• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of the adsorption behavior ofaqueous cadmium on nanozero-valent iron based on orthogonalexperiment and surface complexation modeling☆

    2016-05-30 01:54:54DongmeiLiuHuanTangYingZhaoFuyiCuiJingLu

    DongmeiLiu,Huan Tang,Ying Zhao*,FuyiCui*,Jing Lu

    1 State Key Laboratory ofUrban Water Resource and Environment,Harbin Institute ofTechnology,Harbin 150090,China

    2 Schoolof Municipaland EnvironmentalEngineering,Harbin Institute ofTechnology,Harbin 150090,China

    1.Introduction

    Cadmium(Cd)is a major environmental contaminant which is known to accumulate in rice plants[1].Cd can be introduced into the environment through a combination of natural processes(volcanic eruptions and forest fires)as well as anthropogenic activities(nonferrous metals production,electroplating,manufacturing of Ni–Cd batteries and pigments,application ofphosphatic fertilizers,and burning of fossilfuels)[2,3].The naturaloccurrence of Cd in groundwater is ofgreatconcern due to the toxicity ofCd and the potentialfor chronic exposure[4].To address this problem,the World Health Organization(WHO)had set a maximum guideline concentration of0.003 mg·L-1for Cd in drinking water[5].On this occasion many public watersystems have to adopt cadmium removal processes in their water treatment systems in order to meet the stringent drinking water standards.

    Various technologies are currently available to remove cadmium from water,such as chemicalmethods[6–8],membrane separation technique[9],ion exchange technique[10]and adsorption technique[11–13].Adsorption is a common practice for Cd removalfrom drinking water due to technologicaland cost advantages.

    Nano zero-valentiron(nZVI)has been developed as an ef ficientabsorbent material to treat various heavy metals from contaminated water[14].The speci fic removalmechanisms involved depend on the standard redox potential(E0)of the target metal.The E0of Fe0is-0.44 V.Metals with E0s that are more negative or similar to-0.44 V willbe removed by adsorption,others with E0s that are more positive than-0.44 will be removed by reduction and precipitation.Metals with slightly more positive E0than Fe0willbe removed by reduction,adsorption,oxidation or co-precipitation which depend upon the prevailing geochemicalconditions[15,16].

    As shown by several studies,factors such as aqueous phase pH,concentrations of contaminants and the presence of competitive ions have a signi ficant effect on nZVI's reactivity with metals[17–21].Although researches had investigated the factors that may have effect on the ef ficiency of nZVI,comparatively little research had studied which factor is the most signi ficant one.Figuring out this factor will mean a lot on the application ofnZVI.

    Among allthe nZVIsynthesis methods,chemicalreduction is widely used due to its simplicity and chemicalhomogeneity[22].During the nZVIpreparation,mechanicalagitation needs to be employed to insure the size of ZVI at nanoscale[23].Aggregation of nanoparticles was reported to be caused by the large surface area and magnetic dipole–dipole interactions of the individual particles[24].If the solution is stirred vigorously,the aggregation would be weakened to some extent.However,this mechanical stir method brings some questions(1)the waste ofelectricity,(2)some of the nanoparticles may stick to the agitator which are hard to clean.

    The main objective ofthis study is to find outthe mostsigni ficantfactor that affects the ef ficiency ofnZVI.First,nZVIwillbe prepared by an improved liquid-phase reduction and characterized to verify this new method.Then an orthogonalexperiment and simulation willbe performed underthe same conditions to find outthe mostsigni ficantfactor.

    2.Materials and Methods

    2.1.Synthesis ofnZVIparticles

    The nanoparticles were synthesized via the classical reaction as follows:

    Allthe aqueous solutions were prepared with deionized deoxygenated water.Before the reaction begins,the FeCl3·6H2O(1 mol·L-1)was mixed with PVP(1 g·L-1).Then the NaBH4(1.6 mol·L-1)solution was added to the mixture mentioned above.The nitrogen was sparged into the solution during the whole process to maintain an anaerobic atmosphere.

    2.2.Characterization ofnZVI

    Morphologicalanalysis of the samples was performed by transmission electron microscopy(TEM)using a FEITecnai G2 F30 operated at 300 kV.Samples for TEMobservation were suspended in ethanoland then supported on a double carbon membrane.

    The speci fic surface area(SBET)ofnZVIwas calculated by Brunauer–Emmett–Teller(BET)N2method,and the pore size was measured by the BJH(Barrett,Joyner,and Halenda)N2adsorption/desorption isotherm method at 77 K using the automatic analyzer(ASAP 2020,Micromeritics,USA).

    2.3.Orthogonalexperiment

    The experiments were based on an orthogonalarray experiment design and the following three variables were analyzed:initialpH of the solution,dosage ofnZVIand the initialconcentration ofcadmium.These three factors were identi fied to have signi ficant impact on the ef ficiency ofnZVI[25].

    Other factors such as temperature and existence ofother metalions maybe as importantas the parameters picked.But the effectoftemperature had been studied by Boparai et al.completely so we didn't take this factor into account[26].As for other metalions,such as Pb(II)and As(III),although they may have signi ficant effect on the adsorption of Cd2+by nZVI,it is not appropriate to consider this factor in orthogonal experiment.Therefore,the effects ofmetalions were excluded in our orthogonal experiment.Li et al.had studied the effect of pH in the range of 4–9[27],and Zhang et al.had studied the effect of pH in the range of3–8.6[28].Butin actualproject,the pHofef fluents from chemicalfactory may beyond this range,so itis necessary to study the pHin a larger range.On this occasion,the range ofpH used in our experiment was 2–10.Based on the waste water ofmetallurgicalindustry,the concentration of Cd(II)used in our experiment was 10,20 and 40 mg·L-1.And the dose ofnZVIwas based on ourearlierexperiments.Above all,an L9(33)matrix,which is an orthogonalarray of three factors and three levels,was employed to assign the considered factors and levels as listed in Table 1.

