• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid synthesis of CNTs@MIL-101(Cr)using multi-walled carbon nanotubes(MWCNTs)as crystal growth accelerator☆

    2016-05-26 09:28:53QingWangShengqiangWangHongbingYu
    Chinese Journal of Chemical Engineering 2016年10期

    Qing Wang,Shengqiang Wang*,Hongbing Yu

    1College of Environmental Science and Engineering,Nankai University,Tianjin 300071,China

    2School of Chemistry and Chemical Engineering,Xinjiang Normal University,Xinjiang 830054,China

    1.Introduction

    Metal–Organic Frameworks(MOFs)materials,the hybrids of transitionmetal ions and organic multidentate ligands,have the characterization of high surface area,large pore volume,adjustable pore size and diverse cage structure.The intensive coordinate bonds between metal ions and ligands enable MOFs materials having chemical and high temperature stability[1,2].Unlike the pore structures of traditional porous materials,such as sieves,without wall structure,the pores of MOFs materials are derived from the connection of molecular conjugate just like scaffolds.Furthermore,the constructions of MOFs materials with different skeletons make the internal spaces having diverse pore forms.As one kind of new multifunctional materials,the MOFs have extensive applications,including gas storage[3–5],selective adsorption[6],reaction catalysis[7–9],fuel desulfurization[10]and drug delivery[11–15].

    MIL-101(Cr) (MIL=Matrial Institut Lavoisier)was first synthesized by Férey with hydrothermal method at 220 °C for 8 h [16], having extra high surface area, large pore volume, and high thermal and chemical stability to water and most organic solvents. It has two types of mesoporous cages(2.9 and 3.4 nm)accessible through microporous windows(1.2 and 1.4 nm).It also has hydrophobic and hydrophilic groups on the surfaces in the pore structure.These outstanding features make it an interesting candidate for adsorption,separation and purification,synthesis of fine chemicals and substrate of catalysts or nanoreactors[17–20].To get MOFs with high degree of crystallization,longer time is always needed from a few hours to several days at definite temperatures.The crystallization of MOFs can be seen as a series of consecutive procedures composed of oligomerization,nucleation,crystalline grain,and crystal growth.Oligomerization and nucleation are the processes before the formation of solid crystal grains precipitating from the hydrothermal reaction system, in which mass transfer from the liquid solution to the solid seeding crystals occurs. The crystal growth rate is generally affected by the formation of crystal nucleus and crystalline grain.Amorphous state or loose precipitation will appear if the hydrothermal reaction undergoes too fast or the reaction time is not sufficient. Thus,nucleation and crystalline grain at given conditions determine the crystallinity and size of MOFs crystals. The crystal size is affected not only by the quantity of crystal nucleuses but also the rate of crystal growth rate. Smaller sized crystals will be obtained in the presence of more crystal nucleuses resulting from the slow crystal growth rate.Otherwise, larger sized crystals will appear which results from the fast crystal growth rate if less crystal nucleuses present in the hydrothermal reaction system. The formation and quantity of crystal nucleusesmay be the main barriers blocking the fast growth of MOFs crystals. According to previous research results, intensified by adding particular nano materials into the hydrothermal reaction systemor heating the reaction solvents with microwaves[21–26],the nucleation formation processes are accelerated and then less time is needed for the consequent crystal growth.Thus smaller crystal particles can be formed in the presence of more crystal nucleuses.Therefore,the obstacles in control of the size and growth rate of MOFs crystals can be broken through in the presence of exogenous inclusions or along with strengthened energy provided byexternal assistance in heterogeneous nucleation.Expanded graphite(EG),as structure-directing template,has been studied for this purpose in the fast synthesis of MIL-101[21,22].The reason for EG in control of the size and growth rate of MOFs crystals was attributed to the oxygen-containing groups on the surface of EG,such as–COOH,?CO,?OH,which may play an important role in the acceleration of crystal nucleation.Thus,the crystals with comparative surface area and pore volume[27,28]can be obtained due to the quick formation of coordinate bonds between the metals and ligands in the presence of exogenous inclusion.Therefore,it is very promising for MIL-101 synthesized in shorter crystallization time,possessing the advantages of MIL-101 and MWCNTs,such as high surface area and large mesoporous volumes,to gain more wide usage in variety industrial applications.

