• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of substrates for zinc negative electrode in acid PbO2-Zn single flow batteries☆

    2016-05-29 02:10:52JunliPanYuehuaWenJieChengJunqingPanShouliBaiYushengYang

    Junli Pan ,Yuehua Wen *,Jie Cheng Junqing Pan *,Shouli BaiYusheng Yang

    1 State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    2 Research Institute of Chemical Defence,Beijing 100191,China

    1.Introduction

    Redox flow batteries are a class ofstationary energy storage systems.Different from common secondary batteries employing solid active materials,the active materials of Redox flow batteries are soluble,stored in external reservoir vessel.In normal operation,charged and discharged reactants are circulated through the electrode compartment by pumps.Accordingly,a long cycle life is expected for this rechargeable cell[1].A novelsingle flow battery involving the deposition ofa metallic species has been proposed and developed[2,3],breaking the limit on conventional dual flow batteries with a membrane,which causes spontaneous discharge of different reactive species at anode and cathode.Several systems have been examined including earlier zinc-bromine[4]and zinc-chlorine[5-7],recent soluble lead acid[2,8],zinc-nickel single flow batteries[3],and zinc ion battery[9-12].The flow battery is characterized by charged(ordischarged)products ofatleastone couple deposited on the inert electrode in charge-discharge process.In essence,electrodes themselves serve as an electrical interface and a place for electrode reactions.The nature and form of electrode materials and surfaces play a key role in the charge and discharge efficiencies and cycling stability for Redox flow batteries[6].The effects of substrate electrodeson the formofmetallic deposits and self-discharge rates are ofcritical importance in the design of such systems.

    High specific energy,high negative equilibrium potential,good reversibility,low cost,and environmentalfriendliness are some ofthe outstanding merits of zinc electrodes.Zinc has a wide variety of applications as a negative electrode material in batteries such as zinc-silver,zinc-air,and zinc-nickel batteries[13].However,the working voltage ofthese alkaline zinc-based batteries is less than 2 V.As a well-developed positive electrode,PbO2solid electrode with a high equilibrium potential has been widely studied[14,15]and used in acid lead batteries.The application and developmentofacid lead battery are limited owing to its poorcycling life and low energy density.Thereby,we have developed acidic PbO2-Zn single flow battery with a highest open-circuit voltage of 2.4 V[16,17],with a sulfuric acid solution containing zinc ions as the electrolyte.With concentrated SO42-ions,a large part of hydrogen ions from the ionization of H2SO4are converted to HSO4-ions,so that the concentration of free hydrogen ions is minimized.During charging,the metal ions at the negative electrode move from the solution and deposit onto the inert carbon substrate(Zn2++2e-→Zn),whereas at the positive electrode,oxidation of PbSO4to PbO2occurs at a lead-alloy grid electrode(PbSO4++2H2O-2e-→PbO2+H++.During discharging,reverse process occurs,forming highly soluble products in the acid electrolyte at the zinc electrode.In an acid aqueous solution of zinc sulfate,it is easy to form fine grained,smooth and compact deposits.Thus,the sulfuric acid solution containing zinc ions has been used as electrolyte for electro deposition of zinc[18-20].

    In this paper,we focus on the negative electrode side of acid PbO2-Zn single flow battery and investigate Zn deposition/dissolution process on a number of carbon and lead electrodes.Cyclic voltammetry,potentiostatic current transients and cathode potentiodynamic polarization measurements(lg i-E),as well as galvanostatic charge/discharge cycles are employed in order to evaluate the effectiveness,robustness and potential use of several carbon and lead composite materials in the Redox flow cell.

    2.Experimental

    The lead alloy samplesused in this study were essentially lead materials doped with a minimum amount of other metals with high hydrogen overpotential.The composition of lead grid alloys is listed in Table 1.The main componentadded is Sn,followed by Ca and Zn.5%bismuth and 95%lead were melted and stirred at high temperature,then cooled to room temperature and cut into the electrodes with the volume of 2×2×0.3 cm3.The lead alloy electrodes were obtained.The graphite composite samples were graphite materials doped with a certain amount of polymer resin,which was obtained from Shanghai Heixia carbon product Co.

    For the electrochemical study,a standard 3-electrode configuration was employed,with a graphite and its composite or lead and its alloy(area:1×1 cm2)asworking electrodes,a large lead plate as the counter electrode,and Hg/Hg2SO4as the reference electrode.All potentials are reported with respect to this reference.

    In the cyclic voltammograms,potentiostatic polarization(E-lg i)was carried out at room temperature using a Solartron1280z electrochemical station.The scan rate for all the cyclic voltammograms was 20 mV·s-1between potential limits of-1 and-1.7 V.For the cyclic voltammograms,the 1 mol·L-1H2SO4solution containing 1.25 mol·L-1Zn(II)was employed as the electrolyte.The galvanostatic charge/discharge cycles were conducted in a three-electrode cell at room temperature,and each charge-discharge cycle was discharged to 1 V vs.Hg/Hg2SO4.A graphite and its composite or lead and its alloys(area:2×2 cm2)were used as the working electrodes.Two sheets of PbO2/PbSO4solid electrode(area:4.5×5 cm2)were counter electrodes.An electrode of Hg/Hg2SO4acted as the reference electrode.A Solartron1280z Electrochemical Interface controlled by Corrware software was employed.The morphology of electrodeposits on graphite composite and lead surfaces after cycling experiments was examined using SEM(Cambridge Instruments APollo300).In the experiment,the solution was stirred using a magnetic stirrer.

