李慶華 陳莘莘 徐青
摘要:為了更有效地求解三維軸對(duì)稱(chēng)功能梯度材料瞬態(tài)熱傳導(dǎo)問(wèn)題,對(duì)無(wú)網(wǎng)格自然單元法應(yīng)用于此類(lèi)問(wèn)題進(jìn)行了研究,并發(fā)展了相應(yīng)的計(jì)算方法?;趲缀涡螤詈瓦吔鐥l件的軸對(duì)稱(chēng)性,三維的軸對(duì)稱(chēng)問(wèn)題可降為二維平面問(wèn)題。為了簡(jiǎn)化本質(zhì)邊界條件的施加,軸對(duì)稱(chēng)面上的溫度場(chǎng)采用自然鄰近插值進(jìn)行離散。功能梯度材料特性的變化由高斯點(diǎn)的材料參數(shù)進(jìn)行模擬。時(shí)間域上,采用傳統(tǒng)的兩點(diǎn)差分法進(jìn)行離散求解,進(jìn)而得到瞬態(tài)溫度場(chǎng)的響應(yīng)。數(shù)值算例結(jié)果表明,提出的方法是行之有效的,理論及方法不僅拓展了自然單元法的應(yīng)用范圍,而且對(duì)三維軸對(duì)稱(chēng)瞬態(tài)熱傳導(dǎo)分析具有普遍意義。
關(guān)鍵詞:自然單元法;軸對(duì)稱(chēng);功能梯度材料;瞬態(tài)熱傳導(dǎo)
中圖分類(lèi)號(hào):TP301.6
文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1674-4764(2016)02-0069-06
Abstract:In order to solve the transient heat conduction problems in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs) more effectively, a novel numerical method based on the meshless natural element method is proposed. Axial symmetry of geometry and boundary conditions helps to transform the 3D axisymmetric problem into a two-dimensional (2D) prolem. In order to simplify the imposition of the essential boundary conditions, the natural neighbour interpolation is adopted to discretize the temperature field within the cross section. The variations of functionally graded material properties are simulated by employing proper material parameters at Gauss points. The spatially discretized heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. The present method not only broadens the application scope of the natural element method, but also will be generally available to transient heat conduction analyses of 3D axisymmetric solids.
Keywords:natural element method; axisymmetric; functionally graded materials; transient heat conduction
功能梯度材料是通過(guò)特定的材料制備工藝將不同性能的兩種或兩種以上材料按一定的設(shè)計(jì)規(guī)律組合起來(lái)的新型非均勻復(fù)合材料[1]。功能梯度材料的最大特點(diǎn)是材料參數(shù)的連續(xù)性,完全避免了層合復(fù)合材料的材料參數(shù)在層層之間的間斷面處不連續(xù)的問(wèn)題,提高了材料強(qiáng)度和耐熱性。因此,功能梯度材料在航空、航天及核反應(yīng)堆等高溫環(huán)境中具有廣泛的應(yīng)用潛力,對(duì)功能梯度材料的熱力學(xué)行為進(jìn)行研究十分必要[2-5]。然而,相對(duì)于二維平面問(wèn)題,目前對(duì)于三維軸對(duì)稱(chēng)功能梯度材料瞬態(tài)熱傳導(dǎo)問(wèn)題的數(shù)值方法研究相對(duì)較少[6-8]。