    In this purpose,the hybrid material CNTs@MIL-101(Cr)was synthesized using MWCNTs as the crystal growth accelerator in which MWCNTs were meanwhile wrapped in the crystals of MIL-101.The hydrothermal reaction condition of CNTs@MIL-101(Cr)was similar with that of MIL-101.The characteristic differences between the crystals of MIL-101 and CNTs@MIL-101(Cr)were investigated by N2 adsorption–desorption isotherms, X-ray diffraction (XRD) and scanning electron microscope (SEM). The role of MWCNTs played in the fast synthesis of CNTs@MIL-101(Cr) was also discussed in the proposed mechanism.

    2.Experimental Sections

    2.1.Materials

    Fluorhydric acid(HF,48%),1,4-benzenedicarboxylic acid(H2BDC),chromic nitrate nonahydrate(Cr(NO3)3·9H2O,99%)and acetic acid of analysis grade was purchased from J&K Scientific Company Ltd.(Beijing).N,N-dimethyl formamide(DMF,99%)of analysis grade were purchased from Kemiou Chemical Company(Tianjin).Dehydrated alcohol of analysis grade was purchased from Zhenxing Chemical Company(Tianjin).Ultra-pure water was purchased from Nankai University Water Center.MWCNTs were purchased from Nanjing XFNANO Materials Tech.Co.Ltd.

    2.2.Synthesis of MIL-101

    Two kinds of mineralization agents, fluorhydric acid and acetic acid,were used as mineralizing agent in the synthesis of MIL-101 with hydrothermal method for comparison.Firstly,one solution consisted of H2BDC(1660 mg at 10 mmol),Cr(NO3)3·9H2O(4000 mg at 10 mmol), fluorhydric acid(0.36 ml at 10 mmol),and H2O(48 ml at 2650 mmol)was poured into a 100 ml Te fl on lined stainless steel autoclave for the synthesis of MIL-101.In another reaction solution,acetic acid(7.5 ml at 45.4 mmol)was used as mineralization agent instead of fluorhydric acid and other components were consisted with that of previous one.The autoclaves were sealed and subjected to heat treatmentin an air dry oven at220°Cfor8h.Then,the two samples obtained were collected by centrifugation and then washed the samples with abundant DMF and dehydrated alcohol at 70°C to dissolve the H2BDC in the raw MIL-101 materials and separated them via centrifugation.This process was repeated five times to remove the unreacted H2BDC as far as possible, finally dried the sample vacuum drying oven at 150°C for 12 h.Thus,highly crystallized green powders of MIL-101 with formula Cr3F(H2O)2OE(O2C)-C6H4-(CO2)3·nH2O(where n is~25)based on chemical analysis were produced.

    2.3.Rapid synthesis of CNTs@MIL-101(Cr)

    In the rapid synthesis of CNTs@MIL-101(Cr),100 mg,300 mg and 500 mg MWCNTs were added into the hydrothermal reaction solution,respectively.Other components were consisted with that of MIL-101 using acetic acid as mineralization agent.After maintaining constant temperature at 220°C for 2 h,the unreacted MWCNTs in the reaction system were removed from the mixture through a conical funnel.Then,the crystals of CNTs@MIL-101(Cr)were purified with centrifugation followed by washing with DMF and dehydrated alcohol for five times at 70°C.The crystals of CNTs@MIL-101(Cr)were obtained after being dried in vacuum condition at 150°C for 12 h.

    2.4.Characterization of MIL-101and CNTs@MIL-101(Cr)

    The pore properties of MIL-101 and CNTs@MIL-101(Cr)were examined with N2adsorption–desorption isotherms at ?196 °C(ASAP2020,Micromeritics Instrument Corp.,USA).The characterization of MIL-101 and CNTs@MIL-101(Cr)has also been tested by XRD(X-ray Diffractometer,Rigaku D/max 2500v/pc,Rigaku,Japan),SEM(Scanning Electron Microscope,SS-550,Shimadzu,Japan)and TGA(Mettler Toledo,TGA/DSC/1100,Swiss).

    3.Results and Discussion

    3.1.Characterization of CNTs@MIL-101(Cr),MWCNTs and MIL-101

    The N2adsorption and desorption isotherms of CNTs@MIL-101(Cr),MWCNTs and MIL-101 at ?196 °C were shown in Fig.1.The N2adsorption and desorption isotherms of MIL-101 belong to type I,and MWCNTs have the characteristic of type II.However,the N2adsorption and desorption isotherms of CNTs@MIL-101(Cr)meanwhile have the feature of type I and type II indicating the coexistence of micropores and mesopores in CNTs@MIL-101(Cr).

