劉 艷, 張文靜, 陳新偉, 晏凌宇, 蒙凱捷, 范倛瑞
(浙江大學 地球科學學院, 浙江 杭州 310027)
?
錢塘江杭州下沙段流向剖面沉積物粒度特征及水動力條件分析
劉艷, 張文靜*, 陳新偉, 晏凌宇, 蒙凱捷, 范倛瑞
(浙江大學 地球科學學院, 浙江 杭州 310027)
摘要:對錢塘江中沉積物粒度的研究,前人多關(guān)注橫剖面的粒度變化.為了解錢塘江沉積物粒度在流向上的變化特征,在下沙段(下沙大橋至江東大橋)進行粒度采樣,對含泥砂懸浮物樣品和砂泥樣品的粒度進行分析.結(jié)果表明,粒度在1.45~3 500 μm,屬粘土至礫組分,以粉砂組分占比最多;粒徑均值為3.24~5.92 μm,位于粉砂至極細砂范圍;粒度頻率呈多峰分布,分選差至分選非常差,峰度為非常尖峰至寬峰.在該區(qū)間的直流河段粒度特征相似,而在下沙大橋河流彎曲的凸岸處粒度特征不同.反映該處水動力條件復雜,可能同時受到層流和紊流的影響.最大水流分量在下沙大橋凸岸處最小,在直流河段隨流向逐漸減小.粒度和最大水流分量特征受錢塘江下沙段河流形態(tài)控制.
關(guān)鍵詞:錢塘江;粒度特征;水動力條件;曲流河
0引言
錢塘江是浙江省最大的水系[1-2],同時也孕育著人類最早的水稻農(nóng)耕文明[3-4].錢塘江水動力條件的變化不僅影響河床形態(tài)、河流的攜沙沖淤能力、河流水質(zhì)、河岸工程、航道穩(wěn)定等[1,5-11],還影響古人類文明的遷徙[3-4].沉積物粒度是搬運水動力條件的重要表征,對確定河流水動力條件變化具有重要意義[12-18].前人對錢塘江水動力條件的研究主要集中于下切河谷作用及沉積特征[16-24]、河口地區(qū)沖淤作用及河床變形[6-9,12,25]、涌潮沉積作用[17,25-27]以及第四紀以來沉積層序特征[21,28-32];沉積物粒度研究或側(cè)重于橫切錢塘江剖面采樣,或偏重于鉆孔柱縱剖面采樣粒度特征分析,對沿流向剖面的沉積物粒度特征研究鮮有報道.
沿錢塘江流向采樣,開展了沉積物和含泥砂懸浮物樣品的粒度分析.旨在通過對錢塘江沿流向剖面的粒度特征分析,揭示錢塘江沿流向的水動力條件的變化及其控制條件.
1研究區(qū)及樣品概況
錢塘江發(fā)源于皖南境內(nèi),經(jīng)皖、浙2省最終流入東海[31],全長600余km,流域面積4.88×104km2[32],年徑流量3.909×1010m3以上[33].錢塘江在富陽以上的上游地區(qū)表現(xiàn)為山間直流河;富陽至杭州灣的下游地區(qū)表現(xiàn)為平原地區(qū)曲流河(見圖1).
本文粒度分析的樣品來自錢塘江下沙大橋至江東大橋的下沙段,段內(nèi)河流由上游的九堡大橋至下沙大橋區(qū)間的北西-南東走向突轉(zhuǎn)至北東-南西走向,河流彎曲處位于下沙大橋,錢塘漏斗形河口的上段,平均流速0.68~3.7 m·s-1,文獻[17]認為該區(qū)域為錢塘河口粉砂質(zhì)淺灘源頭.在河流的凹岸一側(cè),表現(xiàn)為河流的側(cè)向侵蝕作用,而在凸岸,則表現(xiàn)為側(cè)向加積作用,可見沙壩沉積.在該河段北岸4個采樣點采取岸堤砂泥沉積物和含泥砂水樣(見圖1),共獲得8個分析樣品,其中采樣點D位于河流彎曲處的北岸沙壩沉積及分支河道所在位置.各采樣點GPS數(shù)據(jù)為:A點30°18′16″N,120°23′42″E;B點30°18′17″N,120°23′22″E;C點30°16′57″N,120°22′40″E;D點30°15′57″N,120°21′12″E.
圖1 錢塘江河流形態(tài)及本文采樣位置圖Fig.1 Morphology of the Qiantang River and sample locations采樣點GPS數(shù)據(jù)見正文; GPS data shown in the text.
2分析方法
由于本次分析樣品均未固結(jié)且顆粒分散,因此,未采取前處理程序而直接進行粒度分析.粒度分析在浙江大學地球科學學院粒度分析實驗室完成,采用英國Malvern公司生產(chǎn)的Mastersizer 3000型激光粒度分析儀,測試粒徑范圍0.01~3 500 μm.每個樣品重復測量5次,取5次結(jié)果的平均值.