    3.Results and Discussion

    3.1.Electrochemical characterization

    Fig.1 shows the cyclic voltammograms in 1 mol·L-1H2SO4containing 1.25 mol·L-1Zn2+on different substrate electrodes.Some data from Fig.1 are summarized in Table 2.With lead as the substrate electrode,the zinc deposition process was initiated at point A(-1.56 V vs.Hg/Hg2SO4),scanned in the negative direction and reversed at-1.7 V in the positive direction.The current increased sharply to point C,where it was reversed.The current decreased and reached zero at point B,and then became anodic corresponding to the dissolution of deposited zinc.The potential difference between points A and B is a measure of nucleation overpotential(NOP)[21].NOP is regarded as an indicator of the extent of polarization of a cathode,and high NOP values indicate strong polarization of cathode.Point A is referred to as the nucleation potential(Enu),corresponding to the reduction of Zn2+ions.Point B is referred to as the cross-over potential where the current reaches zero,also called as the formal potential.The values of NOP(as shown in Table 2)for other substrates can be determined from the cyclic voltammograms in the same way.It is found that the onset for the zinc deposition process is the lowest on lead substrate and the next is on the graphite composite with relatively large value of NOP,which is up to 68-80 mV.On the contrary,the deposition potential shifts to more positive values for the graphite electrode and two lead alloys.NOP values are also significantly lowered,particularly for the graphite electrode,with the NOP value of 20 mV.This indicates that the cathodic polarization for the zinc deposition on the lead and graphite composite substrates is larger than the other three substrate electrodes.The nextis the graphite composite electrode rather than the two lead alloys.The rate of growth of zinc layer at the lead surface is the slowest among the five electrode materials.This indicates that the zinc deposition-dissolution process from acid sulfate solution is related to the texture and electrochemical features of substrate electrodes.The difference is little in the dissolution potential(Edis)for the zinc dissolution,but the substrates exert great in fluences on the anodic dissolution peak current.Anodic peak current density of zinc on the graphite electrode is much higher than that on the other substrates,corresponding to the smallest value of NOP.The next is the graphite composite electrode.The anodic peak current densities of zinc on the lead and lead alloy substrates are close and the lowest.

    Suppressing H2formation is critical for the zinc deposition process,particularly in the acidic medium.The rate of hydrogen evolution reaction(HER)depends on the overpotential of hydrogen on the substrate electrode for zinc deposition.Fig.2 shows cathodic polarization curves at 10 mV·s-1from the rest potential of the zinc electrode in 1 mol·L-1H2SO4solution with various substrate electrodes.The hydrogen overpotentialis the lowestfor the graphite electrode.The currentof hydrogen evolution increases sharply with scanning in the negative direction.However,the hydrogen overpotential increases to a great extent on the graphite composite electrode.It indicates that the addition of some resin polymer can slow the rate of HER remarkably on graphite.The onsetofhydrogen evolution forthe lead and lead grid alloy is earlier compared to the graphite composite electrode.However,with the potential scanning to a more negative value,the current of hydrogen evolution on the lead and lead grid alloy electrodes increases more slowly than that on the graphite composite electrode.Comparatively,the rate of HER on the lead grid alloy is a bit faster than that on lead.The rate of HER decreases on the lead-Bi alloy compared to the lead and lead grid alloy.Consequently,for raising the hydrogen over-potential for zinc deposition,the graphite composite is the most effective,followed by lead and lead grid alloy.The side reaction of hydrogen evolution on the graphite and Pb-Bi alloy is relatively serious.Moreover,it may suggest that the rate of HER could be slowed down considerably on lead and lead grid alloy for the zinc electro-deposition at a high polarization potential or a high current density.

    lg i-E curves for 1.25 mol·L-1Zn(II)ions in 1 mol·L-1H2SO4at different substrate electrodes are presented in Fig.3.The anodic and cathode Tafel slopes,baand bc,exchange current density,I0,and formal potential,E0,are calculated from lg i vs.E curves,as shown in Table 3.I0is regarded as an indicator of the rate of zinc deposition and dissolution,and high I0values indicate high rate of zinc electrode reaction.The I0value of zinc deposition and dissolution on the graphite composite electrode is lower by one order ofmagnitude compared to other substrate electrodes.Among the lead and its alloys,the I0value on the Pb-Bi alloy is the highest,followed by lead grid alloy and lead.As thehydrogen overpotential increases,the formal potential(E0)for the zinc deposition and dissolution shifts to a more negative value.This corresponds to the features of hydrogen evolution on these substrate electrodes.That is,the lower the hydrogen overpotential,the higher the I0value of zinc deposition and dissolution.Moreover,the cathodic Tafel slope is close to the anodic slope for the graphite composite and lead electrodes,indicative of cathode and anode mixed control.For lead grid and Pb-Bi alloys,the cathodic Tafel slope is greater than the anodic slope.This suggests that the reaction is under cathode control.

    Table 1 Composition of lead alloy

    Fig.1.Cyclic voltammograms of different substrate electrodes in 1.25 mol· L-1 Zn2+in 1 mol·L-1 H2SO4 at 25 °C and a scan rate of 20 mV·s-1(substrate electrode:1—graphite;2—graphite composite;3—Pb;4—Pb-Bi alloy;5—lead grid alloy).

