李煒娟,任清風(fēng),徐群英,張中偉,李偉,馮建高,任曉慧,肖元梅?
?
慢性鉛暴露對大鼠腦組織XRCC1 mRNA表達的影響及其與氧化應(yīng)激的關(guān)系
李煒娟1,2,任清風(fēng)1,3,徐群英1,張中偉1,李偉1,馮建高1,任曉慧1,肖元梅1?
摘要:目的觀察飲水鉛暴露對大鼠大腦皮質(zhì)、小腦、海馬組織中X線交錯互補修復(fù)基因1(XRCC1)mRNA表達的影響及其與氧化應(yīng)激的關(guān)系。方法40只SD大鼠根據(jù)體質(zhì)量按隨機區(qū)組法分對照組和4個鉛暴露組:最低劑量組、低劑量組、中劑量組、高劑量組,對照組自由飲用去離子水,4個鉛暴露組分別飲用100、200、400、800 mg/L的醋酸鉛溶液,連續(xù)染毒60 d后取大腦皮質(zhì)、小腦和海馬。RT-PCR技術(shù)檢測腦組織XRCC1 mRNA的表達量,并測定腦組織鉛、過氧化氫酶(CAT)、谷胱甘肽(GSH)和過氧化氫(H2O2)的含量。結(jié)果與對照組比較,鉛暴露組大鼠大腦皮質(zhì)、小腦和海馬中XRCC1 mRNA表達量、腦鉛的含量和H2O2水平均升高(P<0.05);而CAT、GSH含量基本低于對照組(P < 0.05);相關(guān)性分析顯示鉛暴露組大鼠大腦皮質(zhì)、小腦和海馬中XRCC1 mRNA表達量與腦組織鉛含量呈正相關(guān)(r分別為0.608、0.438、0.470,P<0.01),與CAT、GSH呈負相關(guān)(r分別為-0.343、-0.465、-0.423,-0.383、-0.489、-0.366,P<0.05),與H2O2呈正相關(guān)(r分別為0.455、0.517、0.342,P<0.05)。結(jié)論鉛可通過誘導(dǎo)細胞氧化應(yīng)激而影響XRCC1 mRNA的表達。
關(guān)鍵詞:鉛;X線交錯互補修復(fù)基因1;氧化應(yīng)激;過氧化氫酶;谷胱甘肽;過氧化氫;腦組織
?通訊作者E-mail: xym72@163.com
鉛是一種廣泛存在于環(huán)境中的重金屬毒物,可造成多系統(tǒng)多器官損傷。神經(jīng)系統(tǒng)對鉛中毒最為敏感,微量鉛暴露便可以引起神經(jīng)系統(tǒng)的功能異常。隨著研究的不斷深入,氧化應(yīng)激損傷被認為是鉛致神經(jīng)系統(tǒng)損傷的主要原因[1-2]。鉛中毒誘導(dǎo)機體產(chǎn)生大量活性氧自由基,可能導(dǎo)致DNA分子發(fā)生氧化損傷。堿基切除修復(fù)(base excision repair, BER)是最常見的DNA損傷修復(fù)形式,BER過程中,X線交錯互補修復(fù)基因1(XRCC1)充當(dāng)腳手架蛋白的作用,其本身不具有酶的活性,主要是通過與多種酶(DNA多聚酶β、PARP1、DNA連接酶Ⅲ等)結(jié)合從而參與損傷位點的修復(fù)[3-5]。以往研究多關(guān)注于XRCC1基因多態(tài)性與鉛中毒的易感性,而有關(guān)鉛對XRCC1基因mRNA表達的研究報道少見。本文通過檢測大鼠大腦皮質(zhì)、小腦、海馬組織中XRCC1 mRNA的表達水平,分析其與腦組織鉛含量及氧化應(yīng)激指標(biāo)之間的關(guān)系,以期為進一步從分子水平探討鉛的神經(jīng)毒性機制提供科學(xué)依據(jù)。
1.1主要試劑與儀器乙酸鉛購于西隴化工廠;RNA提取試劑盒購于上海索萊寶生物科技公司;引物由Invitrogen公司合成;逆轉(zhuǎn)錄試劑盒購于美國Thermo公司;鉛標(biāo)準(zhǔn)溶液購于國家標(biāo)準(zhǔn)物質(zhì)研究中心;過氧化氫酶(CAT)、谷胱甘肽(GSH)和過氧化氫(H2O2)測定試劑盒購于碧云天生物技術(shù)研究所。AA-6300C型石墨爐原子吸收分光光度計(日本島津公司);AAS SOLAAR M6石墨爐原子吸收分光光度計(美國Thermo公司);PCR擴增儀(美國BIO-RAD);多功能酶標(biāo)儀(美國Molecular Devices);722型可見分光光度計(上海精密科學(xué)儀器公司);凝膠成像分析系統(tǒng)(美國Synoptics公司)。
