• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel L-vector representation and improvedcosine distance kernel for Text-dependentSpeaker Verification

    2016-05-27 01:42:44LIWeiYOUHanxuZHUJieCHENNing
    關(guān)鍵詞:向量

    LI Wei, YOU Hanxu, ZHU Jie, CHEN Ning

    (1.School of Electronic Information and Electical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)

    ?

    A novel L-vector representation and improvedcosine distance kernel for Text-dependentSpeaker Verification

    LI Wei1, YOU Hanxu1, ZHU Jie1, CHEN Ning2

    (1.School of Electronic Information and Electical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China; 2.School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)

    Abstract:A text-dependent i-vector extraction scheme and a lexicon-based binary vector (L-vector) representation are proposed to improve the performance of text-dependent speaker verification.An utterance used for enrollment or test is represented by these two vectors.An improved cosine distance kernel combining i-vector and L-vector is constructed to discriminate both speaker identity and lexical (or text) diversity with back-end support vector machine(SVM).Experiments are conducted on RSR 2015 Corpus part 1 and part 2.The results indicate that at most 30% improvement can be obtained compared with traditional i-vector baseline.

    Key words:text-dependent speaker verification; i-vector; L-vector; cosine distance kernel

    1Introduction

    In recent years,i-vector based framework has demonstrated state-of-the-art performance in text-independent speaker verification[1].Each utterance either for enrollment or test is projected onto a low rank total factor space,and is represented by a low dimensional identity vector termed i-vector.It is commonly thought that i-vector well captures speaker- and channel- dependent information in an utterance,also it represents a global adaptation in Gaussian Mixture Model (GMM) subspace.However its applicability has not been widely accepted in text-dependent speaker verification[2]mainly due to two reasons.Firstly,i-vector cannot explicitly represent the lexical information of an utterance.Secondly,since the duration of utterance is very short in text-dependent speaker verification,short-term speaker features,like Mel Frequency Cepstrum Coefficient (MFCC) or Perceptual Linear Predictive (PLP),can only activate a subset of total Gaussian components,hence it is not appropriate to globally adapt all the Gaussian components.

    To cope with these two shortcomings,firstly,we propose a text-dependent i-vector extraction scheme,only those Gaussian components with sufficient speaker frames are retained based on this scheme,and i-vector adaptation is performed based on this subset.Secondly,a lexicon-based binary vector termed L-vector is constructed to model the distribution of zero order Baum-Welch statistics,which can capture lexical information in an utterance.Finally,an improved cosine distance kernel is constructed,which combines i-vector and L-vector,to measure the diversity of both speaker identity and lexical (or text) content.

    2Text-dependent i-vector extraction

    Given the speaker frame set of an utterance,we regard corresponding zero order Baum-Welch statisticsNcas a metric to measure how many frames are assigned to each Gaussian component,wherecindexes each Gaussian component.According to[3],extremely short utterance (less than 10 s) leads to an imbalanced distribution of zero order Baum-Welch statistics,we can use 50% of total Gaussian components with highestNcto capture more than 90% speaker frames.In text-dependent speaker verification,enrollment or test utterance is also very short,moreover,scarceNcmay lead to biased estimation of first order Baum-Welch statisticsFc[3],hence it is more appropriate to perform i-vector adaptation within a subset of total Gaussian components.

    In order to select those Gaussian components with highestNc,a threshold function is defined as:

    (1)

    Whereεis an empirically tuned factor to adjust the number of Gaussian components to be retained.By this filter scheme,we can select a subset of Gaussian components with highestNc.In real application,we usually pay more attention to the number of Gaussians in the subset,which we denote byR.The text-dependent i-vector extraction can be written as:

    (2)

    where udenotestheutteranceinvolved,Iistheidentitymatrixasaprior,Tcisthesub-matrixofthec-thblockoftotalfactormatrixT,Tcandmcarethespeaker-andtext-independentcovariancematrixandmeanvectorforc-thGaussiancomponent,CisthenumberoftotalGaussiancomponents.Comparedtotraditionali-vectorextraction[4],theS(c)filteringmechanismensurethatonlythosecomponentsrepresentinglexicalinformationofutteranceinvolveinadaptation.