    Data analysis would be carried out through the range analysis to re flect the magnitudes of the three factors.

    Table 1 Levels and factors in orthogonalexperiment design

    Allthe experiments were performed at ambient temperature and pressure using a 250.0 mlserum bottle.The pH values of the solutions were controlled and adjusted with the 0.02 Mbuffer as Boparai et al.had used[29].

    The contents were mixed on a thermostatic oscillator operated at 200 r·min-1.After 1 h an aliquot of supernatant was sampled and filtered using a 0.22μm filter(Millipore),the samples were then transferred into clean falcon tubes and diluted using nitric acid(5%).The remaining concentration of cadmium in the filtrate was determined by means of inductively coupled plasma-optical emission spectroscopy(ICP-OES,AA 200,Agilent Technologies).Blank experiments with and without nZVIand without filtering were also performed to obtain the initialcadmium concentration prior to adsorption,as well as to rule out filtration as a reason forthe decrease on the concentration ofcadmium in the supernatant.

    2.4.Surface complexation modeling

    In aqueous solution,transition metals are known to assume different chemicalforms that the formations depend on the pH of the solution.The speciation analysis ofaqueous Cd2+ions was performed at various initialconcentration,temperature,pH,and ionic strength values using visualMINTEQ software.

    In actualwater,bare nZVIparticles willreactwith water and oxygen to form outer iron(hydr)oxide layer[30].On this occasion,the essence of the adsorption is the interaction between Cd and the outer layer.Based on this,a surface complexation modeling was carried out by VisualMINTEQ 3.0.

    The iron oxide/hydroxide–water interface was represented by,for example,≡FeOH and ≡FeO,where the“≡Fe”represents the solid–surface interface.Adsorbed materials are written as complexes of these surface oxides,for example,≡FeOCd+.And the possible reactions are as follows:

    Modeling was performed using the Diffuse Layer Model(DLM).This surface precipitation modelcan simulate the distribution of ions between adsorbed and dissolved phases based on the reactions as is mentioned above.Since the DLM model has been successfully used to describe metalion adsorption on pure mineralmaterials[31],it is unnecessary to go into details about the theory.Parameters used in the modeling were based on experiment data and/or previous reports[29].

    3.Result and Discussion

    3.1.Characterization ofnZVI

    The microimages of the synthesized nZVIare shown in Fig.1.As shown(Fig.1(a)and(b)),the aggregates can reach to severalmicrometers in length but less than 100 nm in diameter(Fig.1(c))

    The resultdemonstrated thatwe can use N2bubbling and PVP to replace mechanicalstirring in the preparation ofnZVI.PVP,which is a kind ofsurfactantthathas been widely used in the field ofsynthesizing nanosilver,can modify the surface properties of the particles[32].The added PVP can effectively preventthe aggregation ofZVIparticlesby(1)reducing the speci fic surface energy ofnZVIparticles and(2)increasing the steric hindrance between nZVIparticles.

    Fig.1.TEMimage of the nZVI.

    The morphologies of nZVIs showed in Fig.1(a)and(c)were fresh and those in Fig.1(b)and(d)were placed for two months after preparation.As is shown in Fig.1(b)and(d),there is a layer ofsemi-transparent film less than 10 nmthick around the black particle.Itwas reported thatthe exposure ofnZVIto oxygen can lead the formation ofiron oxide layer which contains Fe2O3,Fe3O4and FeOOH[33].The iron nanoparticles possessed a core–shellstructure.The shellrepresented the oxidized part that surrounded the Fe0core and it can prevent the nZVIagainst further oxidation[34].The addition ofnZVIto aqueous systems usually generates OH-by the reduction ofwater,resulting in the immobilization ofmetals by precipitation as hydroxides[35].

    BET analysis indicated a speci fic surface area of 20.3159 m2·g-1.This data was used in the simulation later.Fig.2 is the adsorption isotherm line,the trend of the plot indicated that nZVIis a typicalmaterial without holes or with macroporous.

    The TEMand BET results showed that nZVIprepared with this new approach possessed excellent surface characters.With the presence of PVP,the size ofZVIcan be insured to be in nanosize withoutmechanical stirring.

    Compared to traditionalmethods(Fig.3),this improved method has severaladvantages as follows.

    ·Compared with the three-necked flask,the serum bottle used as reactor is easier to clean and the solid–liquid separation is easier to achieve.

    Fig.2.BJH adsorption/desorption isotherm.

    Fig.3.Diagrammatic sketch ofcomparison between traditionalmethod and new method in the synthesis ofnZVI.

    ·In conventional approaches,negative pressure would be formed induced by rapid stirring,air will be introduced into the reaction mixture and the nZVIwould be oxidized more easily.

    3.2.Orthogonalexperiment

    An L9(33)orthogonalexperimentwas performed and the results are listed in Table 2.All the experiments were aimed at increasing the removalrate ofcadmium by nZVI.