1.2實驗動物分組及處理40只剛斷乳、雄性、健康SPF級SD大鼠,體質(zhì)量90~100 g,購自北京維通利華實驗動物有限公司,動物合格證號:SCXK(京)2012-0001。適應(yīng)性喂養(yǎng)1周后,根據(jù)體質(zhì)量按隨機區(qū)組法分為對照組和4個鉛暴露組,每組8只,分別自由飲用去離子水(對照組)、100 mg/L的乙酸鉛溶液(最低劑量組)、200 mg/L的乙酸鉛溶液(低劑量組)、400 mg/L的乙酸鉛溶液(中劑量組)、800 mg/L的乙酸鉛溶液(高劑量組),動物染毒和處理方法參照肖元梅等[2]的方法。
1.3檢測指標(biāo)及其方法(1)RT-PCR檢測XRCC1 mRNA表達水平:E.Z.N.A.TMDNA/RNA/Protein Isolation Kit試劑盒提取大鼠腦組織RNA,檢測RNA純度及濃度后使用Rever?tAid First Strand cDNA Synthesis kit進行逆轉(zhuǎn)錄反應(yīng)(RT),Dream Tap Green PCR Master Mix (2×)進行聚合酶鏈?zhǔn)綌U增反應(yīng)(PCR)。XRCC1引物,上游5′- AGAGGCTGACCTGC?CAATTC-3′,下游5′-CGGTCGCTCATGTAGTCCTC-3′;內(nèi)參基因β-actin引物,上游5′-CTGTGTGGATTGGTGGCTCT-3′,下游5′-GCTCAGTAACAGTCCGCCTA-3′。程序:95℃2 min;95℃30 s,54℃(β-actin)或58℃(XRCC1)30 s,72℃40 s, 40個循環(huán);72℃7 min。(2)腦組織經(jīng)消化后測定鉛的含量[6]。(3)CAT、GSH和H2O2含量測定參照任清風(fēng)等[7]的方法。
2.1鉛暴露對大鼠大腦皮質(zhì)、小腦、海馬中XRCC1 mRNA表達的影響4個鉛暴露組大鼠大腦皮質(zhì)、小腦和海馬中的XRCC1 mRNA表達量均高于對照組(P<0.05),而4個染鉛劑量組間兩兩比較均無明顯差異(P>0.05),見表1、圖1。
Tab. 1 Comparison of the expression of XRCC1 mRNA in cerebral cortex, hippocampus and cerebellum between five groups表1 各組大鼠腦組織中XRCC1 mRNA表達水平比較(n=8,±s)
Tab. 1 Comparison of the expression of XRCC1 mRNA in cerebral cortex, hippocampus and cerebellum between five groups表1 各組大鼠腦組織中XRCC1 mRNA表達水平比較(n=8,±s)
*P < 0.05;a與對照組比較,P < 0.05
組別對照組最低劑量組低劑量組中劑量組高劑量組F XRCC1/β-actin大腦皮質(zhì)0.84±0.13 1.17±0.22a1.21±0.22a1.27±0.21a1.25±0.15a3.45*小腦1.05±0.17 1.36±0.22a1.38±0.29a1.41±0.28a1.46±0.31a3.26*海馬0.82±0.09 1.01±0.15a1.06±0.23a1.16±0.14a1.02±0.00a3.81*
Fig. 1 The expression of XRCC1mRNA in cerebral cortex, hippocampusand cerebellum in five groups圖1 各組大鼠大腦皮質(zhì)、小腦和海馬中XRCC1 mRNA表達電泳圖
2.2大鼠腦組織中鉛含量的變化4個鉛暴露組大鼠大腦皮質(zhì)、小腦、海馬鉛的含量均高于對照組(P<0.05),且隨染鉛水平增高,腦組織中的鉛水平基本呈同步增高趨勢,見表2。
Tab. 2 Comparison of lead levels in brain tissue betweenfive groups表2 各組大鼠腦組織中鉛含量比較?。╪=8,μg/g,±s)