    3Lexicon-basedL-vector

    Althoughourimprovedi-vectorcanberegardedasatext-dependentlocalrepresentationinGMMspace,itaimstodiscriminatespeakeridentityandcannotwelldiscriminatelexicaldiversity.Alexicon-basedbinaryvectortermedL-vectorisconstructedforthispurpose.

    UtilizingthesameS(c)in(1),L-vectorcanbewrittenas:

    (3)

    wherethesubscriptindexesGaussiancomponent,thenumberof1sinLisequaltoR,thedimensionalityofL-vectorisequaltothenumberoftotalGaussiancomponentsC.L-vectorrepresentswhichGaussiancomponentisactivatedgivenatrainingutterance,anditencodeslexicalinformationinutterance.

    4Improvedcosinedistancekernel

    Givenanenrollmentutteranceu1andatestutteranceu2,correspondingspeakermodelsλcanberepresentedas:

    (4)

    Tocalculatethesimilaritybetweenu1andu2,theimprovedcosinedistancekernelcanbewrittenas:

    (5)

    5Experiments and results

    All experiments were carried out on part 1 and part 2 of the Robust Speaker Recognition 2015 (RSR 2015) corpus set[5-6],which is designed for text-dependent speaker recognition with scenario based on fixed pass-phrases (part 1) and fixed commands (part 2).It contains audio recordings from 300 people,which include 143 female and 157 male speakers that are between 17 to 42 years old,and the whole set is divided into background (bkg),development (dev) and evaluation (eval) subsets.Among the 300 people,50 male and 47 female speakers are in the background set,50/47 in the development set and 57/49 in the evaluation set.

    Our experiments applied MFCC (19 order coefficients together with log energy) as short-term speaker feature,with speech/silence segmentation performed according to an energy-based voice activity detection (VAD).The length of Hamming window was 25ms with 10ms shift.The 20-dimensional feature vector was normalized by cepstral mean subtraction (CMS),20 first orderδand 10 second orderδwere appended,equal to a total dimension of 50.

    512 order gender dependent universal background models (UBM) were trained with bkg corpus set.Gender dependent total factor matrixes with rank of 300 were trained with the mixture of bkg and dev corpus sets.In the back-end support vector machine (SVM) classification system,the speaker modelsλextracted from bkg corpus set were used as imposter models to train the SVM system.Linear discriminant analysis (LDA) was applied as channel compensation technique before SVM training.LDA was estimated with the mixture of bkg and dev corpus sets.In our experiments,the optimal LDA dimension is 260.The eval set was used to evaluate system performance.Evaluations on part 1 and part 2 were independent and corpus sets between part 1 and part 2 were not overlapped.Two types of trials,i.e.CLIENT-wrong (given that the test utterance is spoken by the target user with wrong pass-phrase) and IMP-true (given that the test utterance is spoken by an imposter with the correct pass-phrase) of the evaluations described in[6]were used in our experiment.As we have mentioned in the previous section,the only parameter has to be empirically tuned in our system isR,Rranges from 512~350.

    Results were given in terms of equal error rate (EER) and decision cost function (DCF).Table 1 and 2 present the results of traditional text-independent i-vector baseline system and our lexicon-based text-dependent i-vector system.

    The results in both Table 1 and Table 2 show that as the value ofRdecreases from 512~430 (for CLIENT-wrong) or 450 (for IMP-TRUE),the system gains a significant performance improvement.In the CLIENT-wrong trials,best improvement is obtained whenRis set to 430,our lexicon-based text-dependent i-vector system achieves a relative improvement of 26% in part 1 and 28% in part 2 on male trials as well as 30% in part 1 and 20% in part 2 on female trials.In the IMP-TRUE trials,as the lexical contents of target speaker and imposter speaker are identical,our lexicon-based text-dependent i-vector system gains less significant improvement,best improvement is obtained whenRis set to 450,which achieves a relative improvement of 9.7% in part 1 and 9.5% in part 2 on male trials as well as 15% in part 1 and 10.9% in part 2 on female trials.In real application,settingRto 430 can obtain a global optimal performance in our text-dependent i-vector system.