粒度統(tǒng)計分析采用林秀斌等[34]所歸納的方法,將粒度分析數(shù)據(jù)做Φ值轉(zhuǎn)換,即將以μm為單位的粒度數(shù)據(jù)轉(zhuǎn)換成無量綱的Φ值,Φ=-log2(x/xo),其中,x是以mm為單位的粒徑值,xo為參考粒徑,等于1 mm[35].對粒徑Φ值作概率累積曲線,并獲得Φ05、Φ16、Φ25、Φ50、Φ75、Φ84和Φ95的值,其中Φn為當累積頻率達到n%時的Φ值.粒徑的分布特征主要以4個反映頻率曲線特征的統(tǒng)計量來表征,分別為均值Mean、標準方差SDev、偏斜度Skewness和峰度Kurtosis[36],其中Mean=(Φ16+Φ50+Φ84)/3,SDev=(Φ84-Φ16)/4+(Φ95-Φ05)/6.6,Skewness=(Φ16+Φ84-2Φ50)/(2Φ84-Φ16)+(Φ05+Φ95-2Φ50)/(2Φ95-Φ05),Kurtosis=(Φ95-Φ05)/2.44(Φ75-Φ25).按照FOLK等[36]的方案對這些統(tǒng)計量進行劃分(見文獻[34]),其中,標準方差<0.35為分選非常好,0.35~0.50為分選好,0.50~0.71為分選較好,0.71~1.0為分選中等,1.0~2.0為分選差,2.0~4.0為分選非常差,>4.0為分選極差;偏斜度1~0.3為強烈偏向細粒,0.3~0.1為偏向細粒,0.1~-0.1為近對稱,-0.1~-0.3為偏向粗粒,-0.3~-1.0為非常強烈偏向粗粒;峰度<0.67為非常寬峰,0.67~0.90為寬峰,0.90~1.11為中等峰度,1.11~1.50為尖峰,1.50~3.0為非常尖峰,>3.0為極尖峰.
本文采用UDDEN[37]和WENTWORTH[38]所提出的標準對粒級分類,粒徑小于4 μm為粘土(對應Φ值大于8),4~64 μm為粉砂(對應Φ值在4~8),64~125 μm為極細砂(對應Φ值在3~4),125~250 μm為細砂(對應Φ值在2~3),250~500 μm為中砂(對應Φ值在1~2),500~1 000 μm為粗砂(對應Φ值在0~1),1 000~2 000 μm為極粗砂(對應Φ值在0~-1),大于2 000 μm為礫(對應Φ值小于-1)[39].
3粒度分析結(jié)果
樣品粒度分析結(jié)果列于表1.由表1知,粒徑分布于0.991~3 500 μm,即粘土至礫粒級均有分布.
表1粒度分析結(jié)果
Table 1 Grain-size analyses results
續(xù)表
粒徑范圍/μm體積分數(shù)/%A-懸浮物A-砂泥B-懸浮物B-砂泥C-懸浮物C-砂泥D-懸浮物D-砂泥86.43.243.934.504.855.232.861.332.4598.12.253.003.864.314.562.551.062.551111.442.173.203.753.842.260.852.681270.851.502.593.203.132.000.702.821440.461.012.052.702.481.790.582.991630.240.691.612.291.931.630.503.191860.140.511.271.961.491.540.433.422110.130.431.051.721.181.490.383.652400.170.430.921.540.971.490.323.872720.200.460.861.400.851.510.274.023100.220.500.851.300.781.550.224.083520.210.540.871.210.741.580.174.014000.190.570.911.140.721.610.123.784540.160.590.951.080.701.610.113.415160.120.620.991.040.681.580.102.915860.070.651.001.010.651.510.072.346660.060.701.001.010.611.400.051.757560.040.760.971.030.561.270.041.208590.040.830.921.080.511.130.010.749760.040.900.851.130.461.000.000.3911100.030.960.771.180.420.890.000.1712600.021.010.691.210.380.810.000.0414300.021.010.601.210.350.740.000.0216300.010.980.511.160.310.670.000.0018500.010.890.421.050.280.590.000.0021000.000.770.340.910.230.490.000.0023900.000.600.240.720.180.370.000.0027100.000.410.160.490.100.250.000.0030800.000.210.070.250.050.120.000.003500
A-含泥砂懸浮物樣品粒徑為2.42~2 100 μm(見表1),在粘土至極粗砂粒級范圍(見表2),其中以粉砂組分為主,體積分數(shù)達77.81%;極細砂組分次之,體積分數(shù)達17.65%;其他組分的體積分數(shù)均不足2%(見表2、圖2).粒度頻率分布圖反映該樣品粒度呈多峰式分布,其中主峰粒徑10~200 μm(見圖3).粒度概率累積曲線上并未見明顯的跳躍(見圖4).由概率累積曲線計算得出的Mean值為4.76,SDev值為1.15,Skewness值為0.23,Kurtosis值為1.27,表明該樣品Φ值粒徑均值在粉砂粒徑范圍內(nèi),分選差,粒度分布偏向細粒,為尖峰分布(見表3).