    Table 2 Effect of substrate electrodes on nucleation potential(E nu),nucleation overpotential(NOP)and dissolution peak potential(E dis),anodic peak current density(I ac)during zinc electro-deposition dissolution from acid sulfate solution

    Fig.2.Effect of substrate on hydrogen evolution reaction for zinc deposition in 1 mol·L-1 H2SO4 solution(substrates:1—graphite;2—graphite composite;3—Pb;4—Pb-Bi alloy;5—lead grid alloy;scan rate:10 mV·s-1).

    Fig.3.lg i-E curves for 1.25 mol?L-1 Zn(II)ions in 1 mol·L-1 H2SO4 solution at different substrate electrodes(substrates:1—lead grid alloy;2—Pb-Bi alloy;3—lead;4—graphite composite;5—graphite).

    3.2.Charging and discharging performance

    To illustrate the effectiveness of these carbon and metal materials as the substrate of negative zinc electrode in acidic PbO2-Zn single flow batteries,the stability of substrate electrodes to repeated zinc deposition and dissolution was examined in a three electrode system under a variety of conditions.Fig.4 shows the coulombic efficiency as a function of cycling number in charging and discharging at various current densities in the range of 10-150 mA·cm-2for 300 s with differentsubstrate electrodes in 1 mol·L-1H2SO4solution containing 1.25 mol·L-1Zn2+ions.The coulombic efficiency(Qeff)and energy efficiency(Eeff)of zinc electrode are important for evaluation of the performance of zinc half cell.The coulombic efficiency refers to the ratio of the discharge capacity to the charge capacity of the battery.The voltage efficiency is the ratio of the average discharge voltage to the average charge voltage of the battery.The energy efficiency is the coulombic efficiency multiplied by voltage efficiency.In general,Qeffis enhanced with increasing current density.When the current density is as low as 10 mA·cm-2,Qeffis less than 80%apart from the graphite composite and lead electrodes.For the graphite composite electrode,at 30 mA·cm-2,Qeffis increased to around 90%.This increase is not significant for current densities greater than 50 mA·cm-2.In contrast,this change forthe graphite electrode is 88%at150 mA·cm-2and 66%-80%at30 mA·cm-2.For the two lead alloys,Qeffis over 90%when the current density is raised to 150 mA·cm-2.For the lead electrode with relatively high hydrogen overpotential,Qeffis not sensitive to current density.As current density increases,Qeffincreases slightly.Qeffis up to 82%at 10 mA·cm-2while it is only about87%at150 mA·cm-2.This corresponds to a competition between the zinc deposition and the corrosion of zinc in acid solution.At high current densities,this dependence of Qeffis due to decreasing competition from the zinc corrosion.The lower the hydrogen overpotential,the more serious the corrosion of zinc.Thus,though the I0value on the graphite composite is one order of magnitude lower than that on the other substrate electrodes,the corrosion is not serious even at the lowestcurrentdensity employed for the graphite composite electrode with the high hydrogen overpotential.

    For the deposition of electrodes,the charge period is also an important factor.Hence,the effect of charging period on the performance of zinc deposition is studied.The current density is fixed at 20 mA·cm-2and the charge time is from 1200 s to 7200 s in 1 mol·L-1H2SO4solution containing 1.25 mol·L-1Zn2+ions.The dependence of Qeffand Eefffor the graphite composite electrode is shown in Fig.5.The deposition time below 5400 s gives high Qeff,~90%.As the deposition time goes to 7200 s,Qeffdecreases sharply at the fourth cycle.And then,as cycling number increases,Qeffreduces continuously from 88%to less than 80%.The decreasing trend of Eeffwith current density is clear when the shortest deposition time of 1200 s gives the highest Eeff,~83%,and the longest deposition time of 7200 s reduces Eeffto~70%.For the deposition time of 7200 s,the variation in Eeffwith cycling numberis great,with the efficiency decreasing from 76%to 66%for 10 cycles.The deposition time of 7200 s simply exacerbates the stability of zinc deposition and dissolution in the acid medium.Therefore,in 1 mol·L-1H2SO4solution,the time of zinc deposition should be less than 5400 s.

    Table 3 Kinetic data of zinc deposition-dissolution at different substrate electrodes in 1 mol·L-1 H2SO4 solution containing 1.25 mol·L-1 Zn2+ions

    Fig.4.Effect of current density on the coulombic efficiency for various substrate electrodes in 1.25 mol·L-1 Zn2+and 1 mol·L-1 H2SO4 at 25 °C(charge time:300 s;substrates:(a)graphite;(b)graphite composite;(c)Pb;(d)Pb-Bi alloy;(e)lead grid alloy).

    Fig.5.Effect of charging time on coulombic efficiency(a)and energy efficiency(b)for the graphite composite in 1.25 mol·L-1 Zn2+and 1 mol·L-1 H2SO4 solution at 25 °C and current density of 20 mA·cm-2.

    Fig.6.Comparison of Q eff and E eff for different substrate electrodes in 1 mol·L-1 H2SO4 and 1.25 mol·L-1 Zn2+solution at 25 °C.Charge time=3600 s at 20 mA·cm-2.Discharge at 20 mA·cm-2.