    6Conclusion

    We have proposed a lexicon-based local representation algorithm for text-dependenti-vector speaker verification system.A subset of total Gaussian components is selected,which is most relevant to lexicon information.Text-dependent i-vector for either enrollment utterance or test utterance is extracted based on this subset.Moreover,a lexicon-based L-vector is constructed to discriminate lexical diversity.An improved cosine kernel is designed to measure the similarity of both speaker identity and lexical content between two utterances.Experimental results show that at most 30% improvement in EER can be obtained compared to traditional text-independent i-vector system.Given that our system now still highly depend on the empirical valueR,our future work will focus on adaptive approach for tuningRautomatically from speaker data.

    References:

    [1]Dehak N,Kenny P,Dehak R,et al.Front-end factor analysis for speaker verification [J].Audio,Speech,and Language Processing,IEEE Transactions on,2011,19(4):788-798.

    [2]Aronowitz H.Text dependent speaker verification using a small development set[C]//Odyssey.The Speaker and Language Recognition Workshop.ISCA:Singapore,2012.

    [3]Li W,Fu T F,Zhu J,et al.Sparsity Analysis and Compensation fori-Vector Based Speaker Verification[M]//Ronzhin A,Potapova R,Fakotakis N.Speech and Computer.Berlin:Springer International Publishing,2015:381-388.

    [4]Kenny P,Boulianne G,Dumouchel P.Eigenvoice modeling with sparse training data [J].Speech and Audio Processing,IEEE Transactions on,2005,13(3):345-354.

    [5]Larcher A,Lee K A,Ma B,et al.Phonetically-constrained PLDA modeling for text-dependent speaker verification with multiple short utterances[C]//IEEE.Acoustics Speech and Signal Processing (ICASSP) 2013 IEEE International Conference on.IEEE,Vancouer,2013:7673-7677.

    [6]Larcher A,Lee K A,Ma B,et al.RSR2015:Database for Text-Dependent Speaker Verification using Multiple Pass-Phrases[C]//Institute for Information Research.Interspeech.IZR:Singapore,2012.

    (責(zé)任編輯:包震宇)

    一種應(yīng)用于文本相關(guān)說話人確認(rèn)的L-向量表示和改進(jìn)的余弦距離核函數(shù)

    李為1, 游寒旭1, 朱杰1, 陳寧2

    (1.上海交通大學(xué) 電子信息與電氣工程學(xué)院,上海 200240;2.華東理工大學(xué) 信息科學(xué)與工程學(xué)院,上海 200237)

    關(guān)鍵詞:文本相關(guān)說話人識別; i-向量; L-向量; 余弦核函數(shù)

    摘要:提出了一種用于文本相關(guān)說說話人確認(rèn)技術(shù)的i-向量提取方法和L-向量表示.一段用于注冊或識別的語音可以用i-向量和L-向量聯(lián)合表示.同時(shí)提出了一種改進(jìn)的用于支持向量機(jī)(SVM)后端分類的核函數(shù),改進(jìn)的核函數(shù)可以同時(shí)區(qū)分說話人身份的差異和文本內(nèi)容的差異.在RSR 2015語料集合1和集合2上驗(yàn)證系統(tǒng)的性能,實(shí)驗(yàn)結(jié)果顯示改進(jìn)的算法相對于傳統(tǒng)的i-向量系統(tǒng)的基線能提高至多30%的識別率.

    CLC number:TP 912.3

    Document code:AArticle ID: 1000-5137(2016)02-0243-05

    Received date:2016-02-29

    Foundation item:This work was supported by the National Natural Science Foundation of China (NSFC) under Grant (61271349,61371147,11433002),and Shanghai Jiao Tong University joint research fund for Biomedical Engineering under (YG2012ZD04).

    Corresponding author:ZHU Jie,School of Electronic Information and Electical Engineering,Shanghai Jiao Tong University,No.800,Dongchuan Rd.,Shanghai 200240,China,E-mail:zhujie@sjtu.edu.cn