    Fig.1.The N2adsorption and desorption isotherms of MIL-101,MWCNTs and CNTs@MIL-101(Cr)at?196 °C.

    As shown in Table 1, the BET surface area [29], Langmuir surface area of CNTs@MIL-101(Cr) and MIL-101 were calculated based on the desorption isotherms,respectively.Calculated at the point of p/p0equals to 0.97,the total pore volume of MIL-101( fluorhydric acid and acetic acid)and CNTs@MIL-101(Cr)(500 mg,300 mg,100 mg)was 1.22,1.16,and 1.48,1.05,0.91 cm3·g?1,respectively.By treating the N2adsorption curve data with the BJH method[30],the average pore size of MIL-101( fluorhydric acid and acetic acid)and CNTs@MIL-101(Cr)(500 mg,300 mg,100 mg)were 2.09,2.05,and 2.35,2.32 and 2.31 cm3·g?1,respectively.

    Table 1 The pore characteristics of MIL-101,MWCNTs and CNTs@MIL-101(Cr)

    The shape of adsorption isotherms directly correlates with the pore volume and pore size distribution.From the desorption cumulative pore size distribution of MIL-101 and CNTs@MIL-101(Cr)calculated with BJH method in Fig.2,we can see the coexistence of micropores and mesopores in the MOF materials.

    Fig.2.BJH desorption cumulative pore volume of MIL-101 and CNTs@MIL-101(Cr).

    TGA of CNTs@MIL-101(Cr)-500 mg and MIL-101- fluorhydric acid was tested and the results were shown in Fig. 3.The maximum tolerated temperature of CNTs@MIL-101 and MIL-101- fluorhydric acid was 338 °C and 326 °C which enable the MOFs materials having high temperature stability.

    Fig.3.TGA of CNTs@MIL-101(Cr)-500 mg and MIL-101- fluorhydric acid.

    The XRD patterns of crystal particles of MIL-101 and CNTs@MIL-101(Cr)were shown in Fig.4.Most XRD patterns from CNTs@MIL-101(Cr)crystals are consistent with that of MIL-101 from its crystal structural data,suggesting that the crystals synthesized in this work are in agreement with that previously reported[16–18].

    Fig.4.XRD patterns of MIL-101 and CNTs@MIL-101(Cr).

    However,the characteristic XRD pattern of MWCNTs at 26.0°referring to the crystal face d(002)which disappeared in the patterns of CNTs@MIL-101(Cr)crystals.Moreover,the sharpness and intensity of the peak of MWCNTs at 42.4°in the patterns of MWCNTs@MIL-101(Cr)decreased with the increase of adding amount of MWCNTs.With the adding of MWCNTs into the reaction system,the growth speed of CNTs@MIL-101(Cr)seed crystals increases with the rise of adding amount of MWCNTs.The more MWCNTs have been added in the synthetic reaction solution,the better the crystallinity of CNTs@MIL-101(Cr)crystals is,and then the higher the sharpness and intensity of the XRD patterns becomes and the opposite is the other way around.

    As presented in Fig.5(a),the MIL-101(Cr)crystals,synthesized in 8h using HF as mineralization agent,have an octahedral shape and the size of which in the range of 400–600 nm.As can be seen from Fig.5(b),the SEM morphology of MIL-101 with acetic acid showed that the MIL-101(Cr)crystals synthesized in eight hours have a smaller size ranging from 300 nm to 500 nm than that of previous crystals at the same condition.As demonstrated in Fig.5(d),after adding MWCNTs(Fig.5(c))in the reaction system,the fast synthesized CNTs@MIL-101(Cr)crystals obtained in 2 h not only preserve an octahedral shape but also have a size in the range of 1.5–2.0 μm which were obviously larger than the crystals of MIL-101 that without using MWCNTs in the reaction system.However,the crystallinity of CNTs@MIL-101(Cr)crystals was on the decrease when the quantity of MWCNTs added in the reaction system reduced.As can be seen from Fig.5(e and f),amorphous crystals will appear if 300 mg or 100 mg MWCNTs was added in the reaction system which means MWCNTs added in the hydrothermal reaction system was not sufficient for the formation of nucleuses.