自然單元法[9-10]是一種新興的數(shù)值分析方法,因其獨(dú)特的優(yōu)勢(shì),得到了國(guó)內(nèi)外許多學(xué)者的極大關(guān)注[11-15]。這種方法基于離散節(jié)點(diǎn)的Voronoi圖和Delaunay三角化幾何結(jié)構(gòu),采用自然鄰近插值構(gòu)造全域近似函數(shù)和試函數(shù)。自然鄰近插值方案構(gòu)造簡(jiǎn)單,不涉及到復(fù)雜的矩陣求逆運(yùn)算,而且不需要任何人為參數(shù),從而避免了無(wú)單元伽遼金法中由于不確定的影響半徑造成的影響域計(jì)算的不確定性。此外,自然單元法的形函數(shù)滿足插值性質(zhì),可以準(zhǔn)確地施加本質(zhì)邊界條件,無(wú)需其他無(wú)網(wǎng)格法類(lèi)似的特殊處理過(guò)程。自然單元法已經(jīng)被成功地應(yīng)用于很多領(lǐng)域,但目前尚未見(jiàn)到三維軸對(duì)稱(chēng)熱傳導(dǎo)分析的無(wú)網(wǎng)格自然單元法的研究成果。
為了進(jìn)一步拓展自然單元法的應(yīng)用范圍,本文基于加權(quán)殘值法詳細(xì)推導(dǎo)了三維軸對(duì)稱(chēng)功能梯度材料瞬態(tài)熱傳導(dǎo)分析的自然單元法理論公式,并給出了其詳細(xì)的數(shù)值實(shí)現(xiàn)過(guò)程。在此基礎(chǔ)上,采用FORTRAN自編了相關(guān)的計(jì)算程序。最后,通過(guò)典型算例的計(jì)算和對(duì)比分析,不僅驗(yàn)證了自然單元法應(yīng)用于三維軸對(duì)稱(chēng)功能梯度材料瞬態(tài)熱傳導(dǎo)分析的有效性和合理性,并且討論了梯度參數(shù)的變化對(duì)計(jì)算結(jié)果的影響。
1 自然鄰近插值
5 結(jié) 論
作為介于有限元法與無(wú)網(wǎng)格法之間的一種數(shù)值方法,自然單元法的節(jié)點(diǎn)影響域是由節(jié)點(diǎn)的Voronoi結(jié)構(gòu)所規(guī)定的自然相鄰關(guān)系給出,不受人為參數(shù)的影響,具有其他無(wú)網(wǎng)格法不可比擬的優(yōu)越性。根據(jù)三維軸對(duì)稱(chēng)功能梯度材料瞬態(tài)熱傳導(dǎo)方程及其邊界條件,利用加權(quán)殘值法,選取自然鄰近插值對(duì)軸對(duì)稱(chēng)面上的溫度場(chǎng)進(jìn)行離散,首次詳細(xì)推導(dǎo)了三維軸對(duì)稱(chēng)功能梯度材料瞬態(tài)熱傳導(dǎo)問(wèn)題的自然單元法計(jì)算公式,并編制了相應(yīng)的FORTRAN計(jì)算程序。本文分析和算例求解結(jié)果表明,采用自然單元法求解三維軸對(duì)稱(chēng)功能梯度材料瞬態(tài)熱傳導(dǎo)問(wèn)題是可行的,具有精度高和穩(wěn)定性好的優(yōu)點(diǎn)。本文方法還可以容易地推廣到三維軸對(duì)稱(chēng)功能梯度材料熱彈性問(wèn)題的求解計(jì)算。
參考文獻(xiàn):
[1] 張靜華,魏軍楊. DQ法求解FGM Levinson梁的靜態(tài)彎曲問(wèn)題[J]. 華東交通大學(xué)學(xué)報(bào), 2014, 31(3): 80-87.
ZHANG J H, WEI J Y. Static bending solution of functionally graded material Levinson beams based on differential quadrature method [J]. Journal of East China Jiaotong University, 2014, 31(3): 80-87. (in Chinese)
[2] WANG H, QIN Q H, KANG Y L. A meshless model for transient heat conduction in functionally graded materials [J]. Computational Mechanics, 2006, 38: 51-60.
[3] 藍(lán)林華,富明慧,程正陽(yáng). 功能梯度材料瞬態(tài)熱傳導(dǎo)問(wèn)題的降維精細(xì)積分法[J]. 固體力學(xué)學(xué)報(bào), 2010, 31(4): 406-410.
LAN L H, FU M H, CHENG Z Y. Decrement-dimensional precise time integration of 2D transient heat conduction equation for functionally graded materials [J]. Chinese Journal of Solid Mechanics, 2010, 31(4): 406-410. (in Chinese)
[4] 陳建橋,丁亮. 功能梯度材料瞬態(tài)熱傳導(dǎo)問(wèn)題的MLPG方法[J]. 華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007, 35(4): 119-121.