表2粒級組分含量
Table 2 Percentages of grain-size components
圖2 樣品粒度組分體積分數(shù)圖Fig.2 Percentages of grain-size components粒度組分劃分方案見正文.The division of grain-size components shown in the text.
A-砂泥樣品粒徑為3.12~3 500 μm(見表1),在粘土至礫粒級范圍(見表2),其中以粉砂組分為主,體積分數(shù)達60.83%;極細砂組分體積分數(shù)也較為可觀,可達21.29%;其他組分的體積分數(shù)均不足5%(見表2和圖2).粒度頻率分布圖反映該樣品粒度分布呈多峰式,其中主峰粒徑在10~200 μm(見圖3).粒度概率累積曲線上并未見明顯的跳躍(見圖4).由概率累積曲線計算Mean值為4.05,SDev值為1.78,Skewness值為-0.24,Kurtosis值為1.96,表明該樣品Φ值粒徑均值在粉砂粒徑范圍內(nèi),分選差,粒度分布偏向粗粒,為非常尖峰分布(見表3).
圖3 樣品粒度頻率分布圖Fig.3 Grain-size frequency distributionΦ值計算方法見正文.The calculation of Phi (Φ) valueis shown in the text.
圖4 樣品粒度累積曲線Fig.4 Grain-size cumulative frequency diagramΦ值計算方法見正文.The calculation of Phi (Φ) valueis shown in the text.
表3樣品粒度分布統(tǒng)計量及分類結(jié)果
Table 3 Statistic measures and their division of the grain-size analyse results
B-含泥砂懸浮物樣品粒徑為3.55~3 500 μm(見表1),在粘土至礫粒級范圍(見表2),其中以粉砂組分為主,體積分數(shù)達53.85%;含有較多的極細砂組分,可達24.86%;其他組分的體積分數(shù)均不足7%(見表2和圖2).粒度頻率分布圖反映該樣品粒度呈多峰式分布,其中主峰粒徑在10~300 μm(見圖3).粒度概率累積曲線上并未見明顯的跳躍(見圖4).由概率累積曲線計算得Mean值為3.84,SDev值為1.70,Skewness值為-0.22,Kurtosis值為1.48,表明該樣品Φ值粒徑均值在極細砂粒徑范圍內(nèi),分選差,粒度分布偏向粗粒,為尖峰分布(見表3).
B-砂泥樣品粒徑為3.55~3 500 μm(見表1),在粘土至礫粒級范圍(見表2),其中以粉砂組分為主,體積分數(shù)達41.91%;也含有較多的極細砂組分,可達27.01%;另外細砂組分也較可觀,為10.21%;其他組分均不足7.5%(見表2和圖2).粒度頻率分布圖反映該樣品粒度呈多峰式分布,其中主峰粒徑在10~700 μm(見圖3).粒度概率累積曲線上并未見明顯的跳躍(見圖4).由概率累積曲線計算得Mean值為3.24,SDev值為1.91,Skewness值為-0.32,Kurtosis值為1.27,表明該樣品Φ值粒徑均值在極細砂粒徑范圍內(nèi),分選差,粒度分布強烈偏向粗粒,為尖峰分布(見表3).
C-含泥砂懸浮物樣品粒徑為3.55~3 500 μm(見表1),在粘土至礫粒級范圍(見表2),其中以粉砂組分為主,體積分數(shù)達53.22%;也含有較多的極細砂組分,可達28.78%;另外細砂組分也較可觀,為8.05%;其他組分均不足5%(見表2和圖2).粒度頻率分布圖反映該樣品粒度大體呈單峰式分布,主峰粒徑10~300 μm(見圖3).粒度概率累積曲線上并未見明顯跳躍(見圖4).由概率累積曲線計算得Mean值為3.95,SDev值為1.45,Skewness值為-0.13,Kurtosis值為1.42,表明該樣品Φ值粒徑均值在極細砂粒徑范圍內(nèi),分選差,粒度分布偏向粗粒,為尖峰分布(見表3).
C-砂泥樣品粒徑為2.42~3 500 μm(見表1),在粘土至礫粒級范圍(見表2),其中以粉砂組分為主,體積分數(shù)達53.40%;極細砂組分為16.29%;中砂組分為9.44%;其他組分均不足8%(見表2和圖2).粒度頻率分布圖反映該樣品粒度呈多峰式分布,其中主峰粒徑10~200 μm(見圖3).粒度概率累積曲線上并未見明顯跳躍(見圖4).由概率累積曲線計算得Mean值為3.85,SDev值為2.31,Skewness值為-0.18,Kurtosis值為1.00,表明該樣品Φ值粒徑均值在極細砂粒徑范圍內(nèi),分選非常差,粒度分布偏向粗粒,為中等峰度分布(見表3).
