• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    概率與統(tǒng)計(jì)典例及其變式探究

    2016-05-30 10:48:04劉族剛寇玉琴
    高中生學(xué)習(xí)·高三版 2016年2期
    關(guān)鍵詞:銳角三角串聯(lián)并聯(lián)

    劉族剛 寇玉琴

    [概率事件]

    例[1] 如圖1,并聯(lián)電路中元件[a,b]在某段時(shí)間內(nèi)接通的概率分別為[p1,p2,]且元件[a,b]接通與否互不影響,求此并聯(lián)電路接通的概率.

    解析 設(shè)在某段時(shí)間內(nèi)元件[a,b]接通的事件分別為[A,B,]因?yàn)樵a,b]接通與否互不影響,所以[A,B]相互獨(dú)立,且[P(A)=p1,P(B)=p2].

    方法一:(利用互斥事件解題)此并聯(lián)電路要被接通,則元件[a,b]至少一個(gè)接通,則此電路被接通的事件為[A?B+A?B+A?B.]

    由于[A?B,A?B,A?B]互斥,

    則[P(A?B+A?B+A?B)][=P(A?B)][+P(A?B)+P(A?B)]

    [=P(A)P(B)+P(A)P(B)+P(A)P(B)]

    [=p1(1-p2)+(1-p2)p1+p1p2][=p1+p2-p1p2].

    方法二:(利用和事件解題)此并聯(lián)電路要被接通,則元件[a]通或元件[b]通,故此并聯(lián)電路被接通的事件為[A+B,]則[P(A+B)=P(A)+P(B)-P(A?B)=P(A)+P(B)-P(A)?][P(B)][=p1+p2-p1p2].

    方法三:(利用對(duì)立事件解題)此并聯(lián)電路被斷開(kāi)的事件為[A?B],由于[A,B]相互獨(dú)立,則[A,B]也相互獨(dú)立,從而此并聯(lián)電路被接通的概率為[1-P(A?B)=1-P(A)?P(B)][=1-(1-p1)(1-p2)=p1+p2-p1p2.]

    點(diǎn)撥 本題三種解法體現(xiàn)了集合“容斥原理”“互斥事件”“和事件”等知識(shí)的交融. 從結(jié)構(gòu)化的角度看“集合”“簡(jiǎn)易邏輯”與“概率”,三者在概念、運(yùn)算及其性質(zhì)等方面有一定的對(duì)應(yīng)關(guān)系. 研究它們之間的聯(lián)系,有益于我們從不同角度觀察數(shù)學(xué)的各個(gè)模塊或分支,深化對(duì)數(shù)學(xué)知識(shí)的認(rèn)知.

    變式1 用[2n]個(gè)相同的元件組成一個(gè)系統(tǒng),按先串聯(lián)后并聯(lián)(如圖2)的方式連接,如果每個(gè)元件能否正常工作是相互獨(dú)立的,且每個(gè)元件能正常工作的概率為[p].求此系統(tǒng)正常工作的概率[P].

    解析 [n]個(gè)相同元件串聯(lián)構(gòu)成的“子系統(tǒng)”正常工作時(shí)必須每一個(gè)元件都正常,故此“子系統(tǒng)”正常工作的概率為[pn.] 由此可知,由兩個(gè)這樣的“子系統(tǒng)”并聯(lián)組成的該系統(tǒng)正常工作的概率為[P=1-(1-pn)2=2pn-p2n].

    變式2 用[2n]個(gè)相同的元件組成一個(gè)系統(tǒng),按先并聯(lián)后串聯(lián)(如圖3)的方式連接,如果每個(gè)元件能否正常工作是相互獨(dú)立的,且每個(gè)元件能正常工作的概率為[p]. 求此系統(tǒng)正常工作的概率[P].

    解析 由例1知,兩個(gè)元件并聯(lián)構(gòu)成的“子系統(tǒng)”能正常工作的概率為[1-(1-p)2=2p-p2][=p(2-p)],所以[n]個(gè)這樣的“子系統(tǒng)”串聯(lián)組成的該系統(tǒng)正常工作的概率為[P=[p(2-p)]n].

    點(diǎn)撥 將[n]個(gè)元件串聯(lián)而成的子系統(tǒng)分別當(dāng)作例1中的元件[a,b]就成了變式1. 因此,變式1是例1的引申,而變式2則是例1的應(yīng)用.

    [概率模型]

    例2 給定正數(shù)[6],然后隨意寫(xiě)出兩個(gè)小于[6]的正整數(shù)(這兩個(gè)數(shù)可以相等),求這兩個(gè)數(shù)與[6]一起能構(gòu)成銳角三角形的概率.

    分析 從[1,2,3,4,5]中取出的兩個(gè)數(shù)可以相等,故這是一個(gè)有放回的抽樣,“隨意寫(xiě)出”說(shuō)明事件是等可能的,故本題是一個(gè)“古典概型”.

    解 設(shè)取出的兩個(gè)數(shù)為[(m,n),]則[m,n∈1,2,3,4,5],共有[5×5=25]種取法,即[(1,1)],[(1,2)][(1,3)],[(1,4)],[(1,5)],[(2,1)][(2,2)],…,[(5,5)],取到每一種的可能性相同,能夠構(gòu)成銳角三角形的只有[(4,5)],[(5,4)],[(5,5)]三種,所以這兩個(gè)數(shù)與[6]一起能構(gòu)成銳角三角形的概率為[P=325.]

    變式1 給定正數(shù)[6],然后隨意寫(xiě)出兩個(gè)小于[6]的正實(shí)數(shù)(這兩個(gè)數(shù)可以相等),求這兩個(gè)數(shù)與[6]一起能構(gòu)成銳角三角形的概率.

    解析 設(shè)寫(xiě)的兩個(gè)數(shù)為[x,y],依題意知[x,y]要滿足[0而[x,y,6]能構(gòu)成銳角三角形(其中[6]為最大的邊),應(yīng)滿足的條件是[0

    猜你喜歡
    銳角三角串聯(lián)并聯(lián)
    用提問(wèn)來(lái)串聯(lián)吧
    《銳角三角函數(shù)》拓展精練
    用提問(wèn)來(lái)串聯(lián)吧
    過(guò)非等腰銳角三角形頂點(diǎn)和垂心的圓的性質(zhì)及應(yīng)用(下)
    過(guò)非等腰銳角三角形頂點(diǎn)和垂心的圓的性質(zhì)及應(yīng)用(上)
    識(shí)別串、并聯(lián)電路的方法
    銳角三角形有幾個(gè)銳角
    審批由“串聯(lián)”改“并聯(lián)”好在哪里?
    我曾經(jīng)去北京串聯(lián)
    并聯(lián)型APF中SVPWM的零矢量分配
    普兰县| 阳朔县| 黔南| 乌鲁木齐县| 靖安县| 武鸣县| 鹤壁市| 山东| 宜昌市| 牡丹江市| 桦川县| 丹凤县| 定安县| 麦盖提县| 乐山市| 调兵山市| 嘉善县| 白河县| 南乐县| 泸水县| 乌苏市| 南宫市| 安义县| 福鼎市| 汉中市| 大新县| 元朗区| 宜州市| 石家庄市| 泰和县| 新宁县| 望城县| 凌云县| 通渭县| 咸宁市| 巢湖市| 犍为县| 临城县| 民乐县| 邢台市| 桦甸市|