    Table 2 Results of the orthogonalexperiment

    In order to figure out which factor is the most important,a range analysis is necessary.There are two parameters in a range analysis:Kjiand Rj.Kjiis de fined as the sum of the evaluation indexes of alllevels(i,i=1,2,3)in each factor(j,j=A,B,C)andis the mean value of Kji.Rjis de fined as the range between the maximumand minimumvalue ofand is used for evaluating the importance of the factors,i.e.Larger Rjvalue means a greater importance of the factor[36].The calculation is displayed below(for the factor of A):

    where KAiis the K value of the i levelof the factor A;and Yiis the value of the result of the trial number.Other K values of the factors can be determined by the same calculation steps.The mean values of Kfor different factors at different levels in the range analysis were listed in Table 3.

    Table 3 Range analysis data of the removalrate

    As is mentioned above,Rjindicates the signi ficance ofa factor and a larger Rjmeans that this factor has a more signi ficant impacton the removalrate.Based on the comparation of Rj,the prominence order of the factors was:initialpHof the solution(96.453)>initialconcentration of cadmium(3.294)>amount of nZVI(1.747).RCis the largest,which means a smallchange in the initialpH willhave a signi ficant effect on the removalrate ofcadmium.

    The mean value ofeach factor was displayed in Fig.4.Based on the changes in the mean value ofeach factor,it can be speculated that the removalrate sharply increased from 1.98%to 98.267%with the initial pH increased from 4 to 10.When the amount ofnZVIincreased from 1 g·L-1to 4 g·L-1,the removalrate increased steadily from 65.987%to 67.213%,which suggested that the amount ofnZVIhad a little effect on the removal ef ficiency of nZVI.Similarly,it can be speculated that the effect of the cadmium concentration ion is very small.

    Fig.4.Relationship between mean value ofeach factor and the removalrate.

    Based on the orthogonalexperimentand the range analysis,itcan be speculated that the initial pH of the solution is the most signi ficant factor that affects the adsorption performance of Cd2+onto nZVI.

    3.3.Surface precipitation modeling

    In order to con firm that initialpH is the most signi ficant factor,a simulation was performed.Parameters used in the modeling are as follows.The speci fic surface area of the iron(hydr)oxide shell was 20.3159 m2·g-1which was obtained from the BET analysis.The site density oftype 1 sites(weak sorption sites)was 2.26 sites nm-2,and of type 2 sites(strong sites)was 0.056 sites nm-2as recommended.The electrolyte was 0.01 mol·L-1NaNO3.After the adsorption equilibrium achieved,the result of the distribution of ions between adsorbed and dissolved phases is shown in Fig.5.The tendency of the curve showed that in acidic condition most of the cadmium was dissolved and Cd2+was found to be the dominant species.If the solution pH was higher,more cadmium would be adsorbed onto the nZVI and(≡FeO)2Cd was found to be the dominant form.

    Fig.5.Distribution ofions between adsorbed and dissolved phases in different pH.

    Simulations were performed under the same condition and the range ofeach factor is illustrated in Fig.6.The result showed that the range of factor C(99.99)is much larger than that of factor A(7.15)and factor B(7.16).The result is consistent with the conclusion we drew upon the orthogonalexperiment:the initialpH is the most signi ficant factor.

    Fig.6.Range ofeach factor calculated based on simulation.

    Both the experiments and the simulations showed that pH has the most signi ficant effect on the adsorption ef ficiency of the nZVI.In the range of4–10,the higher the pH,the more cadmium is adsorbed.This conclusion is important to maximize the adsorption rates and adsorption capacity ofnZVIfor cadmium.

    As the E0of cadmium is-0.40 V,which is close to that of Fe0(-0.44 V),Cd will be removed by sorption and/or precipitation.The dominant adsorption mechanism and the existing form of cadmium in aqueous solutions are both related to the solution pH.At lower pH,Cd2+is found to be the dominant species(Fig.7).Since the isoelectric point(IEP)ofnZVIwas around 8.1–8.2[37].At pH values below the IEP,the surface is expected to possess a positive potential,this willdecrease the adsorption ofmetalanions due to electrostatic repulsion.At higher pH,the abundant hydroxylwillresult in the immobilization ofmetals in the form ofhydroxides and precipitation is the dominantremovalmechanism.Fig.7 is the species distribution ofcadmium overa pHrange of1 to 14.Itcan be seen thatatpH 10,Cd2+existsdominantas Cd(OH)2,and the percentage of Cd(OH)2is about 85%,this means that the Cd2+willbe removed from water by precipitation without nZVI.But in the presence of nZVI,the removalrate of Cd2+at pH 12 is 97.1–99.2 in our experiment,which means that nZVIcan promote the removalofcadmium.In acidic conditions,the lowerthe pH,the strongerthe repulsion.In alkaline conditions,the higher the pH,the easier the precipitation is to form.

    Fig.7.The speciation of cadmium over a pH range of1 to 14.

    4.Conclusions

    In this study,traditionalliquid-phase reduction for preparing nZVI was improved by the introduction of PVP.TEMand BET analyses indicated that the improve method was better for nZVI preparation.An L9(33)orthogonalexperiment was employed to find out the dominant factor that affects the removalrate of cadmium by nZVI.Three factors were examined:initialpH of the solution,concentration of cadmium and the dosage of nZVI,and initial pH was found to be the most signi ficant factor.Surface precipitation modeling showed in different conditions,the Ca2+was removed by nZVIin different mechanisms.

    [1]S.Ishikawa,N.Ae,M.Sugiyama,M.Murakami,T.Arao,Genotypic variation in shoot cadmium concentration in rice and soybean in soils with different levels of cadmium contamination,Soil Sci.Plant Nutr.51(2005)101–108.

    [2]M.D.L.Dinis,A.Fiúza,Exposure assessment to heavy metals in the environment:Measures to eliminate or reduce the exposure to criticalreceptors,environmental heavy metal pollution and effects on child mental development,Springer,Netherlands,2011 27–50.