D-含泥砂懸浮物樣品粒徑為1.45~976 μm(見表1),在粘土至粗砂粒級范圍(見表2),其中以粉砂組分為主,體積分數(shù)達76.05%;粘土組分為12.90%;其他組分均不足8%(見表2和圖2).粒度頻率分布圖反映該樣品粒度大體呈雙峰式分布,頻率峰粒徑分別為1~10和10~200 μm(見圖3).粒度概率累積曲線上并未見明顯跳躍(見圖4).由概率累積曲線計算得Mean值為5.92,SDev值為1.62,Skewness值為-0.02,Kurtosis值為0.88,表明該樣品Φ值粒徑均值在粉砂粒徑范圍內(nèi),分選差,粒度分布近對稱,為寬峰分布(見表3).
D-砂泥樣品粒徑為1.45~1 630 μm(見表1),在粘土至極粗砂粒級范圍(見表2),其中粉砂組分相對占優(yōu),體積分數(shù)達35.01%;極細砂、細砂和中砂組分也較可觀,分別占15.15%,17.12%和22.21%;其他組分均不足7%(見表2和圖2).粒度頻率分布圖反映該樣品粒度呈多峰式分布,其中主峰粒徑在70~1 000 μm(見圖3).粒度概率累積曲線上并未見明顯跳躍(見圖4).由概率累積曲線計算得Mean值為3.43,SDev值為2.21,Skewness值為0.27,Kurtosis值為0.83,表明該樣品Φ值粒徑均值在極細砂粒徑范圍,分選非常差,粒度分布偏向細粒,為寬峰分布(見表3).
結(jié)果表明,這些采樣點的樣品粒度顯示某些一致性的規(guī)律,所有砂泥樣品的粒度均值均大于該點含泥砂水樣品的粒度均值,從流向上看,除D點外其余砂泥樣品與含泥砂水樣品的粒度均值趨勢一致(見圖5).所有砂泥樣品的粒度分布標準方差均大于該點懸浮物樣品的粒度分布標準方差(見圖6).從統(tǒng)計量的數(shù)值來看,所有樣品普遍呈分選差至分選非常差的特點(見表3),與樣品粒度均顯示多峰分布的特點相一致(見圖3).
圖5 采樣點粒度均值(Mean)變化圖Fig.5 The diagram showing variation of graphic meansof the samples橫坐標為采樣點,均值Mean的計算方法見正文.The calculation of mean values is shown in the text.
圖6 采樣點粒度標準差(SDev)變化圖Fig.6 The diagram showing variation of graphic SDevsof the samples橫坐標為采樣點,標準差的計算方法見正文.The calculation of SDev values is shown in the text.
這些結(jié)果同時表明,相較于其他3個采樣點,采樣點D具有獨特的粒度特征.從粒度組分來看,采樣點A、B、C的粒度特征大體相似,均以粉砂組分占主導并含有較多的極細砂;采樣點D的粒度特征相對獨特,其中D-懸浮物樣品含有較多更細的粘土組分,而D-砂泥樣品含有較多更粗的極細砂、細砂甚至中砂組分(見表2和圖2).從統(tǒng)計數(shù)值來看,采樣點A、B、C的粒度大體偏向粗粒、尖峰的特征;采樣點D則顯示近對稱或偏向細粒、寬峰的特征(見表3).
4水動力條件分析
所有采樣點中砂泥樣品的粒度均值和標準方差均大于該點的懸浮物樣品(見圖5和圖6),反映水流條件減弱使粗粒成分沉積,更細粒組分仍然被水流攜帶.如前所述,相較于采樣點A、B、C,采樣點D具有一些獨有的特征.D-砂泥樣品分選非常差,寬峰且偏向細粒的粒度特征表明水流動力條件顯著下降,這也與D-砂泥樣品和D-懸浮物樣品均值在所有樣品中相差最大的結(jié)果相一致(見表3).