Tab. 2 Comparison of lead levels in brain tissue betweenfive groups表2 各組大鼠腦組織中鉛含量比較?。╪=8,μg/g,±s)
**P<0.01;a與對照組比較,b與最低劑量組比較,c與低劑量組比較,d與中劑量組比較,P < 0.05
組別對照組最低劑量組低劑量組中劑量組高劑量組F大腦皮質(zhì)鉛0.93±0.19 1.56±0.07a1.92±0.13ab2.68±0.42abc3.48±0.48abcd83.63**小腦鉛2.51±0.05 3.23±0.51a3.29±0.50a3.81±0.76ab4.21±0.70abc10.50**海馬鉛2.85±1.38 4.25±0.58a5.51±1.28ab6.79±0.83abc8.46±0.94abcd34.77**
2.3各組大鼠腦組織CAT、GSH和H2O2水平比較染鉛后,大腦皮質(zhì)、小腦和海馬CAT、GSH含量基本低于對照組而H2O2水平高于對照組(P < 0.05),并隨著染鉛劑量的升高,腦組織CAT含量基本呈逐漸下降趨勢,而H2O2水平基本呈逐漸升高趨勢,見表3~5。
Tab. 3 Comparison of CAT levels in brain tissue betweenfive groups表3 各組大鼠腦組織CAT水平比較(n=8,U/mg prot,±s)
Tab. 3 Comparison of CAT levels in brain tissue betweenfive groups表3 各組大鼠腦組織CAT水平比較(n=8,U/mg prot,±s)
**P<0.01;a與對照組比較,b與最低劑量組比較,c與低劑量組比較, P < 0.05
組別對照組最低劑量組低劑量組中劑量組高劑量組F CAT大腦皮質(zhì)11.93±1.85 6.32±1.81a5.56±0.78a4.56±1.15ab3.51±0.96abc44.97**小腦25.36±2.64 13.58±1.42a10.85±1.57ab9.19±1.47ab7.82±1.31abc86.78**海馬8.35±2.12 7.19±0.80 5.67±1.33a4.18±1.26ab3.47±1.22abc16.29**
Tab. 4 Comparison of GSH levels in brain tissue betweenfive groups表4 各組大鼠腦組織GSH水平比較(n=8,mg/L,±s)
Tab. 4 Comparison of GSH levels in brain tissue betweenfive groups表4 各組大鼠腦組織GSH水平比較(n=8,mg/L,±s)
*P < 0.05,**P<0.01;a與對照組比較,P < 0.05
組別對照組最低劑量組低劑量組中劑量組高劑量組F GSH大腦皮質(zhì)38.76±4.89 36.17±3.65 33.96±6.63 30.50±8.31a28.99±6.99a3.21*小腦39.31±5.34 29.58±7.11a25.23±6.53a24.36±8.96a24.03±7.06a6.59**海馬31.13±5.69 26.15±3.47a24.38±6.39a23.38±4.05a22.31±3.72a4.15**
Tab. 5 Comparison of H2O2levels in brain tissue between five groups表5 各組大鼠腦組織H2O2水平比較(n=8,mmol/g prot,±s)
Tab. 5 Comparison of H2O2levels in brain tissue between five groups表5 各組大鼠腦組織H2O2水平比較(n=8,mmol/g prot,±s)
**P<0.01;a與對照組比較,b與最低劑量組比較,P < 0.05
組別對照組最低劑量組低劑量組中劑量組高劑量組F H2O2大腦皮質(zhì)16.37±3.33 20.02±2.29 23.17±5.32a25.49±8.99ab26.85±1.29ab5.65**小腦9.20±0.58 14.97±1.71a15.51±1.96a16.44±2.11a17.38±2.53ab22.88**海馬11.93±1.31 13.11±2.07 14.69±2.06a15.35±2.96ab16.02±1.34ab5.38**