    Fig.5.SEM morphologies of MIL-101,MWCNTs and CNTs@MIL-101(Cr).(a)MIL-101 using HF as mineralization agent,(b)MIL-101 using acetic acid as mineralization agent,(c)SEM morphology of MWCNTs,(d)SEM morphology of CNTs@MIL-101(Cr)using acetic acid as mineralization agent with 500 mg MWCNTs,(e)SEM morphology of CNTs@MIL-101(Cr)using acetic acid as mineralization agent with 300 mg MWCNTs,(f)SEM morphology of CNTs@MIL-101(Cr)using acetic acid as mineralization agent with 100 mg MWCNTs.The scale bar is the interval between the whole white dots.

    The reason for the crystal size changes between CNTs@MIL-101(Cr)and MIL-101 was attribute to the highly delocalized π bonds at the out surface of MWCNTs which render H2BDC being easily adsorbed on to MWCNTs and reduce the surface tension of MWCNTs.Thus,nucleation centers were formed on the MWCNTs and meanwhile MWCNTs were embedding in the crystals of MIL-101.After nucleation,CNTs@MIL-101(Cr)crystal grains appear in the form of hybrid material with larger particle size. The results indicate that fast synthesis of MOFs crystals will become possible in shorter time with proper amount of MWCNTs by using hydrothermal method.

    3.2.Mechanism

    In previous literature, the mechanism for the fast synthesis of MIL-101, using expanded graphite as structure-directing agent,was attributed to the surface oxygen-containing groups on expanded graphite, such as –COOH, ?CO,?OH, which increase the quantity of nucleuses in the reaction system before crystal growth process [21,22]. Thus, the crystals presented smaller dimensions than that without the adding of structure-directing agent. However, in this study, larger crystals were obtained if adding MWCNTs in the reaction solution than that without.Therefore, it can be deduced that the quantity of nucleuses decreased after adding MWCNTs in the reaction system. Therefore the crystal growth rate increased due to fewer nucleuses.

    MWCNTs,the coaxial cylindrical tubes composed of multi-layer graphite sheets,can be seen as the external particles in heterogeneous nucleation.On one hand,the highly delocalized π bond at the outside of the graphite sheets is the chemical combination basis between MWCNTs and organic conjugated molecules with non-covalent bond.1,4-Benzenedicarboxylate,having aromatic ring,can be adsorbed on the outside surface of MWCNTs with non-covalent bond and which results in the decrease of surface tension of carbon nanotubes and the increase of their dispersity in the reaction solution.On the other hand,the occurrence of nucleation was not indispensably the formation of sphere nucleuses,but just that of spherical segment.Thus,less activation energy may be needed during the nucleation process in the fast synthesis of CNTs@MIL-101(Cr).After the nucleuses presented leeching onto the out surfaces of MWCNTs.It is an easy-to-build way for the increase of crystal growth rate.Thus,crystals with larger dimensions came into being compared with that synthesized with the traditional method.

    4.Conclusions

    In this study,we have synthesized metal–organic frameworks CNTs@MIL-101 within 2 h using MWCNTs as the crystal growth accelerator.The crystallization of CNTs@MIL-101(Cr)was affected by the quantity of MWCNTs added in the reaction system.The crystals of CNTs@MIL-101(Cr)using 500 mg MWCNTs has the same octahedral shape in the SEM morphology as that of MIL-101.Amorphous state crystals will be obtained if the quantity of MWCNTs added in the reaction system below 500 mg which means the role MWCNTs played in the reaction being not contributive to the nucleation,but the crystal growth rate.The crystal nucleuses may be hard to form if the quantity of nucleation centers is not sufficient before the formation of solid crystal grains precipitating from the hydrothermal reaction system.Moreover,the large crystal size and mesoporous volume for the fast synthesized CNTs@MIL-101(Cr)can be attributed to the fast crystal growth rate based on MWCNTs embedding in the hybrid material.Then,the crystal growth rate is accelerated and it results in rapid synthesized CNTs@MIL-101(Cr)crystals having larger dimensions in comparison with that of the traditional ones.The rapid synthesis of porous hybrid material CNTs@MIL-101(Cr)via hydrothermal method using embedding MWCNTs as the crystal growth accelerator makes MIL-101 a good candidate for industrial-scale application.

    [1]A.K.Cheetham,C.N.R.Rao,R.K.Feller,Structural diversity and chemical trends in hybrid inorganic–organic framework materials,Chem.Commun.46(2006)4780–4795.

    [2]O.M.Yaghi,M.O'Keeffe,N.W.Ockwig,H.K.Chae,M.Eddaoudi,J.Kim,Reticular synthesis and the design of new materials,Nature 423(2003)705–714.