    [3]T.Kikuchi,M.Okazaki,K.Toyota,T.Motobayashi,M.Kato,The input–outputbalance of cadmium in a paddy field of Tokyo,Chemosphere 67(2007)920–927.

    [4]G.F.Nordberg,Historical perspectives on cadmium toxicology,Toxicol.Appl.Pharmacol.238(2009)192–200.

    [5]WHO,Guidelines for drinking water quality,second ed.,Recommendations,Vol.1,WHO,Geneva,1993.

    [6]O.Tunay,T.Ozkok,T.O.Hanci,I.Kabdasli,Applicability of phosphonic acid complexes as a means of cadmium removal from aqueous solutions,J.Selcuk Univ.Nat.Appl.Sci.(2013)70–77.

    [7]L.Charerntanyarak,Heavy metals removal by chemicalcoagulation and precipitation,Water Sci.Technol.39(1999)135–138.

    [8]S.A.Bayar,E.Yilmaz,R.Boncukcuo?lu,B.A.Fìla,M.M.Kocakerìm,Effects of operationalparameters on cadmium removalfrom aqueous solutions by electrochemical coagulation,Desalin.Water Treat.51(2013)2635–2643.

    [9]B.Pospiech,W.Kujawski,Ionic liquids as selective extractants and ion carriers of heavy metal ions from aqueous solutions utilized in extraction and membrane separation,Rev.Chem.Eng.31(2015)179–191.

    [10]A.Akcil,C.Erust,S.Ozdemiroglu,A review of approaches and techniques used in aquatic contaminated sediments:Metalremovaland stabilization by chemicaland biotechnological processes,J.Clean.Prod.86(2015)24–36.

    [11]J.A.Arcibar-Orozco,J.R.Rangel-Mendez,P.E.Diaz-Flores,Simultaneous adsorption of Pb(II)–Cd(II),Pb(II)–phenol,and Cd(II)–phenolby activated carbon cloth in aqueous solution,Water Air Soil Pollut.226(2015)1–10.

    [12]R.Liu,F.Liu,C.Hu,Simultaneous removalofCd(II)and Sb(V)by Fe–Mn binary oxide:Positive effects of Cd(II)on Sb(V)adsorption,J.Hazard.Mater.300(2015)847–854.

    [13]L.Yan,Y.Huang,J.Cui,Simultaneous As(III)and Cd removalfrom copper smelting wastewater using granular TiO2columns,Water Res.68(2015)572–579.

    [14]S.M.Ponder,J.G.Darab,T.E.Mallouk,Remediation of Cr(VI)and Pb(II)aqueous solutions using supported,nanoscale zero-valent iron,Environ.Sci.Technol.34(2000)2564–2569.

    [15]X.Q.Li,W.X.Zhang,Sequestration ofmetalcations with zero valentiron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy,J.Phys.Chem.C 111(2007)6939–6946.

    [16]D.O'Carroll,B.Sleep,M.Krol,H.Boparai,C.Kocur,Nanoscale zero valent iron and bimetallic particles for contaminated site remediation,Adv.Water Resour.51(2013)104–122.

    [17]T.Tosco,M.P.Rapini,C.C.Viggi,R.Sethi,Nanoscale zerovalent iron particles for groundwater remediation:A review,J.Clean.Prod.44(2014)10–21.

    [18]M.Rivero-Huguet,W.D.Marshall,Reduction ofhexavalent chromium mediated by micro-and nano-sized mixed metallic particles,J.Hazard Mater.169(2009)1081–1087.

    [19]T.Phenrat,Y.Liu,R.D.Tilton,G.V.Lowry,Adsorbed polyelectrolyte coatings decrease Fe0nanoparticle reactivity with TCE in water:Conceptualmodeland mechanisms,Environ.Sci.Technol.43(2009)150–154.

    [20]Y.Liu,S.A.Majetich,R.D.Tilton,D.S.Sholl,G.V.Lowry,TCE dechlorination rates,pathways,and ef ficiency of nanoscale iron particles with different properties,Environ.Sci.Technol.39(2005)1338–1345.

    [21]F.He,D.Zhao,C.Paul,Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones,Water Res.44(2010)2360–2370.

    [22]W.Zhang,Nanoscale iron particles for environmental remediation:An overview,J.Nanopart.Res.5(2003)323–332.

    [23]Y.H.Hwang,D.G.Kim,H.S.Shin,Effects ofsynthesis conditions on the characteristics and reactivity of nano scale zero valent iron,Appl.Catal.B Environ.105(2011)144–150.

    [24]T.Phenrat,N.Saleh,K.Sirk,R.D.Tilton,G.V.Lowry,Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions,Environ.Sci.Technol.41(2007)284–290.

    [25]N.Efecan,T.Shahwan,A.E.Eroglu,Characterization of the adsorption behavior of aqueous Cd(II)and Ni(II)ions on nanoparticles of zero-valent ironM.S.Thesis ?zmir Institute of Technology,2008.

    [26]H.K.Boparai,M.Joseph,D.M.O'Carroll,Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles,J.Hazard.Mater.186(2011)458–465.

    [27]Y.Li,H.Ma,B.Ren,T.Li,Simultaneous adsorption and degradation of Cr(VI)and Cd(II)ions from aqueous solution by silica-coated Fe0nanoparticles,J.Anal.Methods Chem.2013(2013).

    [28]Y.Zhang,Y.Li,C.Dai,H.Zhou,W.Zhang,Sequestration of Cd(II)with nanoscale zero-valent iron(nZVI):Characterization and test in a two-stage system,Chem.Eng.J.244(2014)218–226.