    猜你喜歡
    向量
    空間向量的應(yīng)用A卷
    空間向量的應(yīng)用B卷
    向量應(yīng)用及小結(jié)復(fù)習(xí)A卷
    向量的分解
    向量的共線
    向量的平行與垂直
    聚焦“向量與三角”創(chuàng)新題
    一道向量題的多解與多變
    向量垂直在解析幾何中的應(yīng)用
    向量五種“變身” 玩轉(zhuǎn)圓錐曲線
    中文欧美无线码| 亚洲成人免费电影在线观看| 精品少妇一区二区三区视频日本电影| 久久久久久免费高清国产稀缺| 999精品在线视频| 97人妻天天添夜夜摸| 在线观看免费视频日本深夜| 又黄又爽又免费观看的视频| 欧美精品亚洲一区二区| 国产精品免费视频内射| 久久香蕉精品热| 国产无遮挡羞羞视频在线观看| ponron亚洲| 乱人伦中国视频| 天天影视国产精品| 亚洲第一av免费看| 午夜福利一区二区在线看| 亚洲精品粉嫩美女一区| 国产亚洲欧美在线一区二区| 亚洲精品一区av在线观看| 女人被躁到高潮嗷嗷叫费观| 精品乱码久久久久久99久播| 美国免费a级毛片| 91大片在线观看| 无人区码免费观看不卡| 国产精品爽爽va在线观看网站 | 日韩欧美三级三区| 欧美精品亚洲一区二区| av免费在线观看网站| 欧美精品亚洲一区二区| 成人av一区二区三区在线看| 制服人妻中文乱码| 人妻丰满熟妇av一区二区三区| 成人影院久久| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产一区最新在线观看| 午夜两性在线视频| 午夜91福利影院| svipshipincom国产片| 成人手机av| 99热只有精品国产| 少妇粗大呻吟视频| 999久久久精品免费观看国产| 成人精品一区二区免费| 成人国产一区最新在线观看| 久久精品亚洲精品国产色婷小说| 亚洲欧洲精品一区二区精品久久久| 99精品久久久久人妻精品| 天堂中文最新版在线下载| 美女高潮到喷水免费观看| www.自偷自拍.com| av免费在线观看网站| 精品国内亚洲2022精品成人| 久久这里只有精品19| 亚洲国产精品一区二区三区在线| 免费看a级黄色片| 精品一区二区三卡| 在线观看免费视频网站a站| 精品一品国产午夜福利视频| 国产三级在线视频| 日本免费一区二区三区高清不卡 | 国产熟女午夜一区二区三区| www.精华液| 又黄又爽又免费观看的视频| 日本五十路高清| 十八禁网站免费在线| av欧美777| 18禁观看日本| 91麻豆精品激情在线观看国产 | 日日夜夜操网爽| 超碰成人久久| 嫩草影视91久久| 亚洲五月色婷婷综合| 午夜福利影视在线免费观看| 欧美最黄视频在线播放免费 | 精品久久久久久,| 人人妻人人爽人人添夜夜欢视频| 1024视频免费在线观看| 久久久国产成人精品二区 | 精品一区二区三区av网在线观看| 桃色一区二区三区在线观看| 啦啦啦免费观看视频1| 国产精品久久久久成人av| 亚洲avbb在线观看| 一级作爱视频免费观看| 91精品三级在线观看| 一区福利在线观看| 999精品在线视频| 国产在线精品亚洲第一网站| 交换朋友夫妻互换小说| 免费av毛片视频| 纯流量卡能插随身wifi吗| 麻豆久久精品国产亚洲av | 日韩欧美一区二区三区在线观看| www日本在线高清视频| 夫妻午夜视频| e午夜精品久久久久久久| av超薄肉色丝袜交足视频| 午夜福利在线观看吧| 久久精品91无色码中文字幕| 欧美在线一区亚洲| 俄罗斯特黄特色一大片| 91麻豆精品激情在线观看国产 | 午夜两性在线视频| 每晚都被弄得嗷嗷叫到高潮| 国产99白浆流出| 一级a爱视频在线免费观看| 老熟妇乱子伦视频在线观看| 欧美激情久久久久久爽电影 | 