2.3XRCC1 mRNA表達量與腦組織鉛含量和氧化應(yīng)激指標(biāo)的相關(guān)性大腦皮質(zhì)、小腦和海馬XRCC1 mRNA表達量均與其組織鉛、H2O2含量呈正相關(guān),與CAT、GSH含量呈負相關(guān)(均P<0.05),見表6。
Tab. 6 The correlation analysis of the expression of XRCC1 mRNA, lead levels and oxidative stress indicators in brain tissues表6 XRCC1 mRNA表達量與腦組織鉛含量和氧化應(yīng)激指標(biāo)的相關(guān)性分析 (r)
人類XRCC1是參與修復(fù)電離輻射對細胞DNA損害的第一個哺乳動物類基因[8]。XRCC1基因編碼的蛋白質(zhì)在DNA單鏈斷裂修復(fù)過程中發(fā)揮了重要作用,主要作用于堿基切除修復(fù)途徑。BER過程中,XRCC1編碼的蛋白質(zhì)充當(dāng)腳手架蛋白的作用,雖然它本身不具有酶的活性,但是它可以通過與多種酶(如PARP1、DNA連接酶Ⅲ、DNA多聚酶β)結(jié)合形成復(fù)合物參與DNA損傷位點的修復(fù),保證了DNA修復(fù)的精確性,從而發(fā)揮了XRCC1在BER過程中的核心地位[3-5,9-10]。
對XRCC1 mRNA表達的研究,不同研究者所得結(jié)果不盡相同,甚至相反。Yoo等[11]的體外實驗研究表明DNA損傷劑可使XRCC1 mRNA表達下降,并隨著DNA損傷程度的增加而下降。Fujimura等[12]研究表明,正常大鼠大腦皮質(zhì)、小腦、海馬都存在XRCC1的表達,主要在細胞核內(nèi)表達,其中腦組織中海馬區(qū)域表達量最高,氧化應(yīng)激損傷時,大腦皮質(zhì)、小腦、海馬損傷區(qū)域XRCC1基因mRNA的表達量隨著DNA損傷程度的增加而明顯減少。而Bus?ciglio等[13]研究卻顯示唐氏綜合征患者的顳葉、頂葉和枕葉中XRCC1基因mRNA表達量明顯增加,認為表達增加主要是由于活性氧自由基的大量堆積。Fang-Kircher等[14]研究顯示唐氏綜合征患者額葉和小腦區(qū)XRCC1基因mRNA表達量不變甚至是降低。Bosshard等[15]研究顯示海人酸(KA)誘導(dǎo)大鼠癲癇樣發(fā)作16 h后,海馬CA1、CA3和海馬回等處XRCC1基因mRNA表達上調(diào)。本研究顯示,鉛染毒組大鼠大腦皮質(zhì)、小腦和海馬組織中XRCC1基因mRNA的表達量高于對照組,與文獻[11-12,14]研究不同,可能是不同的氧化應(yīng)激誘導(dǎo)物導(dǎo)致DNA損傷的程度不同,進而導(dǎo)致XRCC1基因mRNA的表達量不同。鉛染毒組大鼠腦組織中XRCC1基因mRNA的表達量與組織鉛含量呈正相關(guān),與抗氧化指標(biāo)CAT、GSH含量呈負相關(guān),與氧化指標(biāo)H2O2呈正相關(guān),表明鉛暴露后大鼠腦組織XRCC1基因mRNA表達變化與鉛所致腦組織氧化應(yīng)激損傷密切相關(guān)。
綜上,慢性鉛暴露使大鼠大腦皮質(zhì)、小腦、海馬XRCC1 mRNA表達量增加,且與組織鉛含量和H2O2呈正相關(guān),與CAT、GSH呈負相關(guān),說明鉛可通過誘導(dǎo)細胞氧化應(yīng)激損傷而影響XRCC1基因mRNA的表達,但其具體的分子機制有待于進一步深入研究。
[1] Bas H, Kalender Y, Pandir D, et al. Effects of lead nitrate and sodium selenite on DNA damage and oxidative stress in diabetic and nondiabetic rat erythrocytes and leucocytes[J]. Environ Toxicol Pharmacol, 2015, 39(3): 1019-1026. doi:10.1016/j.etap.2015.03.012.