    [3]M.Latroche,S.Surblé,C.Serre,C.Mellot-Draznieks,P.L.Llewellyn,J.H.Lee,J.S.Chang,S.H.Jhung,G.Férey,Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101,Angew.Chem.Int.Ed.45(2006)8227–8231.

    [4]J.Yang,Q.Zhao,J.Li,J.Dong,Synthesis of metal–organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior,Microporous Mesoporous Mater.130(2010)174–179.

    [5]R.E.Morris,P.S.Wheatley,Gas storage in nanoporous materials,Angew.Chem.Int.Ed.47(2008)4966–4981.

    [6]J.R.Li,R.J.Kuppler,H.C.Zhou,Selective gas adsorption and separation in metal–organic frameworks,Chem.Soc.Rev.38(2009)1477–1504.

    [7]J.Y.Lee,O.K.Farha,J.Roberts,K.A.Scheidt,S.T.Nguyen,J.T.Hupp,Metal–organic framework materials as catalysts,Chem.Soc.Rev.38(2009)1450–1459.

    [8]D.Farrusseng,S.Aguado,C.Pinel,Metal–organic frameworks:opportunities for catalysis,Angew.Chem.Int.Ed.48(2009)7502–7513.

    [9]H.H.Zhao,H.L.Song,L.J.Chou,Nickel nanoparticles supported on MOF-5:synthesis and catalytic hydrogenation properties,Inorg.Chem.Commun.15(2012)261–265.

    [10]K.A.Cychosz,A.G.Wong-Foy,A.J.Matzger,Liquid phase adsorption by microporous coordination polymers:removal of organosulfur compounds,J.Am.Chem.Soc.130(2008)6938–6939.

    [11]P.Horcajada,C.Serre,M.Vallet-Regi,M.Sebban,F.Taulelle,G.Férey,Metal–organic frameworks as efficient materials for drug delivery,Angew.Chem.Int.Ed.45(2006)5974–5978.

    [12]P.Horcajada,C.Serre,G.Maurin,N.A.Ramsahye,F.Balas,M.Vallet-Regí,M.Sebban,F.Taulelle,G.Férey,Flexible porous metal–organic frameworks for a controlled drug delivery,J.Am.Chem.Soc.130(2008)6774–6780.

    [13]K.M.L.Taylor-Pashow,J.Della Rocca,Z.G.Xie,S.Tran,W.B.Lin,Post synthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery,J.Am.Chem.Soc.131(2009)14261–14263.

    [14]J.An,S.J.Geib,N.L.Rosi,Cation-triggered drug release from a porous zinc–adeninate metal–organic framework,J.Am.Chem.Soc.131(2009)8376–8377.

    [15]P.Horcajada,T.Chalati,C.Serre,B.Gillet,C.Sebrie,T.Baati,J.F.Eubank,D.Heurtaux,P.Clayette,C.Kreuz,J.-S.Chang,Y.K.Hwang,V.Marsaud,P.-N.Bories,L.Cynober,S.Gil,G.Férey,P.Couvreur,R.Gref,Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging,Nat.Mater.9(2010)172–178.

    [16]G.Férey,C.Mellot-Draznieks,C.Serre,F.Millange,J.Dutour,S.Surble,I.Mirgiolaki,A chromium terephthalate-based solid with unusually large pore volumes and surface area,Science 309(2005)2040–2042.

    [17]S.H.Jhung,J.Lee,J.W.Yoon,C.Serre,G.Férey,J.S.Chang,Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability,Adv.Mater.19(2007)121–124.

    [18]Z.X.Zhao,X.M.Li,S.S.Huang,Q.B.Xia,Z.Li,Adsorption and diffusion of benzene on chromium-based metal organic framework MIL-101 synthesized by microwave irradiation,Ind.Eng.Chem.Res.50(2011)2254–2261.

    [19]D.Y.Hong,Y.K.Hwang,C.Serre,G.Férey,J.S.Chang,Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites:surface functionalization,encapsulation,sorption and catalysis,Adv.Funct.Mater.19(2009)1537–1552.

    [20]G.Férey,Hybrid porous solids:past,present,future,Chem.Soc.Rev.37(2008)191–241.

    [21]Z. Ni, R.I. Masel, Rapid production of metal–organic frameworks via microwave-assisted Solvothermal synthesis, J. Am. Chem. Soc. 128 (38) (2006) 12394–12395.