欧美午夜高清在线| 99热只有精品国产| 亚洲国产看品久久| 如日韩欧美国产精品一区二区三区| 叶爱在线成人免费视频播放| 少妇裸体淫交视频免费看高清 | 精品电影一区二区在线| 一级毛片高清免费大全| 国产精品久久久久久人妻精品电影| 啪啪无遮挡十八禁网站| 国产一区二区在线av高清观看| 午夜a级毛片| 天堂动漫精品| 人成视频在线观看免费观看| 日本三级黄在线观看| 亚洲欧美日韩另类电影网站| 人人妻人人爽人人添夜夜欢视频| 久久精品91无色码中文字幕| 亚洲第一欧美日韩一区二区三区| 久久 成人 亚洲| 韩国精品一区二区三区| 一级a爱片免费观看的视频| 免费高清视频大片| 国产成人精品在线电影| av片东京热男人的天堂| 热re99久久国产66热| 亚洲色图av天堂| 欧美午夜高清在线| 国产黄色免费在线视频| 午夜成年电影在线免费观看| 色老头精品视频在线观看| 777久久人妻少妇嫩草av网站| 日本五十路高清| 啦啦啦 在线观看视频| 亚洲五月婷婷丁香| 91老司机精品| 国产精品亚洲一级av第二区| 国产一卡二卡三卡精品| 国产成人影院久久av| 欧美日韩福利视频一区二区| 色婷婷av一区二区三区视频| 亚洲欧美一区二区三区黑人| 久久国产乱子伦精品免费另类| 天天影视国产精品| 老汉色av国产亚洲站长工具| 久久久水蜜桃国产精品网| 美女高潮到喷水免费观看| 久久久精品欧美日韩精品| 嫩草影院精品99| 久久人妻福利社区极品人妻图片| 久久99一区二区三区| 中文字幕人妻丝袜制服| 亚洲av日韩精品久久久久久密| 国产一区二区三区综合在线观看| 亚洲精品在线观看二区| netflix在线观看网站| 亚洲情色 制服丝袜| 国产精品一区二区免费欧美| 亚洲精品av麻豆狂野| 妹子高潮喷水视频| 天堂动漫精品| 久久久国产精品麻豆| 制服诱惑二区| 免费av中文字幕在线| 丰满迷人的少妇在线观看| 99国产综合亚洲精品| 黄频高清免费视频| av国产精品久久久久影院| 天堂俺去俺来也www色官网| 女生性感内裤真人,穿戴方法视频| 欧美精品一区二区免费开放| 夜夜躁狠狠躁天天躁| 9191精品国产免费久久| 窝窝影院91人妻| 精品乱码久久久久久99久播| 国产成人啪精品午夜网站| 成年人黄色毛片网站| 热99re8久久精品国产| 色婷婷av一区二区三区视频| 精品第一国产精品| 亚洲国产欧美网| 久久久国产成人精品二区 | 久久久水蜜桃国产精品网| 久久久久久久久中文| 少妇的丰满在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一欧美日韩一区二区三区| 91av网站免费观看| www.999成人在线观看| 国产精品日韩av在线免费观看 | 国产av又大| www.熟女人妻精品国产| 欧美一区二区精品小视频在线| 亚洲精品国产精品久久久不卡| 欧美精品一区二区免费开放| 看黄色毛片网站| 老熟妇仑乱视频hdxx| 黄色视频不卡| 亚洲色图 男人天堂 中文字幕| 最近最新中文字幕大全电影3 | 国产高清国产精品国产三级| 亚洲成人免费av在线播放| 亚洲av第一区精品v没综合| 91大片在线观看| 欧美日韩av久久| 长腿黑丝高跟| 精品无人区乱码1区二区| 欧美激情久久久久久爽电影 | 久久久水蜜桃国产精品网| 老司机午夜福利在线观看视频| 精品福利观看| 99热只有精品国产| 熟女少妇亚洲综合色aaa.