超薄肉色丝袜足j|