    [29]H.K.Boparai,M.Joseph,D.M.O'Carroll,Cadmium(Cd2+)removal by nano zerovalent iron:Surface analysis,effects ofsolution chemistry and surface complexation modeling,Environ.Sci.Pollut.Res.20(2013)6210–6221.

    [30]Y.P.Sun,X.Q.Li,J.S.Cao,W.X.Zhang,H.P.Wang,Characterization ofzero-valent iron nanoparticles,Adv.Colloid Interf.120(2006)47–56.

    [31]X.Wen,Q.Du,H.Tang,Surface complexation modelfor the heavy metaladsorption on naturalsediment,Environ.Sci.Technol.32(1998)870–875.

    [32]K.A.K.Huynh,L.Chen,Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions,Environ.Sci.Technol.45(2011)5564–5571.

    [33]J.T.Nurmi,P.G.Tratnyek,V.Sarathy,D.R.Baer,J.E.Amonette,K.Pecher,C.Wang,J.C.Linehan,D.W.Matson,R.L.Penn,M.D.Driessen,Characterization and properties of metallic iron nanoparticles:Spectroscopy,electrochemistry,and kinetics,Environ.Sci.Technol.39(2005)122–130.

    [34]X.Li,W.Zhang,Sequestration ofmetalcations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy(HR-XPS),J.Phys.Chem.C 111(2007)6939–6946.

    [35]W.Yan,A.A.Herzing,C.J.Kiely,W.Zhang,Nanoscale zero-valent iron(nZVI):Aspects of the core–shellstructure and reactions with inorganic species in water,J.Contam.Hydrol.118(2010)96–104.

    [36]X.Wu,D.Y.C.Leung,Optimization of biodiesel production from camelina oil using orthogonalexperiment,Appl.Energy 88(2011)3615–3624.

    [37] ?.üzüm,T.Shahwan,A.E.Ero?lu,I.Lieberwirth,T.B.Scott,K.R.Hallam,Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ions under various experimentalconditions,Chem.Eng.J.144(2008)213–220.