[2] Xiao YM, Xu QY, Zhang ZW, et al. Effects of lead exposure by drinking water on hydrogen peroxide, hydroxyl free radicals and lipid peroxi?dation in brain tissues of rats [J]. Tianjin Med J, 2015, 43(10): 1119-1121.[肖元梅,徐群英,張中偉,等.飲水鉛暴露對大鼠腦組織過氧化氫、羥自由基和脂質(zhì)過氧化的影響[J].天津醫(yī)藥, 2015, 43(10): 1119-1121]. doi:10.11958/j.issn.0253-9896.2015.10.009.
[3] McNeill DR, Lin PC, Miller MG, et al. XRCC1 haploin sufficiency inmice has little effect on aging, but adversely modifies exposuredependent susceptibility[J]. Nucleic Acids Res, 2011, 39 (18): 7992-8004. doi: 10.1093/nar/gkr280.
[4] Campalans A, Kortulewski T, Amouroux R, et al. Distinct spatiotem? poral patterns and PARP dependence of XRCC1 recruitment to sin?gle-strand break and base excision repair[J]. Nucleic Acids Res, 2013, 41(5): 3115-3129. doi: 10.1093/nar/gkt025.
[5] Hanssen-Bauer A, Solvang-Garten K, Sundheim O, et al. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage[J]. Envi?ron Mol Mutagen, 2011, 52(8):623-635. doi: 10.1002/em.20663.
[6] Liang XH, Jiao Y, Feng RP, et al. Comparative study of strong acid digestion method and trypsin digestion method for extract diatom [J]. Forensic Science and Technology, 2008, 4:7-9.
[7] Ren QF, Li WJ, Xu QY, et al. Study on the expression of APE1 pro?tein and their relationships with oxidative stress in brain tissues of rats induced by lead exposure through drinking water[J]. Tianjin Med J,2016,44(2):170-172. [任清風(fēng),李煒娟,徐群英,等.飲水鉛暴露對大鼠腦組織APE1表達的影響及與氧化應(yīng)激的關(guān)系研究.天津醫(yī)藥, 2016, 44(2):170-172]. doi:10.11958/20150148.
[8] Hanssen-Bauer A, Solvang-Garten K, Akbari M, et al. X-Ray re?pair cross complementing protein 1 in base excision repair[J]. Int J Mol Sci, 2012, 13(12):17210-17229. doi: 10.3390/ijms131217210.
[9] Wang SY, Gong ZH, Chen R, et al. JWA regulates XRCC1 and func?tions as a novel base excision repair protein in oxidative-stress-in?duced DNA single-strand breaks[J]. Nucleic Acids Res, 2009,37(6): 1936-1950. doi: 10.1093/nar/gkp054.
[10] Li Y, Li SY, Wu ZW, et al. Polymorphisms in genes of APE1, PARP1, and XRCC1: risk and prognosis of colorectal cancer in a northeast Chinese population[J]. Med Oncol, 2013, 30(2): 505-508.