    [22]S.H.Jhung,J.H.Lee,J.S.Chang,Microwave synthesis of a nanoporous hybrid material,chromium trimesate,Bull.Kor.Chem.Soc.26(2005)880–881.

    [23]S.H.Jhung,J.H.Lee,P.M.Forster,G.Férey,A.K.Cheetham,J.S.Chang,Microwave synthesis of hybrid inorganic–organic porous materials:phase selective and rapid crystallization,Chem.Eur.J.12(2006)7899–7905.

    [24]Y.Hu,C.Liu,Y.Zhang,N.Ren,Y.Tang,Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size,Microporous Mesoporous Mater.119(2009)306–314.

    [25]S.H.Jhung,T.Jin,Y.K.Hwang,J.-S.Chang,Microwave effect in the fast synthesis of microporous materials:which stage between nucleation and crystal growth is accelerated by microwave irradiation?Chem.Eur.J.13(2007)4410–4417.

    [26]N.A.Khan,I.J.Kang,H.Y.Seok,S.H.Jhung,Facile synthesis of nano-sized metal organic frameworks,chromium–benzenedicarboxylate,MIL-101,Chem.Eng.J.166(2011)1152–1157.

    [27]L.T.Yang,L.G.Qiu,S.M.Hu,X.Jiang,A.J.Xie,Y.H.Shen,Rapid hydrothermal synthesis of MIL-101(Cr)metal–organic framework nanocrystals using expanded graphite as a structure-directing template,Inorg.Chem.Commun.35(2013)265–267.

    [28]M.Jahan,Q.L.Bao,J.X.Yang,K.P.Loh,Structure-directing role of graphene in the synthesis of metal–organic framework nanowire,J.Am.Chem.Soc.132(2010)14487–14495.

    [29]S.Brunauer,P.H.Emmett,E.Teller,Adsorption of gases in multimolecular layers,J.Am.Chem.Soc.60(1938)309–319.

    [30]E.P.Barrett,L.G.Joyner,P.P.Halenda,The determination of pore volume and area distributions in porous substances.I.Computations from nitrogen isotherms,J.Am.Chem.Soc.73(1951)373–380.