    午夜精品国产一区二区电影| 老司机影院成人| 侵犯人妻中文字幕一二三四区| 97在线人人人人妻| 美女高潮到喷水免费观看| 成年美女黄网站色视频大全免费| 精品一区二区三区四区五区乱码| 精品国内亚洲2022精品成人 | 男女下面插进去视频免费观看| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| 午夜两性在线视频| 中文字幕人妻丝袜一区二区| 青青草视频在线视频观看| av免费在线观看网站| 日本欧美视频一区| 十八禁网站网址无遮挡| 别揉我奶头~嗯~啊~动态视频 | 亚洲中文av在线| 中文欧美无线码| 中文字幕最新亚洲高清| 国产精品国产三级国产专区5o| 久久精品aⅴ一区二区三区四区| 欧美激情高清一区二区三区| 精品久久蜜臀av无| 久久 成人 亚洲| 婷婷色av中文字幕| 国产欧美亚洲国产| 久久这里只有精品19| 窝窝影院91人妻| 久久久精品区二区三区| 男女床上黄色一级片免费看| 久久久国产成人免费| 黑人欧美特级aaaaaa片| 国产成人欧美| 亚洲中文av在线| av福利片在线| 亚洲av片天天在线观看| tube8黄色片| 丝袜美腿诱惑在线| 亚洲第一欧美日韩一区二区三区 | 9热在线视频观看99| 久久国产精品男人的天堂亚洲| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频 | 久热爱精品视频在线9| 亚洲国产看品久久| 欧美精品人与动牲交sv欧美| av一本久久久久| 久久久久网色| 国产欧美日韩一区二区三区在线| 久久久国产欧美日韩av| 欧美亚洲日本最大视频资源| 亚洲专区中文字幕在线| 老熟女久久久| 成年动漫av网址| 国产在线免费精品| 狠狠狠狠99中文字幕| 日本av免费视频播放| 人人妻人人澡人人看| 中文精品一卡2卡3卡4更新| 91大片在线观看| 色播在线永久视频| 欧美日韩精品网址| 亚洲国产欧美日韩在线播放| 亚洲伊人色综图| 考比视频在线观看| 国产精品成人在线| 美女福利国产在线| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 久久久精品94久久精品| 久久久精品区二区三区| 成人亚洲精品一区在线观看| 婷婷丁香在线五月| 一边摸一边做爽爽视频免费| 亚洲国产日韩一区二区| 夜夜夜夜夜久久久久| 91九色精品人成在线观看| 新久久久久国产一级毛片| 最近中文字幕2019免费版| 性少妇av在线| 国产精品久久久久久精品电影小说| 久久狼人影院| 一区二区三区精品91| 成人18禁高潮啪啪吃奶动态图| 黄网站色视频无遮挡免费观看| 亚洲男人天堂网一区| 亚洲美女黄色视频免费看| 亚洲欧洲精品一区二区精品久久久| 亚洲国产欧美网| 亚洲成人免费电影在线观看| 日本五十路高清| 人妻 亚洲 视频| 久久久久久久久久久久大奶| 爱豆传媒免费全集在线观看| 国产精品一区二区免费欧美 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲天堂av无毛| 亚洲av电影在线观看一区二区三区| av不卡在线播放| 人人妻,人人澡人人爽秒播| 男人添女人高潮全过程视频| 一个人免费在线观看的高清视频 | 黄片播放在线免费| a级毛片黄视频| 免费在线观看影片大全网站| 天天影视国产精品| 国产在线视频一区二区| 一二三四社区在线视频社区8| 精品福利永久在线观看| 亚洲人成电影免费在线| 男女高潮啪啪啪动态图| 男男h啪啪无遮挡| 男人爽女人下面视频在线观看| 18禁观看日本| 国产成人系列免费观看| 国产一区二区三区综合在线观看| av网站免费在线观看视频| 午夜精品久久久久久毛片777| 成年女人毛片免费观看观看9 | 日韩视频在线欧美| 天天添夜夜摸| 波多野结衣一区麻豆| 十分钟在线观看高清视频www| 免费av中文字幕在线| 亚洲综合色网址| 中文字幕av电影在线播放| 欧美激情久久久久久爽电影 | 黄片播放在线免费| 王馨瑶露胸无遮挡在线观看| 国产精品1区2区在线观看. | 日本av免费视频播放| 日本av免费视频播放| 免费久久久久久久精品成人欧美视频| 我要看黄色一级片免费的| 黄色 视频免费看| 无遮挡黄片免费观看| 欧美变态另类bdsm刘玥| 欧美激情极品国产一区二区三区| cao死你这个sao货| 在线观看免费午夜福利视频| 精品一区二区三区四区五区乱码| 亚洲avbb在线观看| 国产男人的电影天堂91| 波多野结衣一区麻豆| 狂野欧美激情性xxxx| 国产人伦9x9x在线观看| 国产在视频线精品| 99热全是精品| 日本91视频免费播放| 在线天堂中文资源库| 中国美女看黄片| 成人国产av品久久久| 成人国语在线视频| xxxhd国产人妻xxx| 热99国产精品久久久久久7| 在线亚洲精品国产二区图片欧美| 国产又色又爽无遮挡免| 日韩欧美免费精品| 人人妻人人澡人人看| 亚洲精品久久午夜乱码| 亚洲精品在线美女| 一区二区日韩欧美中文字幕| 亚洲国产日韩一区二区| 精品久久久久久久毛片微露脸 | 久久久久久久久久久久大奶| 欧美激情高清一区二区三区| 午夜福利在线观看吧| 国产97色在线日韩免费| 视频区图区小说| 欧美国产精品一级二级三级| 窝窝影院91人妻| 国产亚洲精品一区二区www | 十八禁网站网址无遮挡| 一二三四社区在线视频社区8| 精品亚洲乱码少妇综合久久| 亚洲三区欧美一区| 亚洲精品国产av蜜桃| 欧美黑人精品巨大| 日韩欧美免费精品| 久久热在线av| 一二三四在线观看免费中文在| 欧美97在线视频| 黄片小视频在线播放| 免费高清在线观看日韩| 中亚洲国语对白在线视频| 久久久久国内视频| 一区在线观看完整版| 日韩中文字幕视频在线看片| 淫妇啪啪啪对白视频 | 国产深夜福利视频在线观看| 久久亚洲国产成人精品v| av网站免费在线观看视频| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区久久| 999久久久国产精品视频| 亚洲成人国产一区在线观看| 亚洲黑人精品在线| 久久久久国产一级毛片高清牌| 亚洲av片天天在线观看| 亚洲专区中文字幕在线| 午夜福利免费观看在线| 久久久精品国产亚洲av高清涩受| 人人澡人人妻人| 欧美精品啪啪一区二区三区 | www.