然而,所測試的樣品普遍分選差(見表3),頻率分布圖中普遍呈多峰的特點(見圖3),表明水流動力條件復雜,除了層流之外可能還有紊流的影響[44],各點砂泥樣和懸浮物樣的均值和標準方差值在流向方向的變化不顯著(見圖5和圖6),也從側(cè)面反映了水流動力條件較為復雜.為了揭示流向方向的變化規(guī)律,對各樣品粒徑頻率分布曲線進行組分正態(tài)分布擬合,以分離不同的正態(tài)分布組分[45-46],擬合結(jié)果如圖7所示.擬合結(jié)果顯示,采樣點A、B、C的懸浮物樣品的粒度分布可用3個不同均值的正態(tài)分布曲線擬合,這幾個采樣點砂泥樣品的粒度分布可用4個不同均值的正態(tài)分布曲線擬合.其中,A-懸浮物樣品的3個正態(tài)分布組分均值分別為7.64,40.1和310 μm,B-懸浮物樣品的分別為6.72,45.61和1 100 μm,C-懸浮物樣品的分別為6.72,51.8和859 μm;A-砂泥樣品的3個正態(tài)分布組分均值分別為6.72,45.6和1 260 μm,B-砂泥樣品的4個正態(tài)分布組分均值分別為8.68,58.9,240和1 260 μm,C-砂泥樣品的分別為7.64,45.6,454和1 340 μm(見圖7).與此不同,D-懸浮物樣品可僅用2個不同均值的正態(tài)分布曲線擬合,均值分別為
6.72和27.4 μm;D-砂泥樣品亦可僅用2個正態(tài)分布曲線擬合,均值分別為3.11和310 μm(見圖7).本文選取可能代表層流水動力條件的最大正態(tài)組分的均值,作流向方向?qū)Ρ葓D(見圖8),以期揭示水動力條件在流向方向的變化規(guī)律.結(jié)果顯示,包括懸浮物樣品和砂泥樣品在內(nèi)的所有樣品均顯示最大正態(tài)組分均值的系統(tǒng)性變化,即隨流向方向,均值在采樣點D最小,至C點激增至最大,C至A點持續(xù)下降(見圖8).
結(jié)果表明,錢塘江下沙段水動力條件復雜,除了層流之外可能還受紊流影響.樣品粒度的最大正態(tài)組分均值結(jié)果顯示,最大水流分量(可能代表層流)在下沙大橋河流彎曲的側(cè)向加積處(D點)最??;隨著水流經(jīng)過彎曲處進入直流段,最大水流分量激增(C點),之后在直流河段最大水流分量向下游逐漸減小(C點至A點).趙澄林[40]指出,曲流河表層水流在河流彎曲的凸岸處顯著減小,使得凸岸發(fā)生側(cè)向加積作用而形成沙壩;在直流段,水流隨流向逐漸減小.本文采樣點D位于錢塘江下沙段的下沙大橋河流彎曲的凸岸處,因此,其最大水流分量動力小,從而形成下沙大橋處的凸岸沙壩,這也是該點樣品粒度特征與其他采樣點顯著不同的原因.采樣點C至A顯示隨流向往下游最大水流分量動力逐漸減小的趨勢,這與直流河段水動力條件逐漸減弱的趨勢相一致.這種水流趨勢可能由錢塘江下沙段的河流形態(tài)所控制,其中D點水動力條件受控于河流彎曲的凸岸形態(tài),而C至A點的水動力條件減弱的趨勢則受控于直流河形態(tài).
5結(jié)論
對錢塘江下沙段下沙大橋至江東大橋區(qū)間砂泥樣品和含泥砂懸浮物樣品粒度的分析表明:
5.1粒徑組分從粘土至礫均有分布,以粉砂組分占比最多,粒徑均值在粉砂至極細砂范圍,粒度頻率顯示多峰分布特點,分選差至分選非常差,峰度為非常尖峰至寬峰.
5.2該區(qū)間的直流河段粒度特征相似,與下沙大橋河流彎曲凸岸處的粒度特征不同.
5.3粒度特征所反映的復雜水動力條件,可能同時受到層流和紊流的影響.最大水流分量在下沙大橋凸岸處最小,在直流河段隨流向往下游減小.
5.4粒度和最大水流分量受錢塘江下沙段河流形態(tài)控制.
圖7 粒度組分正態(tài)曲線擬合圖Fig.7 Curve-fitting of the grain-size distribution with Gaussian-distribution grain-size components圖中數(shù)值為各組分正態(tài)曲線的均值.The values in the diagrams are Gaussian distribution means of used components.
圖8 采樣點最大粒徑組分正態(tài)曲線均值變化圖Fig.8 Variation of the Gaussian distribution means of the maximum grain-size components
感謝浙江大學地球科學學院粒度分析實驗室為本研究提供粒度測試!感謝林春明教授和匿名審稿專家提出的寶貴意見!
參考文獻(References):
[1]蔣國俊,張志忠.錢塘江河口段動力沉積探討[J].浙江大學學報:理學版,1995,32(3):306-312.JIANG Guojun, ZHAGN Zhizhong. Dynamical sedimentaion in Qiantang Estuary[J]. Journal of Zhejiang University:Science Edition, 1995, 32(3):306-312.
[2]唐訪良,張明,徐建芬,等.錢塘江(杭州段)水中有機氯農(nóng)藥殘留污染特征及健康風險評價[J].環(huán)境科學學報,2015,12(6):552-556.