    国产在线精品亚洲第一网站| 男女那种视频在线观看| 中亚洲国语对白在线视频| 亚洲熟妇熟女久久| 亚洲精品在线观看二区| 在线观看66精品国产| 欧美乱色亚洲激情| 国产麻豆成人av免费视频| 国产亚洲欧美98| 免费高清视频大片| 日韩欧美 国产精品| 搡老熟女国产l中国老女人| 婷婷丁香在线五月| 高清毛片免费观看视频网站| 黄色视频,在线免费观看| 在线观看一区二区三区| 亚洲精品中文字幕在线视频| 国产精品一区二区三区四区免费观看 | 国产成人啪精品午夜网站| 国产三级黄色录像| 老汉色av国产亚洲站长工具| 欧美不卡视频在线免费观看 | 久久精品国产综合久久久| 桃色一区二区三区在线观看| 午夜福利在线观看吧| 国产精品av久久久久免费| 长腿黑丝高跟| 国产91精品成人一区二区三区| 亚洲专区中文字幕在线| 午夜激情av网站| 精品久久久久久久久久免费视频| x7x7x7水蜜桃| 久久精品成人免费网站| 亚洲av第一区精品v没综合| www.999成人在线观看| 国产av在哪里看| 亚洲欧美精品综合一区二区三区| 日本在线视频免费播放| 国产精华一区二区三区| 午夜福利在线观看吧| 一个人观看的视频www高清免费观看 | www.熟女人妻精品国产| 18美女黄网站色大片免费观看| 亚洲狠狠婷婷综合久久图片| 亚洲成人国产一区在线观看| 欧美黄色片欧美黄色片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品美女久久av网站| 国产亚洲精品第一综合不卡| 精品福利观看| 免费观看精品视频网站| 国产片内射在线| xxxwww97欧美| 别揉我奶头~嗯~啊~动态视频| 一夜夜www| 国产av不卡久久| 亚洲av五月六月丁香网| 国内精品久久久久精免费| 欧美中文综合在线视频| 国产久久久一区二区三区| xxxwww97欧美| 国产亚洲精品久久久久5区| 一a级毛片在线观看| 丁香六月欧美| 成人18禁在线播放| 亚洲第一电影网av| 伦理电影免费视频| 精品国产美女av久久久久小说| 久久精品91蜜桃| 欧美精品亚洲一区二区| 人人妻人人看人人澡| 国产又黄又爽又无遮挡在线| 少妇的丰满在线观看| 国产精华一区二区三区| 国产亚洲av嫩草精品影院| 成人手机av| 精品国产乱子伦一区二区三区| 亚洲欧美激情综合另类| 美女 人体艺术 gogo| 无人区码免费观看不卡| av片东京热男人的天堂| 精品国产乱码久久久久久男人| 久久久水蜜桃国产精品网| 久久久国产欧美日韩av| 777久久人妻少妇嫩草av网站| av超薄肉色丝袜交足视频| 亚洲男人天堂网一区| 99久久久亚洲精品蜜臀av| 91大片在线观看| 亚洲第一电影网av| 亚洲欧洲精品一区二区精品久久久| 成人三级做爰电影| 国产片内射在线| 大型av网站在线播放| 久久久久久国产a免费观看| 黄色视频不卡| avwww免费| 成人国产一区最新在线观看| 在线观看www视频免费| 小说图片视频综合网站| 熟妇人妻久久中文字幕3abv| 国产亚洲精品综合一区在线观看 | 国产av麻豆久久久久久久| 首页视频小说图片口味搜索| 18禁黄网站禁片午夜丰满| 午夜精品久久久久久毛片777| 给我免费播放毛片高清在线观看| 欧美在线一区亚洲| 色播亚洲综合网| 一二三四社区在线视频社区8| 国产精品av视频在线免费观看| 欧美不卡视频在线免费观看 | 丝袜美腿诱惑在线| 久久香蕉国产精品| 久久香蕉国产精品| 麻豆国产97在线/欧美 | 亚洲黑人精品在线| 免费电影在线观看免费观看| 国产又色又爽无遮挡免费看| 男女下面进入的视频免费午夜| 国产一区在线观看成人免费| 亚洲国产看品久久| 亚洲片人在线观看| 黄色女人牲交| 18禁国产床啪视频网站| 国内揄拍国产精品人妻在线| 日韩成人在线观看一区二区三区| 欧美一级a爱片免费观看看 | 高清在线国产一区| 亚洲欧美激情综合另类| 性色av乱码一区二区三区2| 2021天堂中文幕一二区在线观| 国产精品久久久av美女十八| 久久亚洲精品不卡| 久久婷婷人人爽人人干人人爱| 五月玫瑰六月丁香| 好男人电影高清在线观看| 亚洲专区中文字幕在线| 国产爱豆传媒在线观看 | 少妇裸体淫交视频免费看高清 | 亚洲成av人片免费观看| 99久久无色码亚洲精品果冻| 欧美zozozo另类| 69av精品久久久久久| 亚洲一码二码三码区别大吗| 听说在线观看完整版免费高清| 午夜a级毛片| 每晚都被弄得嗷嗷叫到高潮| 亚洲成人免费电影在线观看| av福利片在线观看| 欧美不卡视频在线免费观看 | 狠狠狠狠99中文字幕| 九九热线精品视视频播放| 国产精品爽爽va在线观看网站| 亚洲精品色激情综合| 国产精品,欧美在线| 中文字幕人成人乱码亚洲影| 国产一区二区在线观看日韩 | 日本成人三级电影网站| 亚洲午夜理论影院| 老司机深夜福利视频在线观看| av免费在线观看网站| 