    Fig.6 shows the charge and discharge performance of different substrate electrodes,at 20 mA·cm-2for 3600 s in 1 mol·L-1H2SO4solution containing 1.25 mol·L-1Zn2+ions.The graphite composite electrode presents the highest coulombic and energy ef ficiencies,~90%and ~80%,respectively.This composite material also exhibits the best stability to cycling,with little deterioration in Qeffand Eeff.This is different from the lead substrate electrode,which degrades substantially with cycling.For the Pb-Bi and lead grid alloys,the coulombic and energy average efficiencies are only 80%and 60%,respectively.

    The differences in electrochemical performance of substrate electrodes in acidic zinc sulfate solutions are associated with the morphology of deposited Zn.Fig.7 shows the SEM micrographs of the zinc deposits on the electrode surfaces with different charging periods.The conclusion is drawn from the investigations on hydrogen evolution reaction HER for zinc deposition,the charge and discharge performance of zinc electrode,the cyclic voltammograms,the kinetic analysis by Tafel slopes,and the SEM micrographs.For the graphite composite electrode,depositsare more compactwith longerdeposition time,which is associated with high over-H2-potentialand differenttexture and electrochemical features of substrate electrodes.Thus,hydrogen evolution on the composite graphite is effectively suppressed due to the addition of a polymer resin[22].Zinc corrosion is prevented to a certain extent.On the contrary,the zinc deposit is porous and loose with long deposition time for the lead electrode.

    4.Conclusions

    The suitability of carbon and metallic lead materials as substrate electrodes of zinc negative electrode in PbO2-Zn single flow battery was investigated.It showed that the nucleation mechanism of zinc deposition on carbon materials was completely from that on metallic lead materials.No maximum current appeared on the potentiostatic current transients for the zinc deposition on the lead and its alloys.Increasing the overpotential,the progressive nucleation turned to be a 3D-instantaneous nucleation process for the graphite composite.Hydrogen evolution on the graphite composite was effectively suppressed due to the doping ofa polymer resin.The rate of hydrogen evolution reaction on the lead was relatively weak,while on the lead alloys,it became more serious.Although the exchange current density on the graphite composite was lower by one order of magnitude compared to other substrate electrodes,corrosion was notserious even atthe lowest current density.Furthermore,the zinc deposits tended to be more compact with the deposition time prolonged.Zinc galvanostatic charge-discharge cycling on carbon and lead substrates revealed that the graphite composite electrode had no loss in efficiency with cycling,and a drastic reduction was observed for the lead electrode,accompanied by the physical deterioration in the electrode surface.

    Fig.7.SEM micrographs of Zn deposits in 1.25 mol·L-1 Zn2+and 1 mol·L-1 H2SO4 solution at 25 °C for graphite composite after deposition for 300 s(a)and 3600 s(b),lead after deposition for 300 s(c)and 3600 s(d).

    References

    [1]C.Ponce de León,A.Frías-Ferrer,J.González-García,D.A.Szánto,F.C.Walsh,Redox lf ow cells for energy conversion,J.Power Sources 160(2006)716-732.

    [2]A.Hazza,D.Pletcher,R.Wills,A novel flow battery:A lead acid battery based on an electrolyte with soluble lead(ii),Phys.Chem.Chem.Phys.6(2004)1773-1778.

    [3]J.Cheng,L.Zhang,Y.S.Yang,Y.H.Wen,G.P.Cao,X.D.Wang,Preliminary study of single flow zinc-nickel battery,Electrochem.Commun.9(2007)2639-2642.

    [4]T.I.Evans,R.E.White,A review of mathematical modeling of the zinc/bromine flow cell and battery,J.Electrochem.Soc.134(1987)2725-2733.

    [5]D.Loftus,J.Roberts,R.Weaver,S.Leach,L.Nanis,Diffusivity in zinc chloride-potassium chloride electrolyte,J.Electrochem.Soc.130(1983)332-334.

    [6]G.Nikiforidis,L.Berlouis,D.Hall,D.Hodgson,Evaluation of carbon composite materials for the negative electrode in the zinc-cerium redox flow cell,J.Power Sources 206(2012)497-503.

    [7]F.Yu,M.Y.Zhu,X.G.Wang,G.Wang,P.R.Qi,D.Chen,B.Dai,Clean energy and energy storage research—The 2nd international conference on clean energy sciences,Energy Storage Sci.Technol.3(2014)457-470.

    [8]A.Hazza,D.Pletcher,R.Wills,A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II),J.Power Sources 149(2005)103-111.

    [9]C.Xu,B.Li,H.Du,F.Kang,Energetic zinc ion chemistry:The rechargeable zinc ion battery,Angew.Chem.51(2012)933-935.

    [10]D.Xu,B.Li,C.Wei,Y.B.He,H.Du,X.Chu,X.Qin,Q.H.Yang,F.Kang,Preparation and characterization of MnO2/acid-treated CNT Nanocomposites for energy storage with zinc ions,Electrochim.Acta 133(2014)254-261.

    [11]C.Wei,C.Xu,B.Li,H.Du,F.Kang,Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage,J.Phys.Chem.Solids 73(2012)1487-1491.

    [12]M.H.Alfaruqi,J.Gim,S.Kim,J.Song,J.Jo,S.Kim,V.Mathew,J.Kim,Enhanced reversible divalentzinc storage in a structurally stable α-MnO2nanorod electrode,J.Power Sources 288(2015)320-327.

    [13]J.X.Yu,H.X.Yang,X.P.Ai,X.M.Zhu,A study of calcium zincate as negative electrode materials for secondary batteries,J.Power Sources 103(2001)93-97.