| 亚洲欧美精品综合一区二区三区| 一区福利在线观看| 男人操女人黄网站| 日日摸夜夜添夜夜添小说| 久久久久久免费高清国产稀缺| 国产一区二区三区综合在线观看| 久久久久国产一级毛片高清牌| 久久精品亚洲熟妇少妇任你| 精品国产美女av久久久久小说| 免费搜索国产男女视频| 午夜成年电影在线免费观看| 欧美精品亚洲一区二区| 另类亚洲欧美激情| 制服诱惑二区| 久久青草综合色| 丰满饥渴人妻一区二区三| 免费高清视频大片| 麻豆国产av国片精品| 亚洲 欧美一区二区三区| 精品一区二区三区视频在线观看免费 | 久久精品国产99精品国产亚洲性色 | 国产欧美日韩一区二区三区在线| 亚洲精品成人av观看孕妇| 中文字幕高清在线视频| 日日夜夜操网爽| 人妻丰满熟妇av一区二区三区| 淫妇啪啪啪对白视频| 国产99久久九九免费精品| 黑人操中国人逼视频| 少妇 在线观看| a级毛片在线看网站| 超色免费av| 三级毛片av免费| 美女扒开内裤让男人捅视频| 日日爽夜夜爽网站| 欧美日韩av久久| 三上悠亚av全集在线观看| 成年版毛片免费区| 淫妇啪啪啪对白视频| 一级毛片高清免费大全| 老司机亚洲免费影院| 热re99久久精品国产66热6| 亚洲欧美日韩无卡精品| 午夜福利一区二区在线看| 一二三四社区在线视频社区8| а√天堂www在线а√下载| 国产精品美女特级片免费视频播放器 | 欧美国产精品va在线观看不卡| 亚洲成人久久性| 精品一品国产午夜福利视频| 男女下面进入的视频免费午夜 | 国产精品综合久久久久久久免费 | 一区在线观看完整版| 欧美中文日本在线观看视频| 两个人看的免费小视频| 9191精品国产免费久久| 亚洲自偷自拍图片 自拍| 亚洲一区中文字幕在线| 国产高清视频在线播放一区| 另类亚洲欧美激情| 99在线人妻在线中文字幕| 69精品国产乱码久久久| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕av电影在线播放| 亚洲 国产 在线| 亚洲黑人精品在线| 黄色丝袜av网址大全| 午夜激情av网站| 久久中文看片网| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品久久久久久毛片| 午夜福利,免费看| 日韩人妻精品一区2区三区| 国产精品秋霞免费鲁丝片| 法律面前人人平等表现在哪些方面| 成人18禁高潮啪啪吃奶动态图| 国产精品久久视频播放| 亚洲熟女毛片儿| 成人精品一区二区免费| 99re在线观看精品视频| 色哟哟哟哟哟哟| 欧美人与性动交α欧美软件| 欧美另类亚洲清纯唯美| 高清av免费在线| netflix在线观看网站| 亚洲欧美激情在线| 在线观看免费视频网站a站| 51午夜福利影视在线观看| 久久久国产一区二区| 久久久久久免费高清国产稀缺| 国产一区二区三区在线臀色熟女 | netflix在线观看网站| 我的老师免费观看完整版| 天美传媒精品一区二区| 真实男女啪啪啪动态图| 高清日韩中文字幕在线| 国产69精品久久久久777片| 成年版毛片免费区| 99在线人妻在线中文字幕| av在线老鸭窝| 国产野战对白在线观看| 性色av乱码一区二区三区2| 高清在线国产一区| 亚洲片人在线观看| 国产久久久一区二区三区| 亚洲精品日韩av片在线观看| 两人在一起打扑克的视频| 亚洲精品在线美女| 免费观看人在逋| 国产亚洲精品av在线| 一区福利在线观看| 亚洲av免费高清在线观看| 三级男女做爰猛烈吃奶摸视频| 久久久久久国产a免费观看| 一卡2卡三卡四卡精品乱码亚洲| 2021天堂中文幕一二区在线观| 高清毛片免费观看视频网站| 国产熟女xx| 国产精品一及| 给我免费播放毛片高清在线观看| 老司机深夜福利视频在线观看| 我的女老师完整版在线观看| 1024手机看黄色片| 日韩免费av在线播放| 69av精品久久久久久| 精品一区二区三区av网在线观看| 国产高清视频在线播放一区| 精品一区二区三区视频在线| 国产精品一区二区三区四区免费观看 | 欧美一区二区国产精品久久精品| 国产大屁股一区二区在线视频| 少妇人妻一区二区三区视频| 给我免费播放毛片高清在线观看| 黄色一级大片看看| 