自偷自拍.com| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区三 | 69精品国产乱码久久久| 久久ye,这里只有精品| 老熟妇仑乱视频hdxx| 国产福利在线免费观看视频| 美女福利国产在线| 亚洲全国av大片| 久久精品人人爽人人爽视色| 午夜福利在线观看吧| 国产成人一区二区三区免费视频网站| 大片电影免费在线观看免费| 久久热在线av| 无限看片的www在线观看| 涩涩av久久男人的天堂| 亚洲,欧美精品.| 国产福利在线免费观看视频| 大香蕉久久成人网| 成人三级做爰电影| 欧美乱码精品一区二区三区| 动漫黄色视频在线观看| 宅男免费午夜| 国产极品粉嫩免费观看在线| 亚洲三区欧美一区| 老鸭窝网址在线观看| 免费一级毛片在线播放高清视频 | 人人妻人人澡人人爽人人夜夜| av一本久久久久| 亚洲国产成人一精品久久久| 国产成人一区二区三区免费视频网站| 人人澡人人妻人| av电影中文网址| 99久久人妻综合| 一二三四社区在线视频社区8| 高清黄色对白视频在线免费看| 菩萨蛮人人尽说江南好唐韦庄| 成年人午夜在线观看视频| 日本黄色日本黄色录像| 男女国产视频网站| 精品视频人人做人人爽| 亚洲国产av新网站| 美女视频免费永久观看网站| 嫁个100分男人电影在线观看| 一本大道久久a久久精品| 国产精品二区激情视频| 欧美精品av麻豆av| 日韩视频在线欧美| 国产国语露脸激情在线看| 美女国产高潮福利片在线看| 精品国产一区二区三区久久久樱花| 91大片在线观看| 亚洲第一av免费看| 操美女的视频在线观看| 久久久久久久国产电影| 欧美精品一区二区免费开放| 国产精品一区二区精品视频观看| 大陆偷拍与自拍| 黄片播放在线免费| 1024香蕉在线观看| 多毛熟女@视频| 91成人精品电影| 成人黄色视频免费在线看| 777久久人妻少妇嫩草av网站| 黄色视频,在线免费观看| 国产精品一区二区免费欧美 | 成人影院久久| 国产主播在线观看一区二区| 成年女人毛片免费观看观看9 | 精品少妇内射三级| www.av在线官网国产| 亚洲欧洲精品一区二区精品久久久| 丝袜喷水一区| 亚洲av男天堂| 黑人巨大精品欧美一区二区蜜桃| 国产熟女午夜一区二区三区| 建设人人有责人人尽责人人享有的| 天天添夜夜摸| 欧美中文综合在线视频| 秋霞在线观看毛片| 精品一品国产午夜福利视频| 国产成人精品无人区| 亚洲国产欧美在线一区| 欧美精品啪啪一区二区三区 | 丝袜人妻中文字幕| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 天天躁日日躁夜夜躁夜夜| 精品少妇黑人巨大在线播放| 精品第一国产精品| 久久天堂一区二区三区四区| 黑人猛操日本美女一级片| 国产在线观看jvid| 少妇的丰满在线观看| 久久人人97超碰香蕉20202| 国产精品成人在线| 激情视频va一区二区三区| 国产成人精品久久二区二区91| 欧美日韩国产mv在线观看视频| 捣出白浆h1v1| 人人澡人人妻人| 考比视频在线观看| 一级片'在线观看视频| 亚洲成人免费av在线播放| 三级毛片av免费| 老司机靠b影院| 亚洲精品日韩在线中文字幕| 精品福利观看| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 亚洲成人手机| 国产精品.久久久| 色视频在线一区二区三区| 国产主播在线观看一区二区| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 69精品国产乱码久久久| 不卡一级毛片| 69精品国产乱码久久久| 午夜视频精品福利| 一进一出抽搐动态| 伊人久久大香线蕉亚洲五| 如日韩欧美国产精品一区二区三区| 久热爱精品视频在线9| 国产成人精品无人区| 老司机深夜福利视频在线观看 | 日韩 亚洲 欧美在线| 久久99一区二区三区| 一本大道久久a久久精品| 国产精品自产拍在线观看55亚洲 | 欧美大码av| 成年动漫av网址| 亚洲综合色网址| 亚洲欧美色中文字幕在线| 国产97色在线日韩免费| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| av在线老鸭窝| 少妇的丰满在线观看| 国产野战对白在线观看| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 在线av久久热| 巨乳人妻的诱惑在线观看| 桃花免费在线播放| 丝袜喷水一区| 成人三级做爰电影| 久久精品aⅴ一区二区三区四区| 国产亚洲欧美精品永久| 久久久精品免费免费高清| 日本猛色少妇xxxxx猛交久久| 啦啦啦免费观看视频1| 欧美黄色淫秽网站| 啦啦啦免费观看视频1| 成年女人毛片免费观看观看9 | 不卡av一区二区三区| 久久人妻福利社区极品人妻图片| 欧美性长视频在线观看| 在线看a的网站| 欧美性长视频在线观看| 国产精品久久久久久人妻精品电影 | 老鸭窝网址在线观看| 岛国在线观看网站| 亚洲精华国产精华精| 国产精品99久久99久久久不卡| 天天操日日干夜夜撸| 欧美激情久久久久久爽电影 | 欧美另类亚洲清纯唯美| 欧美变态另类bdsm刘玥| 久久热在线av| 在线天堂中文资源库| 窝窝影院91人妻| 美女高潮到喷水免费观看| av在线播放精品| 黄色视频不卡| 午夜91福利影院| 国产精品一区二区在线观看99| 午夜福利视频精品| 欧美日韩亚洲综合一区二区三区_| 亚洲专区字幕在线| 在线看a的网站| 亚洲午夜精品一区,二区,三区| 欧美在线一区亚洲| 精品少妇一区二区三区视频日本电影| 国产色视频综合| 另类精品久久| 一进一出抽搐动态| 精品亚洲成国产av| av网站在线播放免费| 男人添女人高潮全过程视频| 久久久久精品国产欧美久久久 | 午夜激情久久久久久久| 在线永久观看黄色视频| 久久综合国产亚洲精品| 国产精品.