    [14]S.Tong,T.Zhang,C.A.Ma,Oxygen evolution behavior of PTFE-F-PbO2electrode in H2SO4 solution,Chin.J.Chem.Eng.16(2008)885-889.

    [15]X.Hong,R.Zhang,S.Tong,C.A.Ma,Preparation of TiPTFE-F-PbO2electrode with a long life from the sulfamic acid bath and its application in organic degradation,Chin.J.Chem.Eng.19(2011)1033-1038.

    [16]J.Pan,Y.Wen,J.Cheng,J.Pan,Z.Bai,Y.Yang,Zinc deposition and dissolution in sulfuric acid onto a graphite-resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteries,J.Appl.Electrochem.43(2013)541-551.

    [17]P.K.Leung,Q.Xu,T.S.Zhao,High-potential zinc-lead dioxide rechargeable cells,Electrochim.Acta 79(2012)117-125.

    [18]B.C.Tripathy,S.C.Das,P.Singh,G.T.Hefter,V.N.Misra,Zinc electrowinning from acidic sulphate solutions part IV:Effects of per fluorocarboxylic acids,J.Electroanal.Chem.565(2004)49-56.

    [19]C.Cachet,R.Wiart,In fluence of a per fluorinated surfactant on the mechanism of zinc deposition in acidic electrolytes,Electrochim.Acta 44(1999)4743-4751.

    [20]S.Han,B.Qiu,Z.Wei,Y.Xia,Z.Liu,Surface structuralconversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material,J.Power Sources 268(2014)683-691.

    [21]Q.B.Zhang,Y.Hua,Effect of Mn2+ions on the electrodeposition of zinc from acidic sulphate solutions,Hydrometallurgy 99(2009)249-254.

    [22]A.E.Alvarez,D.R.Salinas,Nucleation and growth of Zn on HOPG in the presence of gelatine as additive,J.Electroanal.Chem.566(2004)393-400.