99在线人妻在线中文字幕| 日韩欧美国产在线观看| 亚洲国产精品sss在线观看| 免费搜索国产男女视频| 午夜免费男女啪啪视频观看 | 久久久久久久久久成人| 搡女人真爽免费视频火全软件 | 国产成人影院久久av| 亚洲国产精品久久男人天堂| 99视频精品全部免费 在线| 国内揄拍国产精品人妻在线| 丝袜美腿在线中文| 首页视频小说图片口味搜索| 国产精品亚洲一级av第二区| 亚洲国产欧洲综合997久久,| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 身体一侧抽搐| 午夜福利免费观看在线| aaaaa片日本免费| 91狼人影院| 国产午夜福利久久久久久| 精华霜和精华液先用哪个| 成年女人永久免费观看视频| 99在线视频只有这里精品首页| 中文在线观看免费www的网站| 亚洲最大成人中文| 午夜a级毛片| 欧美日韩福利视频一区二区| 国产白丝娇喘喷水9色精品| 一区福利在线观看| 高清毛片免费观看视频网站| 免费观看精品视频网站| 无遮挡黄片免费观看| 久久久久九九精品影院| 国产大屁股一区二区在线视频| 婷婷精品国产亚洲av在线| 国产精品爽爽va在线观看网站| 精品无人区乱码1区二区| 亚洲经典国产精华液单 | 99在线视频只有这里精品首页| 黄色一级大片看看| 亚洲熟妇熟女久久| 免费看日本二区| 18禁黄网站禁片免费观看直播| 麻豆国产av国片精品| 国产高清三级在线| 亚洲精品色激情综合| 精品久久久久久成人av| 波多野结衣高清无吗| 国产视频内射| 亚洲欧美日韩高清在线视频| 国产精品一区二区三区四区久久| 黄色丝袜av网址大全| 国产精品久久久久久精品电影| 国产大屁股一区二区在线视频| 久久国产乱子免费精品| 中文字幕免费在线视频6| 国产精品久久久久久亚洲av鲁大| 中国美女看黄片| 亚洲国产高清在线一区二区三| 欧美成狂野欧美在线观看| 亚洲中文字幕一区二区三区有码在线看| 色播亚洲综合网| 亚洲,欧美,日韩| 床上黄色一级片| 少妇的逼水好多| 久久99热6这里只有精品| 午夜福利在线在线| 久久中文看片网| 亚洲人成网站高清观看| 亚洲av免费在线观看| 毛片女人毛片| 婷婷精品国产亚洲av| 丝袜美腿在线中文| 国产精品亚洲一级av第二区| 亚洲精品影视一区二区三区av| 人人妻人人看人人澡| 无遮挡黄片免费观看| 日韩高清综合在线| 日韩精品中文字幕看吧| 久久久久久久久大av| 亚洲欧美精品综合久久99| 久久人人爽人人爽人人片va | 三级国产精品欧美在线观看| 三级毛片av免费| 亚洲自拍偷在线| 国产精品久久久久久久久免 | 美女高潮的动态| 中文字幕人成人乱码亚洲影| 观看免费一级毛片| 琪琪午夜伦伦电影理论片6080| 熟女人妻精品中文字幕| 欧美又色又爽又黄视频| 国产精品伦人一区二区| 最好的美女福利视频网| 亚洲不卡免费看| 亚洲成人中文字幕在线播放| 欧美3d第一页| 成人毛片a级毛片在线播放| 给我免费播放毛片高清在线观看| 国产老妇女一区| 99国产综合亚洲精品| 又黄又爽又免费观看的视频| 一个人免费在线观看电影| 一级av片app| 午夜福利在线在线| 热99re8久久精品国产| 久久香蕉精品热| 90打野战视频偷拍视频| 中文资源天堂在线| 亚州av有码| 日本黄色片子视频| 亚洲 欧美 日韩 在线 免费| 一进一出好大好爽视频| 十八禁人妻一区二区| 免费一级毛片在线播放高清视频| 十八禁网站免费在线| 欧美色欧美亚洲另类二区| 激情在线观看视频在线高清| 五月玫瑰六月丁香| 亚洲欧美精品综合久久99| 最好的美女福利视频网| 久久久久国内视频| 国产激情偷乱视频一区二区| 日本黄大片高清| 超碰av人人做人人爽久久| 蜜桃亚洲精品一区二区三区| 小说图片视频综合网站| 