CHEN J Q, DING L. A MLPG method of transient heat transfer in FGMs [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2007, 35(4): 119-121. (in Chinese)
[5] 李慶華,陳莘莘,薛志清,等. 基于自然元法和精細(xì)積分法的功能梯度材料瞬態(tài)熱傳導(dǎo)問(wèn)題求解[J]. 計(jì)算機(jī)輔助工程, 2011, 20(3): 25-28.
LI Q H, CHEN S S, XUE Z Q, et al. Transient heat conduction solution to functionally graded materials based on natural element method and precise integration method [J]. Computer Aided Engineering, 2011, 20(3): 25-28. (in Chinese)
[6] LI Q H, CHEN S S, ZENG J H. A meshless model for transient heat conduction analyses of 3D axisymmetric functionally graded solids [J]. Chinese Physics B, 2013, 22: 120204.
[7] SLADEK J, SLADEK V, HELLMICH C h, et al. Heat conduction analysis of 3D axisymmetric and anisotropic FGM bodies by meshless local Petrov-Galerkin method [J]. Computational Mechanics, 2007, 39: 323-333.
[8] SLADEK J, SLADEK V, KRIVACEK J, et al. Local BIEM for transient heat conduction analysis in 3D axisymmetric functionally graded solids [J]. Computational Mechanics, 2003, 32: 169-176.
[9] SUKUMAR N, MORAN T, BELYTSCHKO T. The natural element method in solid mechanics [J]. International Journal for Numerical Methods in Engineering, 1998, 43(5): 839-887.
[10] SUKUMAR N, MORAN B. C1 natural neighbour interpolation for partial differential equations [J]. Numerical Methods for Partial Differential Equations, 1999, 15(4): 417-447.
[11] 江濤,章青. 直接增強(qiáng)自然單元法計(jì)算應(yīng)力強(qiáng)度因子[J]. 計(jì)算力學(xué)學(xué)報(bào), 2010, 27(2): 264-269.
JIANG T, ZHANG Q. Computing stress intensity factors by enriched natural element method [J]. Chinese Journal of Computational Mechanics, 2010, 27(2): 264-269. (in Chinese)
[12] 張勇,易紅亮,談和平. 求解輻射導(dǎo)熱耦合換熱的自然單元法[J]. 工程熱物理學(xué)報(bào), 2013, 34(5): 918-922.
ZHANG Y, YI H L, TAN H P. Natural element method for coupled radiative and conductive heat transfer [J]. Journal of Engineering Thermophysics, 2013, 34(5): 918-922. (in Chinese)
[13] 董軼,馬永其,馮偉. 彈性力學(xué)的雜交自然單元法[J]. 力學(xué)學(xué)報(bào), 2012, 44(3): 568-575.
DONG Y, MA Y Q, FENG W. The hybrid natural element method for elasticity [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 568-575. (in Chinese)
[14] 曾祥勇,朱愛(ài)軍,鄧安福. Winkler地基上厚板分析的自然單元法[J]. 固體力學(xué)學(xué)報(bào), 2008, 29(2): 163-169.
ZENG X Y, ZHU A J, DENG A F. Natural element method for analysis of thick plates lying over Winkler foundation [J]. Chinese Journal of Solid Mechanics, 2008, 29(2): 163-169. (in Chinese)
[15] 周書(shū)濤,劉應(yīng)華,陳莘莘. 基于自然單元法的極限上限分析[J]. 固體力學(xué)學(xué)報(bào), 2012, 33(1): 39-47.
ZHOU S T, LIU Y H, CHEN S S. Upper-bound limit analysis based on natural element method [J]. Chinese Journal of Solid Mechanics, 2012, 33(1): 39-47. (in Chinese)
[16] CHEN L, LIEW K M. A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems [J]. Computational Mechanics, 2011, 47: 455-467.
[17] CARSLAW H S, JAEGER J C. Conduction of heat in solids [M]. Oxford: Clarendon Press, 1959.
(編輯 胡 玲)