TANG Fangliang, ZHANG Ming, XU Jianfen, et al. Pollution characteristics and health risk assessment of organochlorine pesticides (OCPs) in water of Qiantang River in Hangzhou Section[J]. Acta Scientiae Circumstantiae, 2015, 12(6):552-556.
[3]ZONG Y, CHEN Z, INNES J B, et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China[J]. Nature, 2007, 449(7161):459-462.
[4]FULLER D Q, QIN L, ZHENG Y, et al. The domestication process and domestication rate in rice: Spikelet bases from the Lower Yangtze[J]. Science, 2009, 323(5921):1607-1610.
[5]尤愛菊,韓曾萃,徐有成,等.錢塘江河口考慮泥沙淤積的水資源可利用量研究[J].泥沙研究,2005(5):22-27.
YOU Aiju, HAN Zengcui, XU Youcheng, et al. Allowable water under resources development of Qiantang Estuary considering sediment deposition[J]. Journal of Sediment Research, 2005(5):22-27.
[6]余炯,曹穎.錢塘江河口段長周期泥沙沖淤和河床變形[J].海洋學研究,2006,24(2):28-38.
YU Jiong, CAO Ying. Long-term sediment erosion /deposition and deformation of river-bed in the Qiantang Estuary[J]. Journal of Marine Sciences, 2006, 24(2):28-38.
[7]曾劍,陳剛,熊紹隆.錢塘江河口細顆粒泥沙起動流速研究[J].水道港口,2010,31(5):347-351.
ZENG Jian, CHEN Gang, XIONG Shaolong. Study on incipient velocity of fine sediment in the Qiantang Estuary[J]. Journal of Waterway and Harbor, 2010, 31(5):347-351.
[8]曾劍,孫志林,潘存鴻,等.錢塘江河口徑流長周期特性及其對河床的影響[J].浙江大學學報:工學版,2010,44(8):1584-1588.
ZENG Jian, SUN Zhilin, PAN Cunhong, et al. Long-periodic feature of runoff and its effect on riverbed in Qiantang Estuary[J]. Journal of Zhejiang University:Engineering Science, 2010,44(8):1584-1588.
[9]許丹,孫志林.錢塘江河口突發(fā)污染物擴散數(shù)值模擬分析[J].浙江大學學報:工學版,2010,44(9):1767-1772.
XU Dan, SUN Zhilin. Numerical simulation and analysis of abrupt pollutants diffusion in Qiantang Estuary [J]. Journal of Zhejiang University:Engineering Science, 2010, 44(9):1767-1772.
[10]顧世杰,嚴智.錢塘江江道水下地形沖淤分析研究[J].浙江水利科技,2011(4):33-35.
GU Shijie, YAN Zhi. A study of Qiantang river channel underwater terrain erosion/deposition[J]. Zhejiang Hydrotechnics,2011(4):33-35.
[11]潘存鴻,魯海燕,曾劍.考慮涌潮作用的錢塘江二維泥沙輸移數(shù)值模擬[J].水利學報,2011,42(7):798-804.
PAN Cunhong, LU Haiyan, ZENG Jian. Sediments grain-size characteristics and environmental evolution of Core SE2 in southern bank of Qiangtang River since the Late Quaternary[J]. Journal of Palaeogeography, 2011, 42(7):798-804.
[12]王永桂,張萬順,鄭曉燕,等.錢塘江沉沙池水沙數(shù)值模擬研究[J].中國農(nóng)村水利水電,2015(6):6-11.WANG Yonggui,ZHANG Wanshun,ZHENG Xiaoyan, et al. A study of water and sediment transport numerical simulation of sand basin in the Qiantang River[J]. China Rural Water and Hydropower, 2015 (6):6-11.
[13]BRIERLEY G J, HICKIN E J. The downstream gradation of particle sizes in the Squamish River, British Columbia[J]. Earth Surface Processes and Landforms, 1985, 10(6):597-606.
[14]NICHOLAS A P, WALLING D E. The significance of particle aggregation in the overbank deposition of suspended sediment on river floodplains[J]. Journal of Hydrology, 1996, 186(1):275-293.
[15]SLATTERY M C, BURT T P. Particle size characteristics of suspended sediment in hillslope runoff and stream flow[J]. Earth Surface Processes and Landforms, 1997, 22(8):705-719.
[16]PHILLIPS J M, WALLING D E. The particle size characteristics of fine-grained channel deposits in the River Exe Basin, Devon, UK[J]. Hydrological Processes, 1999, 13(1):1-19.
[17]ZHANG Xia, LIN Chunming, ROBERT W, et al. Facies architecture and depositional model of a macrotidalincised-valley succession(Qiantang River Estuary, Eastern China) and differences from other macrotidal systems[J].GSA Bulletin,2014,1130(30835):499-522.