    久久久国产欧美日韩av| 中文字幕久久专区| 亚洲精品国产av蜜桃| 亚洲人与动物交配视频| 黑人欧美特级aaaaaa片| 国产日韩一区二区三区精品不卡 | 中国国产av一级| 99久国产av精品国产电影| 欧美 日韩 精品 国产| 久久久国产欧美日韩av| 少妇被粗大的猛进出69影院 | 久久久久久久精品精品| 亚洲精品国产色婷婷电影| 精品卡一卡二卡四卡免费| 亚洲欧美日韩另类电影网站| 考比视频在线观看| 国产精品 国内视频| av又黄又爽大尺度在线免费看| 啦啦啦在线观看免费高清www| 国产成人免费观看mmmm| 美女大奶头黄色视频| 我的老师免费观看完整版| 汤姆久久久久久久影院中文字幕| 亚洲精品国产色婷婷电影| a 毛片基地| 亚洲国产成人一精品久久久| 精品亚洲成a人片在线观看| 免费不卡的大黄色大毛片视频在线观看| 91精品一卡2卡3卡4卡| 免费看av在线观看网站| 一本一本综合久久| 色视频在线一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 99热国产这里只有精品6| 日本猛色少妇xxxxx猛交久久| 亚洲色图综合在线观看| 午夜精品国产一区二区电影| 精品人妻熟女毛片av久久网站| 婷婷色麻豆天堂久久| 色吧在线观看| 色哟哟·www| 五月玫瑰六月丁香| 国产成人免费观看mmmm| 18禁裸乳无遮挡动漫免费视频| 亚洲精品日韩av片在线观看| 成人黄色视频免费在线看| 国产欧美另类精品又又久久亚洲欧美| av不卡在线播放| 中文字幕制服av| 麻豆成人av视频| 两个人的视频大全免费| 国国产精品蜜臀av免费| 91精品国产国语对白视频| 天美传媒精品一区二区| av一本久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久成人av| 亚洲国产精品国产精品| 亚洲第一区二区三区不卡| 日韩制服骚丝袜av| 免费观看的影片在线观看| 国产乱人偷精品视频| 一级毛片aaaaaa免费看小| 考比视频在线观看| 久久久欧美国产精品| 黄色配什么色好看| 国产国语露脸激情在线看| 日本爱情动作片www.在线观看| 久久久精品区二区三区| 十八禁网站网址无遮挡| 日本vs欧美在线观看视频| 国产精品久久久久久久电影| 久久久久久久久久久免费av| 七月丁香在线播放| 国产在视频线精品| 亚洲第一av免费看| 久久热精品热| 国产日韩一区二区三区精品不卡 | kizo精华| 国产男女超爽视频在线观看| 熟女电影av网| 日韩人妻高清精品专区| 少妇被粗大猛烈的视频| 校园人妻丝袜中文字幕| 中文字幕亚洲精品专区| 波野结衣二区三区在线| 精品午夜福利在线看| 国产精品久久久久成人av| 十八禁高潮呻吟视频| 日本av手机在线免费观看| 国产亚洲午夜精品一区二区久久| 麻豆乱淫一区二区| 看免费成人av毛片| 亚洲精品色激情综合| av电影中文网址| 在线观看人妻少妇| 高清午夜精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 日本与韩国留学比较| 视频在线观看一区二区三区| 草草在线视频免费看| 丝袜美足系列| 免费少妇av软件| 亚洲国产精品一区二区三区在线| 在线观看三级黄色| 欧美xxxx性猛交bbbb| 80岁老熟妇乱子伦牲交| 免费av不卡在线播放| 人成视频在线观看免费观看| 日韩一本色道免费dvd| 久久精品久久久久久噜噜老黄| 久久久久久久精品精品| 18禁观看日本| 在线天堂最新版资源| 国产精品人妻久久久影院| 在线 av 中文字幕| 伦精品一区二区三区| 2022亚洲国产成人精品| 一区二区av电影网| 美女主播在线视频| xxx大片免费视频| 国精品久久久久久国模美| 老熟女久久久| 纵有疾风起免费观看全集完整版| 黄片播放在线免费| 新久久久久国产一级毛片| 一级毛片黄色毛片免费观看视频| 男女国产视频网站| 99久国产av精品国产电影| 狂野欧美激情性bbbbbb| 久久99热6这里只有精品| 又黄又爽又刺激的免费视频.| 两个人的视频大全免费| 黄色怎么调成土黄色| 欧美亚洲日本最大视频资源| 免费大片黄手机在线观看| 日韩精品有码人妻一区| 能在线免费看毛片的网站| 99久久人妻综合| 亚洲人成网站在线观看播放| 亚洲国产精品999| 99视频精品全部免费 在线| 哪个播放器可以免费观看大片| 久久国产亚洲av麻豆专区| 国产乱人偷精品视频| 国产免费福利视频在线观看| 亚洲情色 制服丝袜| 18禁观看日本| 母亲3免费完整高清在线观看 | 亚洲内射少妇av| 有码 亚洲区| 一区二区三区乱码不卡18| 日韩视频在线欧美| 国产一区二区在线观看日韩| 老司机影院成人| 国产伦理片在线播放av一区| 极品人妻少妇av视频| 色婷婷久久久亚洲欧美| 国产免费又黄又爽又色| 国产探花极品一区二区| 高清午夜精品一区二区三区| 男女边摸边吃奶| 女人精品久久久久毛片| 精品一区二区三区视频在线| 人妻制服诱惑在线中文字幕| 一级片'在线观看视频| 狂野欧美激情性bbbbbb| 波野结衣二区三区在线| 国产日韩一区二区三区精品不卡 | 日本黄大片高清| 国产一区二区三区av在线| 亚洲美女视频黄频| 黑人猛操日本美女一级片| 久久久久国产精品人妻一区二区| 九草在线视频观看| 国产片内射在线| 欧美 日韩 精品 国产| 肉色欧美久久久久久久蜜桃| 人人妻人人添人人爽欧美一区卜| 欧美精品高潮呻吟av久久| 伊人亚洲综合成人网| 亚洲av福利一区| 青春草亚洲视频在线观看| videossex国产| 狠狠精品人妻久久久久久综合| 国产高清不卡午夜福利| 中国国产av一级| 久久精品国产亚洲av天美| 满18在线观看网站| 欧美性感艳星| 又黄又爽又刺激的免费视频.