亚洲欧美日韩无卡精品| 啪啪无遮挡十八禁网站| 丁香六月欧美| 小说图片视频综合网站| 在线观看午夜福利视频| 亚洲精品亚洲一区二区| 欧美精品国产亚洲| 国产v大片淫在线免费观看| 午夜免费成人在线视频| 国产真实乱freesex| 精品无人区乱码1区二区| av中文乱码字幕在线| 无人区码免费观看不卡| 午夜a级毛片| 欧美3d第一页| 久久欧美精品欧美久久欧美| 午夜精品在线福利| 精品人妻1区二区| 99国产精品一区二区蜜桃av| 757午夜福利合集在线观看| 国产精品自产拍在线观看55亚洲| 丁香六月欧美| АⅤ资源中文在线天堂| 观看免费一级毛片| 91av网一区二区| 一本一本综合久久| 成人毛片a级毛片在线播放| 99riav亚洲国产免费| 亚洲三级黄色毛片| 成人特级黄色片久久久久久久| 日本精品一区二区三区蜜桃| 最近视频中文字幕2019在线8| 欧美黄色淫秽网站| ponron亚洲| 毛片女人毛片| 999久久久精品免费观看国产| 午夜免费激情av| 熟女电影av网| 午夜福利视频1000在线观看| 99久久99久久久精品蜜桃| 亚洲av美国av| 久久国产精品人妻蜜桃| www.色视频.com| 亚洲精品456在线播放app | 亚洲av一区综合| 成年版毛片免费区| 欧美日韩福利视频一区二区| 亚洲国产精品sss在线观看| 老女人水多毛片| 黄色视频,在线免费观看| 三级男女做爰猛烈吃奶摸视频| 狂野欧美白嫩少妇大欣赏| 精品人妻偷拍中文字幕| 淫秽高清视频在线观看| 最新在线观看一区二区三区| 久久精品人妻少妇| 亚洲人成网站在线播| 日韩中字成人| 国产成人啪精品午夜网站| 一a级毛片在线观看| 成熟少妇高潮喷水视频| 3wmmmm亚洲av在线观看| 精品日产1卡2卡| 人妻夜夜爽99麻豆av| 桃红色精品国产亚洲av| 中文亚洲av片在线观看爽| 黄色视频,在线免费观看| 免费观看精品视频网站| 午夜老司机福利剧场| 一进一出抽搐gif免费好疼| 久久久国产成人免费| 我的老师免费观看完整版| 丝袜美腿在线中文| 日日摸夜夜添夜夜添av毛片 | 99久久成人亚洲精品观看| 久久精品国产自在天天线| 久久草成人影院| eeuss影院久久| 宅男免费午夜| 极品教师在线免费播放| 国产精品久久电影中文字幕| 久久国产精品影院| 国产欧美日韩精品亚洲av| 首页视频小说图片口味搜索| 一个人看视频在线观看www免费| 日本 av在线| 日本免费a在线| aaaaa片日本免费| 国语自产精品视频在线第100页| 国产主播在线观看一区二区| 日韩 亚洲 欧美在线| 亚洲va日本ⅴa欧美va伊人久久| 日韩成人在线观看一区二区三区| 一级作爱视频免费观看| 国产精品一区二区三区四区免费观看 | 国产又黄又爽又无遮挡在线| 99久久精品一区二区三区| 可以在线观看毛片的网站| 色综合亚洲欧美另类图片| 中文字幕精品亚洲无线码一区| 99视频精品全部免费 在线| 美女高潮喷水抽搐中文字幕| 老司机午夜十八禁免费视频| 淫妇啪啪啪对白视频| av天堂中文字幕网| 男女之事视频高清在线观看| 午夜久久久久精精品| 五月伊人婷婷丁香| 免费在线观看成人毛片| 12—13女人毛片做爰片一| 欧美成人性av电影在线观看| 熟妇人妻久久中文字幕3abv| 五月伊人婷婷丁香| 桃色一区二区三区在线观看| 精品一区二区三区视频在线观看免费| 一区二区三区免费毛片| 国产精品乱码一区二三区的特点| 中文字幕久久专区| 一个人免费在线观看的高清视频| 久久国产精品影院| 最新在线观看一区二区三区| 天堂动漫精品| 18+在线观看网站| 欧美性猛交╳xxx乱大交人| 欧美激情国产日韩精品一区| 最近中文字幕高清免费大全6 | 露出奶头的视频| 黄色日韩在线| 男人和女人高潮做爰伦理| 欧美一区二区精品小视频在线|