久久久| 国产成人精品久久二区二区免费| 中文字幕人妻丝袜制服| 在线观看一区二区三区激情| 国产激情久久老熟女| 少妇被粗大的猛进出69影院| 两个人看的免费小视频| 啦啦啦 在线观看视频| 国产成人a∨麻豆精品| videosex国产| 日韩免费高清中文字幕av| 国产免费福利视频在线观看| 97精品久久久久久久久久精品| 男女边摸边吃奶| 麻豆乱淫一区二区| 别揉我奶头~嗯~啊~动态视频 | 欧美另类亚洲清纯唯美| 国产91精品成人一区二区三区 | 在线观看www视频免费| 欧美成狂野欧美在线观看| 亚洲国产成人一精品久久久| 桃花免费在线播放| 久久亚洲精品不卡| 青春草亚洲视频在线观看| 十八禁网站免费在线| 国产成人免费无遮挡视频| 老司机影院毛片| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| 欧美日韩成人在线一区二区| 三上悠亚av全集在线观看| 日韩一卡2卡3卡4卡2021年| 欧美av亚洲av综合av国产av| 男女高潮啪啪啪动态图| 亚洲精品美女久久av网站| 亚洲色图综合在线观看| 精品久久久久久久毛片微露脸 | 视频区欧美日本亚洲| 丝袜人妻中文字幕| 黄色 视频免费看| 一区二区av电影网| 国产日韩欧美在线精品| 正在播放国产对白刺激| 捣出白浆h1v1| 亚洲精品国产av成人精品| 人成视频在线观看免费观看| 性色av一级| 99精品久久久久人妻精品| 女人高潮潮喷娇喘18禁视频| 法律面前人人平等表现在哪些方面 | 国产成人精品在线电影| 伦理电影免费视频| 丝袜喷水一区| 老司机午夜十八禁免费视频| 国产无遮挡羞羞视频在线观看| 啪啪无遮挡十八禁网站| 一本久久精品| 午夜福利免费观看在线| 黄色a级毛片大全视频| 免费在线观看完整版高清| 亚洲国产欧美在线一区| 新久久久久国产一级毛片| 99热国产这里只有精品6| 成年人黄色毛片网站| 岛国在线观看网站| 国产精品自产拍在线观看55亚洲 | 亚洲国产精品一区二区三区在线| 9191精品国产免费久久| 国产亚洲欧美在线一区二区| 91老司机精品| 一边摸一边做爽爽视频免费| 婷婷色av中文字幕| 中文字幕人妻丝袜制服| 精品少妇内射三级| 成人亚洲精品一区在线观看| 国产成人a∨麻豆精品| 黄色视频不卡| 在线观看免费高清a一片| 午夜福利免费观看在线| 91精品国产国语对白视频| 久久精品aⅴ一区二区三区四区| 一级片'在线观看视频| 乱人伦中国视频| 69精品国产乱码久久久| 男人爽女人下面视频在线观看| 丝袜美腿诱惑在线| 亚洲国产精品一区三区| 免费在线观看完整版高清| 91老司机精品| 99国产精品免费福利视频| 夫妻午夜视频| 少妇精品久久久久久久| 少妇人妻久久综合中文| 伊人久久大香线蕉亚洲五| av福利片在线| 久久人人97超碰香蕉20202| 男女免费视频国产| 在线 av 中文字幕| 国产成人精品久久二区二区91| 丰满少妇做爰视频| 大香蕉久久网| 欧美久久黑人一区二区| 久久天堂一区二区三区四区| 国产精品 欧美亚洲| 精品一区二区三卡| 大码成人一级视频| 在线观看一区二区三区激情| 少妇的丰满在线观看| 十八禁高潮呻吟视频| 日韩制服骚丝袜av| 国产高清视频在线播放一区 | 一本综合久久免费| 亚洲九九香蕉| 人妻人人澡人人爽人人| 国产男女超爽视频在线观看| 精品卡一卡二卡四卡免费| 亚洲av电影在线进入| 精品高清国产在线一区| 久久女婷五月综合色啪小说| netflix在线观看网站| 性高湖久久久久久久久免费观看| 国产成人a∨麻豆精品| 成在线人永久免费视频| 秋霞在线观看毛片| 99热网站在线观看| 宅男免费午夜| 亚洲欧美一区二区三区久久| 免费看十八禁软件| 十八禁高潮呻吟视频| 欧美精品av麻豆av| 国产精品av久久久久免费| 午夜两性在线视频| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品999| 欧美日韩国产mv在线观看视频| 视频在线观看一区二区三区| 亚洲av成人不卡在线观看播放网 | 亚洲国产日韩一区二区| 成年人午夜在线观看视频| 久久香蕉激情| 午夜免费观看性视频| 一区二区三区四区激情视频| 国产精品久久久久久人妻精品电影 | 成人国产一区最新在线观看| 亚洲欧洲日产国产| 一个人免费在线观看的高清视频 | 亚洲七黄色美女视频| 啦啦啦啦在线视频资源| 婷婷丁香在线五月| 亚洲精品粉嫩美女一区| 九色亚洲精品在线播放| 日韩制服骚丝袜av| 黄片小视频在线播放| 我要看黄色一级片免费的| 如日韩欧美国产精品一区二区三区| 国产成人系列免费观看| 亚洲 欧美一区二区三区| 国产精品久久久久久人妻精品电影 | 日本91视频免费播放| 黄片播放在线免费| 亚洲欧美精品自产自拍| 国产精品久久久久久精品古装| 狂野欧美激情性xxxx| 亚洲久久久国产精品| 又黄又粗又硬又大视频| 在线观看免费日韩欧美大片| 国产一区有黄有色的免费视频| 午夜免费鲁丝| 永久免费av网站大全| 少妇粗大呻吟视频| 国产精品免费大片| 91成年电影在线观看| 国产视频一区二区在线看| 亚洲伊人久久精品综合| 精品乱码久久久久久99久播| 国产精品久久久久成人av| 香蕉国产在线看| 日韩电影二区| 国产精品麻豆人妻色哟哟久久| 亚洲欧美日韩高清在线视频 | svipshipincom国产片| 日韩视频一区二区在线观看| 日韩一区二区三区影片| 亚洲国产av新网站| 美女高潮喷水抽搐中文字幕| 五月天丁香电影| 午夜老司机福利片| kizo精华| 免费在线观看视频国产中文字幕亚洲 | 国产精品熟女久久久久浪| 亚洲人成电影免费在线| 欧美午夜高清在线| 免费在线观看视频国产中文字幕亚洲 | a 毛片基地| 国产一区二区在线观看av| 男女床上黄色一级片免费看| 亚洲午夜精品一区,二区,三区| 亚洲国产av影院在线观看| 一本一本久久a久久精品综合妖精| 国产老妇伦熟女老妇高清| 精品国产一区二区久久| 欧美黄色片欧美黄色片| 老司机亚洲免费影院| 国产精品秋霞免费鲁丝片| 一本一本久久a久久精品综合妖精| 美女国产高潮福利片在线看| 少妇人妻久久综合中文| 国产欧美日韩精品亚洲av| 欧美日韩精品网址| 日韩大片免费观看网站| 大香蕉久久网|