| 免费高清在线观看视频在线观看| 欧美性感艳星| 久久久久国产精品人妻一区二区| av黄色大香蕉| 在线观看国产h片| 免费观看的影片在线观看| 一个人免费看片子| 成人亚洲精品一区在线观看| 日本vs欧美在线观看视频| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片| 国产伦理片在线播放av一区| 久久久亚洲精品成人影院| av又黄又爽大尺度在线免费看| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 永久网站在线| 少妇人妻久久综合中文| 大片电影免费在线观看免费| 久久国产亚洲av麻豆专区| 另类精品久久| 久久毛片免费看一区二区三区| 少妇丰满av| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人精品一区二区| 亚洲av男天堂| 丝袜在线中文字幕| 国产精品 国内视频| 国精品久久久久久国模美| 99热这里只有精品一区| 色5月婷婷丁香| 天天躁夜夜躁狠狠久久av| 国产一区亚洲一区在线观看| 国产免费一区二区三区四区乱码| 国产爽快片一区二区三区| 欧美精品一区二区大全| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 国产高清国产精品国产三级| 午夜影院在线不卡| 少妇人妻 视频| 日韩 亚洲 欧美在线| 久久鲁丝午夜福利片| 欧美bdsm另类| 日韩成人av中文字幕在线观看| 欧美xxxx性猛交bbbb| 两个人免费观看高清视频| 超色免费av| 免费观看的影片在线观看| 不卡视频在线观看欧美| 黑人猛操日本美女一级片| 国产乱人偷精品视频| 超色免费av| 2021少妇久久久久久久久久久| 伦精品一区二区三区| 一区二区av电影网| 日日爽夜夜爽网站| 99热这里只有是精品在线观看| 日韩电影二区| 这个男人来自地球电影免费观看 | 国产精品久久久久久久电影| 精品少妇内射三级| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成年av动漫网址| 80岁老熟妇乱子伦牲交| 寂寞人妻少妇视频99o| 成人国产av品久久久| 两个人的视频大全免费| 日韩免费高清中文字幕av| 一个人看视频在线观看www免费| 国产亚洲欧美精品永久| 欧美日韩国产mv在线观看视频| 国产精品久久久久久久久免| 高清视频免费观看一区二区| 中文欧美无线码| 好男人视频免费观看在线| 热99久久久久精品小说推荐| 欧美精品国产亚洲| tube8黄色片| 日韩中字成人| 国产69精品久久久久777片| 永久免费av网站大全| 美女福利国产在线| 午夜免费观看性视频| 亚洲av国产av综合av卡| √禁漫天堂资源中文www| 日韩免费高清中文字幕av| h视频一区二区三区| 少妇丰满av| 青春草国产在线视频| 制服丝袜香蕉在线| 亚洲国产最新在线播放| 女人久久www免费人成看片| 伦理电影免费视频| 80岁老熟妇乱子伦牲交| 有码 亚洲区| 亚洲不卡免费看| 国产熟女欧美一区二区| 色吧在线观看| 婷婷色综合www| 久久精品国产鲁丝片午夜精品| 国产成人精品在线电影| 日日撸夜夜添| 精品99又大又爽又粗少妇毛片| 免费人妻精品一区二区三区视频| 国产黄色视频一区二区在线观看| 亚洲精品aⅴ在线观看| 精品卡一卡二卡四卡免费| 亚洲在久久综合| 夫妻午夜视频| 99久久精品一区二区三区| 午夜av观看不卡| 国精品久久久久久国模美| 纯流量卡能插随身wifi吗| 欧美日本中文国产一区发布| 亚洲av成人精品一二三区| 欧美3d第一页| 在线观看免费日韩欧美大片 | 国产黄色免费在线视频| 99久久精品国产国产毛片| 夫妻性生交免费视频一级片| 日日摸夜夜添夜夜爱| 尾随美女入室| 亚洲内射少妇av| 欧美日韩亚洲高清精品| 欧美最新免费一区二区三区| 99热国产这里只有精品6| 日韩免费高清中文字幕av| 国产不卡av网站在线观看| 欧美精品国产亚洲| 欧美97在线视频| 99热网站在线观看| 精品亚洲成a人片在线观看| 人人妻人人澡人人看| 飞空精品影院首页| 精品久久久久久久久亚洲| 麻豆乱淫一区二区| 久久99精品国语久久久| 91精品伊人久久大香线蕉| 高清在线视频一区二区三区| 国产有黄有色有爽视频| 亚洲内射少妇av| 久久久久久久大尺度免费视频| 三级国产精品欧美在线观看| 国产老妇伦熟女老妇高清| 夜夜看夜夜爽夜夜摸| 91精品伊人久久大香线蕉| 女人精品久久久久毛片| 日韩 亚洲 欧美在线| 91精品三级在线观看| 精品久久久久久久久亚洲| 亚洲国产最新在线播放| 18+在线观看网站| 国产亚洲午夜精品一区二区久久| 成人午夜精彩视频在线观看| 国产精品欧美亚洲77777| 欧美一级a爱片免费观看看| 18禁裸乳无遮挡动漫免费视频| 精品人妻一区二区三区麻豆| 成人国产av品久久久| 久久精品国产亚洲网站| 国产欧美亚洲国产| 日韩av免费高清视频| 天天影视国产精品| 高清av免费在线| 日韩视频在线欧美| 一级a做视频免费观看| 少妇精品久久久久久久| 五月玫瑰六月丁香| 精品一品国产午夜福利视频| a级毛片免费高清观看在线播放| 日韩电影二区| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 国产成人精品在线电影| 久久久国产一区二区| 国产乱来视频区| 免费高清在线观看日韩| 日韩强制内射视频| 18+在线观看网站| 久久ye,这里只有精品| 久久久欧美国产精品| 日韩强制内射视频| 亚洲,欧美,日韩| 亚洲国产精品一区三区| 亚洲欧美成人精品一区二区| 欧美日韩视频高清一区二区三区二| 午夜视频国产福利| 18禁裸乳无遮挡动漫免费视频| 一边摸一边做爽爽视频免费| 国产白丝娇喘喷水9色精品| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| av黄色大香蕉| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 麻豆成人av视频| 天美传媒精品一区二区| 大香蕉久久网| 丝袜美足系列| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 国产免费福利视频在线观看| 美女福利国产在线| 国产午夜精品一二区理论片| 3wmmmm亚洲av在线观看| av不卡在线播放| 