[18]ZHANG Xia, LIN Chunming, LI Yanli, et al. Sealing mechanism for cap beds of shallow-biogenic gas reservoirs in the Qiantang River incised valley, China[J]. Continental Shelf Research, 2013,69(6):155-167.
[19]BAINBRIDGE Z T, WOLANSKI E,LVAREZ-ROMERO J G, et al. Fine sediment and nutrient dynamics related to particle size and floc formation in a Burdekin River flood plume, Australia[J]. Marine Pollution Bulletin, 2012, 65(4):236-248.
[20]張桂甲,李從先.錢塘江下切河谷充填及其層序地層學特征[J].海洋地質(zhì)與第四紀地質(zhì),1995,15(4):57-68.
ZHANG Guijia, LI Congxian. The infilling of the river paleovalley incised Qiantang and its sequence stratigraphic characteristics[J]. Marine Geology & Quaternary Geology, 1995, 15(4):57-68.
[21]張桂甲,李從先.晚第四紀錢塘江下切河谷體系層序地層特征[J].同濟大學學報:自然科學版,1998,26(2):320-324.
ZHAGN Guijia, LI Congxian. Sequence stratigraphy of the Qiantangjiang incised-valley system formed since the last glaciations[J]. Journal of Tongji University: Nature Science,1998,26(2):320-324.
[22]林春明,李艷麗,卓弘春,等.錢塘江下切河谷充填物地質(zhì)特征及淺層生物氣的孔隙水壓力封閉機理[J].古地理學報,2009,11(3):314-329.
LIN Chunming, LI Yanli, ZHUO Hongchun, et al. Geology and pore-water pressure sealing of shallow biogenic gas in the Qiantang River incised valley fills[J]. Journal of Palaeogeography, 2009, 11(3):314-329.
[23]李艷麗,林春明,張霞,等.錢塘江河口區(qū)晚第四紀古環(huán)境演化及其元素地球化學特征[J].第四紀研究,2011,31(5):822-836.LI Yanli, LIN Chunming, ZHANG Xia, et al. Paleoenvironment evolution during the late Quaternary the Qiantang River mouth area: Evidence from the SE2core sediment and its rare earth elements geochemistry[J]. Quaternary Science, 2011, 31(5):822-836.
[24]張霞,林春明,高抒,等.錢塘江下切河谷充填物沉積序列和分布模式[J].古地理學報,2013,15(6):839-852.
ZHANG Xia, LIN Chunming, GAO Shu, et al. Sedimentary sequence and distribution pattern of filling in Qiantang River incised valley[J]. Journal of Palaeogeography, 2013,15(6):839-852.
[25]潘存鴻,曾劍,唐子文,等.錢塘江河口泥沙特性及河床沖淤研究[J].水利水運工程學報,2013(1):1-7.
PAN Cunhong, ZENG Jian, TANG Ziwen, et al. A study of sediment characteristics and riverbed erosion/deposition in Qiantang Estuary[J]. Hydro-Science and Engineering, 2013(1):1-7.
[26]范代讀,蔡國富,尚帥,等.錢塘江河口北邊灘涌潮沉積作用與特征[J].科學通報,2012(13):1157-1167.
FAN Daidu, CAI Guofu, SHANG Shuai, et al. Sedimentation processes and sedimentary characteristics of tidal bores along the north bank of the Qiantang Estuary[J]. China Science Bull, 2012(13):1157-1167.
[27]涂俊彪,范代讀,尚帥,等.錢塘江河口涌潮河段灘槽演替與沉積層序[J].地球科學:中國地質(zhì)大學學報,2014,39(3):261-270.
TU Junbiao,F(xiàn)AN Daidu, SHANG Shuai, et al. Evolution and sedimentary sequence of tidal channel-flat system at bore-affected reach of the Qiantang Estuary[J]. Earth Science Journal of China University of Geosciences, 2014, 39(3):261-270.
[28]李從先,陳剛,鐘和賢,等.冰后期錢塘江口沉積層序和環(huán)境演變[J].第四紀研究,1993(1):16-24.
LI Congxian, CHEN Gang, ZHONG Hexian, et al. Sedimentary sequence and environment evolution of Qiantang Estuary during postglacial period[J]. Quaternary Sciences, 1993(1):16-24.
[29]張桂甲,李從先.末次冰期以來錢塘江河口灣充填的物質(zhì)來源[J].科學通報,1997(16):1741-1744.
ZHANG Guijia, LI Congxian. The sedimentary origin of the Qiantang river Estuary since the last glacial period[J].Chinese Science Bulletin,1997(16):1741-1744.
[30]朱玉榮.冰后期最大海侵以來長江、錢塘江河口灣發(fā)育過程的沉積動力學研究[J].海洋地質(zhì)與第四紀地質(zhì),2000,20(2):1-6.