[11] Yoo H, Li L, Sacks PG. Alteration in expression and structure of the DNA repair gene XRCC1[J]. Biochem Biophys Res Commun, 1992, 186(2):900-910.
[12] Fujimura M, Morita-Fujimura Y, Sugawara T, et al. Early decrease of XRCC1, a DNA base excision repotein, may contribute to DNA fragmentation after transient focal cerebral ischemia in mice[J]. Stroke,1999, 30(11):2456-2462.
[13] Busciglio J, Yankner BA. Apoptosis and increased generation of re?active oxygen species in Down′s syndrome neurons in vitro[J]. Na?ture, 1995, 378(6559):776-779.
[14] Fang- Kircher SG, Labudova O, Kitzmueller E, et al. Increased steady state mRNA levels of DNA-repair genes XRCC1, ERCC2 and ERCC3 in brain of patients with Down syndrome[J]. Life Sci, 1999, 64(18): 1689-1699.
[15] Bosshard ME, Markkanen E, Loon B. Base excision repair in physi?ology and pathology of the central nervous system[J]. Int J Mol Sci, 2012, 13(12): 16172-16222.doi: 10.3390/ijms131216172.
2015-09-10收稿2015-10-20修回)
(本文編輯閆娟)
作者單位:1南昌大學(xué)公共衛(wèi)生學(xué)院(郵編330006);2南昌大學(xué)撫州醫(yī)學(xué)院;3九江學(xué)院臨床醫(yī)學(xué)院·附屬醫(yī)院
Effects of chronic lead exposure on expression of XRCC1 gene mRNA and its relationships with oxidative stress in brain tissues of rats
LI Weijuan1,2, REN Qingfeng1,3, XU Qunying1, ZHANG Zhongwei1, LI Wei1, FENG Jiangao1, REN Xiaohui1, XIAO Yuanmei1?
1 School of Public Health, Nanchang University, Nanchang 330006, China; 2 Fuzhou Medical College of Nanchang University; 3 Jiujiang University Clinical Medical College, Jiujiang University Hospital
?Corresponding Author E-mail: xym72@163.com
Abstract:ObjectiveTo observe the effects of lead exposure through drinking water on the expression of XRCC1 mRNA in cerebral cortex, cerebellum and hippocampus of rats and its relationship with oxidative stress. Methods Forty SD rats were divided randomly into five groups: control group and four exposure groups (100 mg/L, 200 mg/L, 400 mg/L and 800 mg/L lead acetate for 60 days respectively). The expression of XRCC1 mRNA in brain was detected by RT-PCR tech?nique after separation of cerebral cortex, cerebellum, and hippocampus. At the same time, lead content in brain tissue and catalase (CAT), glutathione (GSH) and hydrogen peroxide (H2O2)were also detected. Results Compared with control group, the expression of XRCC1 mRNA, content of lead and H2O2levels were significantly higher in cerebral cortex, cerebellum and hippocampus of exposure groups (P < 0.05), whereas the contents of CAT and GSH were significantly lower (P < 0.05). There was a positive correlation between lead level and the expression of XRCC1 mRNA in cerebral cortex, cerebellum and hippo?campus of exposure groups (r=0.608, 0.438 and 0.470,P<0.01). There was a negative correlation between the lead level and CAT and GSH (r=-0.343, -0.465、-0.423, -0.383, -0.489 and -0.366,P<0.05). A positive relationship was found between the lead level and H2O2(r=0.455, 0.517 and 0.342,P<0.05). ConclusionLead exposure can affect the expression of mRNA gene in XRCC1 through inducing cell oxidative stress.
Key words:lead; XRCC1; oxidative stress; catalase; glutathione; hydrogen peroxide; brain tissue
中圖分類號:R994.4
文獻標(biāo)志碼:A
DOI:10.11958/20150151
基金項目:國家自然科學(xué)基金資助項目(81160342);江西省自然科學(xué)基金資助項目(20122BAB205047);江西省教育廳科技項目(GJJ11312)
作者簡介:李煒娟(1988),女,碩士研究生,主要從事重金屬中毒機制與防治研究