亚洲国产精品999| 青春草亚洲视频在线观看| 麻豆成人av视频| 久久青草综合色| 黄色配什么色好看| 丰满少妇做爰视频| 国产成人精品久久久久久| 亚洲国产精品成人久久小说| 日产精品乱码卡一卡2卡三| 国产69精品久久久久777片| 男人操女人黄网站| 香蕉精品网在线| 男女啪啪激烈高潮av片| 嫩草影院入口| kizo精华| 亚洲美女视频黄频| 另类精品久久| 最新的欧美精品一区二区| 丰满饥渴人妻一区二区三| 亚洲美女黄色视频免费看| 欧美亚洲日本最大视频资源| 精品一区二区免费观看| 精品久久久噜噜| 国产男女内射视频| 人妻一区二区av| 色视频在线一区二区三区| 性高湖久久久久久久久免费观看| 一本大道久久a久久精品| 九草在线视频观看| 青青草视频在线视频观看| 久久久a久久爽久久v久久| 91国产中文字幕| 五月天丁香电影| 国产av精品麻豆| 国产黄片视频在线免费观看| 大陆偷拍与自拍| 国产在视频线精品| 亚洲激情五月婷婷啪啪| 亚洲av综合色区一区| 欧美bdsm另类| 亚洲av成人精品一区久久| 国产亚洲欧美精品永久| 人妻一区二区av| 少妇猛男粗大的猛烈进出视频| 免费高清在线观看日韩| 啦啦啦中文免费视频观看日本| 久久这里有精品视频免费| www.色视频.com| 欧美3d第一页| 午夜日本视频在线| 国产片特级美女逼逼视频| a级毛片在线看网站| 妹子高潮喷水视频| 一区二区av电影网| 免费人成在线观看视频色| 精品一区在线观看国产| 大香蕉久久网| 色婷婷久久久亚洲欧美| 免费高清在线观看视频在线观看| 自线自在国产av| 五月玫瑰六月丁香| 久久av网站| 69精品国产乱码久久久| 国产亚洲一区二区精品| 最新中文字幕久久久久| 欧美一级a爱片免费观看看| 最黄视频免费看| 婷婷成人精品国产| 又大又黄又爽视频免费| 亚洲精品一区蜜桃| 一级片'在线观看视频| 熟女av电影| 午夜福利视频精品| 亚洲精品aⅴ在线观看| 性色av一级| 男女边摸边吃奶| 亚洲欧美中文字幕日韩二区| 99国产综合亚洲精品| av国产精品久久久久影院| 尾随美女入室| 有码 亚洲区| 欧美激情国产日韩精品一区| 亚洲综合精品二区| 亚洲精品日韩在线中文字幕| 国产爽快片一区二区三区| 日韩中文字幕视频在线看片| 国产午夜精品一二区理论片| 91精品国产国语对白视频| 寂寞人妻少妇视频99o| 建设人人有责人人尽责人人享有的| 人人妻人人澡人人看| 男人添女人高潮全过程视频| 免费大片18禁| 人妻一区二区av| 久久影院123| 一级毛片aaaaaa免费看小| 亚洲综合色惰| 999精品在线视频| 91久久精品国产一区二区三区| 在现免费观看毛片| 亚洲人成77777在线视频| 99久久精品国产国产毛片| 免费高清在线观看视频在线观看| av线在线观看网站| 亚洲欧洲日产国产| 成年人免费黄色播放视频| av不卡在线播放| 一区二区三区精品91| 久久久久久久久久久丰满| 各种免费的搞黄视频| 人妻 亚洲 视频| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 丰满迷人的少妇在线观看| 九草在线视频观看| 下体分泌物呈黄色| 久久精品国产自在天天线| 免费黄频网站在线观看国产| 国产精品女同一区二区软件| 日本免费在线观看一区| 麻豆乱淫一区二区| 我的女老师完整版在线观看| 国产精品国产av在线观看| 国产成人a∨麻豆精品| 22中文网久久字幕| 亚洲精品乱码久久久v下载方式| 99热网站在线观看| 国产日韩欧美在线精品| 一级片'在线观看视频| 精品视频人人做人人爽| 国产欧美另类精品又又久久亚洲欧美| 丝瓜视频免费看黄片| 日韩精品有码人妻一区| 18禁动态无遮挡网站| 久久99蜜桃精品久久| 婷婷成人精品国产| 久久精品久久久久久噜噜老黄| 久久狼人影院| 亚洲精品av麻豆狂野| 精品熟女少妇av免费看| 999精品在线视频| 亚洲国产欧美在线一区| 国产欧美亚洲国产| 人妻少妇偷人精品九色| 欧美bdsm另类| 精品视频人人做人人爽| 卡戴珊不雅视频在线播放| 22中文网久久字幕| 亚洲av在线观看美女高潮| 又粗又硬又长又爽又黄的视频| 秋霞伦理黄片| 日韩强制内射视频| a级片在线免费高清观看视频| 黑人猛操日本美女一级片| 国产精品人妻久久久久久| 视频中文字幕在线观看| 久久女婷五月综合色啪小说| 国产乱来视频区| 一本—道久久a久久精品蜜桃钙片| 久久婷婷青草| 99九九线精品视频在线观看视频| 欧美激情国产日韩精品一区| 国产成人av激情在线播放 | 黄色配什么色好看| 性色avwww在线观看| 国产精品 国内视频| 久久久久久久久久久丰满| 中国国产av一级| 天堂中文最新版在线下载| 欧美日韩亚洲高清精品| 97在线视频观看| 波野结衣二区三区在线| 国产亚洲一区二区精品| 亚洲av福利一区| 国产精品一区二区三区四区免费观看| 欧美xxxx性猛交bbbb| 国产成人免费观看mmmm| 十八禁网站网址无遮挡| 国产精品久久久久久av不卡| 久久人妻熟女aⅴ| 日韩 亚洲 欧美在线| freevideosex欧美| 三级国产精品片| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 亚洲精品色激情综合| 日韩成人伦理影院| 久久精品久久精品一区二区三区| 久久久久久久久久久久大奶| 亚洲国产成人一精品久久久| 一级毛片aaaaaa免费看小| 亚洲欧美成人综合另类久久久| 国产精品国产av在线观看| 午夜福利影视在线免费观看| 观看av在线不卡| 秋霞伦理黄片| av电影中文网址| 3wmmmm亚洲av在线观看| 热99久久久久精品小说推荐| 久久国内精品自在自线图片| 日本午夜av视频| 秋霞伦理黄片| 午夜福利影视在线免费观看| 3wmmmm亚洲av在线观看| 国产又色又爽无遮挡免| av卡一久久| 午夜福利网站1000一区二区三区| 少妇 在线观看| 日本av免费视频播放| 99热这里只有精品一区| www.色视频.com| 久久精品熟女亚洲av麻豆精品| 日韩强制内射视频| 国产高清不卡午夜福利| 丝袜在线中文字幕| 伦理电影免费视频|