ZHU Yurong. Sedment dynamics study on the development processes of the paled-Yangze and the Qiantang Estuaries since the post-glacial[J]. Marine Geology & Quaternary Geology, 2000, 20(2):1-6.
[31]李艷麗.晚第四紀以來錢塘江下切河谷充填物特征及古環(huán)境演化[D].南京:南京大學,2010.
LI Yanli. Characteristics of Fill and Palaeoenvironment Evolution Since the Late Quaternary in the Qiantang River Incised Valley[D]. Nanjing:Nanjing University, 2010.
[32]潘峰,林春明,李艷麗,等.錢塘江南岸SE2孔晚第四紀以來沉積物粒度特征及環(huán)境演化[J].古地理學報,2011,13(2):236-244.
PAN Fen, LIN Chunming, LI Yanli, et al. Sediments grain-size characteristics and environmental evolution of Core SE2 in southern bank of Qiangtang river since the Late Quaternary[J]. Journal of Palaeogeography, 2011, 13(2):236-244.
[33]顧明光.錢塘江北岸晚第四紀沉積與古環(huán)境演變[J].中國地質(zhì),2009,36(2):376-386.
GU Mingguang. Late Quaternary sediments and paleoenvironmental evolution on the northern bank of the Qiantang River[J]. Geology in China, 2009, 36(2):376-386.
[34]林秀斌,陳漢林,程曉敢,等.青藏高原東北部隆升:來自寧夏同心小洪溝剖面的證據(jù)[J].地質(zhì)學報,2009,83(4):455-467.
LIN Xiubin, CHEN Hanlin, CHENG Xiaogan, et al. Uplift of the Northeastern Tibetan Plateau: Evidences from the Xiaohonggou Section in Tongxin, Ningxia[J]. Acta Geologial Sinica, 2009, 83(4):455-467.
[35]KRUMBEIN W C. Size frequency distributions of sediments[J]. Journal of Sedimentary Research, 1934, 4(2):65-77.
[36]FORK R. Brazos river bar-A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1):3-26.
[37]UDDEN J A. Mechanical composition of clastic sediments[J]. Geological Society of America Bulletin, 1914, 25(1):655-744.
[38]WENTWORTH C K. A scale of grade and class terms for clastic sediments[J]. Journal of Geology, 1922, 30:377-392.
[39]BLOTT S J, PYE K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes & Landforms, 2001, 26(11):1237-1248.
[40]趙澄林.沉積學原理[M].北京:石油工業(yè)出版社,2001:43-57.
ZHAO Chenglin. Principles of Sedimentology[M]. Beijing:Petroleum Industry Press, 2001:43-57.
LIU Yan, ZHANG Wenjing, CHEN Xinwei, YAN Lingyu, MENG Kaijie, FAN Qirui
(SchoolofEarthSciences,ZhejiangUniversity,Hangzhou310027,China)
Grain-size analyses of the sediments across stream-directed section in Xiasha segment of Qiantang River. Journal of Zhejiang University(Science Edition), 2016,43(3):325-336
Abstract:In light of the grain-size analyses in Qiantang River, previous studies mostly emphasized on the cross-stream section. To determine the sediment grain-size variation across stream-directed section, we have collected grain-size samples between Xiasha and Jiangdong Bridges in the Xiasha segment of the river. Both soluble and solid samples have been collected and analyzed. The analyzed results indicate that the sediment grains, ranging from 1.45-3 500 μm, consist of clay to gravel components with the silt component taking dominance. The mean grain sizes, spanning from 3.24-5.92 μm, are within the range between silt and very fine sand. Frequency-distribution diagrams suggest that the grain sizes are multimodal, very platykurtic to leptokurtic, and poorly to very poorly sorted. Grain-size features are similar in the samples collected from the straight-directed part of the river, which are dramatically different with those from salient point of the river. Generally, the grain-size features suggest complex hydrodynamic condition impacted by both laminar and turbulent flows. However, the results indicate that the force of maximum flow component is the least in the salient point and decreases downward the flow direction in the straight-directed part of the river, which is inferred to be controlled by the river morphology.
Key Words:Qiantang River; grain-size analyses; hydrodynamic condition;meandering river
中圖分類號:P 714
文獻標志碼:A
文章編號:1008-9497(2016)03-325-12
作者簡介:劉艷(1986-),ORCID:http://orcid.org/0000-0002-7005-4501,女,碩士,實驗員,主要從事地質(zhì)學相關(guān)實驗工作.*通信作者,ORCID:http://orcid.org/0000-0003-2757-8171,E-mail:wenjing19910523@126.com.
基金項目:中央高校基本科研業(yè)務費專項資金科研發(fā)展專項項目(2016FAZ3007);浙江大學SRTP項目;浙江大學探究性實驗項目.
收稿日期:2015-08-06.
DOI:10.3785/j.issn.1008-9497.2016.03.014