亚洲一区二区三区色噜噜| 久久久久国产精品人妻aⅴ院| 国内精品一区二区在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲 国产 在线| 男人舔女人下体高潮全视频| 国产av在哪里看| 国产av在哪里看| 男女下面进入的视频免费午夜| 中文字幕人妻丝袜一区二区| 亚洲av成人av| 美女高潮喷水抽搐中文字幕| 嫩草影院精品99| 精品电影一区二区在线| 国产黄片美女视频| 一级毛片高清免费大全| 特级一级黄色大片| 午夜激情av网站| 麻豆久久精品国产亚洲av| 18禁黄网站禁片免费观看直播| 成人国产一区最新在线观看| 神马国产精品三级电影在线观看 | 日本a在线网址| 好男人在线观看高清免费视频| 成人av在线播放网站| 国产成人欧美在线观看| 久久伊人香网站| 日日夜夜操网爽| 在线观看舔阴道视频| 欧美3d第一页| 国产欧美日韩一区二区精品| 日本一二三区视频观看| 成年女人毛片免费观看观看9| 级片在线观看| 国产激情欧美一区二区| 国产精品99久久99久久久不卡| 久久精品亚洲精品国产色婷小说| 不卡av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲 欧美 日韩 在线 免费| 国内少妇人妻偷人精品xxx网站 | 国产99久久九九免费精品| 搡老熟女国产l中国老女人| 亚洲最大成人中文| 久久精品91蜜桃| 国产一区二区三区视频了| 欧美日韩国产亚洲二区| 熟女电影av网| 亚洲男人天堂网一区| 18禁国产床啪视频网站| 床上黄色一级片| 黄频高清免费视频| 午夜福利在线观看吧| 欧美黄色淫秽网站| 高潮久久久久久久久久久不卡| 成人欧美大片| 久久久久免费精品人妻一区二区| 亚洲一区中文字幕在线| 中文亚洲av片在线观看爽| 人人妻人人澡欧美一区二区| 精华霜和精华液先用哪个| 五月伊人婷婷丁香| 亚洲精品美女久久久久99蜜臀| 淫秽高清视频在线观看| 青草久久国产| 国产精品自产拍在线观看55亚洲| 亚洲精品美女久久久久99蜜臀| 19禁男女啪啪无遮挡网站| 最近最新免费中文字幕在线| 夜夜夜夜夜久久久久| 观看免费一级毛片| 成年版毛片免费区| 少妇人妻一区二区三区视频| 精品国产美女av久久久久小说| 深夜精品福利| 成人午夜高清在线视频| 午夜精品久久久久久毛片777| 首页视频小说图片口味搜索| 亚洲欧洲精品一区二区精品久久久| 日日摸夜夜添夜夜添小说| 日本熟妇午夜| 国产亚洲精品久久久久久毛片| 精华霜和精华液先用哪个| 一a级毛片在线观看| 淫秽高清视频在线观看| 男人的好看免费观看在线视频 | 日韩欧美在线乱码| 中文亚洲av片在线观看爽| 成人三级黄色视频| 岛国视频午夜一区免费看| 色播亚洲综合网| 亚洲欧美激情综合另类| 国产精品电影一区二区三区| 在线观看66精品国产| 日韩精品青青久久久久久| 大型黄色视频在线免费观看| 两个人免费观看高清视频| 久久精品综合一区二区三区| 久久天躁狠狠躁夜夜2o2o| 精品欧美一区二区三区在线| 亚洲九九香蕉| 欧美av亚洲av综合av国产av| 欧美黄色片欧美黄色片| 国产黄色小视频在线观看| 香蕉国产在线看| 欧美另类亚洲清纯唯美| 国产1区2区3区精品| 国产精品一区二区三区四区免费观看 | 黄频高清免费视频| 一边摸一边抽搐一进一小说| 久久久国产成人精品二区| 中文字幕久久专区| 中文资源天堂在线| 欧美三级亚洲精品| 大型黄色视频在线免费观看| 岛国视频午夜一区免费看| 岛国在线免费视频观看| 午夜精品久久久久久毛片777| xxxwww97欧美| 国产又黄又爽又无遮挡在线| 国产精品99久久99久久久不卡| 亚洲18禁久久av| 亚洲成a人片在线一区二区| 精品久久久久久久久久免费视频| 嫩草影院精品99| 国产成人欧美在线观看| 好看av亚洲va欧美ⅴa在| 18禁黄网站禁片免费观看直播| 男女视频在线观看网站免费 | 久久久久亚洲av毛片大全| 一级片免费观看大全| 国产探花在线观看一区二区| 国产亚洲精品第一综合不卡| 长腿黑丝高跟| 首页视频小说图片口味搜索| 黄色成人免费大全| 亚洲熟妇中文字幕五十中出| 国产视频内射| 国产精品99久久99久久久不卡| 亚洲av成人av| 欧美中文日本在线观看视频| 国产视频一区二区在线看| 国产私拍福利视频在线观看| 中文字幕精品亚洲无线码一区| 国产精品一区二区三区四区免费观看 | www.自偷自拍.com| 国产黄色小视频在线观看| 午夜久久久久精精品| 国产av在哪里看| 母亲3免费完整高清在线观看| 国产人伦9x9x在线观看| 12—13女人毛片做爰片一| 最近视频中文字幕2019在线8| 欧美成人免费av一区二区三区| 白带黄色成豆腐渣| 十八禁网站免费在线| 18禁黄网站禁片午夜丰满| 757午夜福利合集在线观看| 成人一区二区视频在线观看| av福利片在线| 亚洲 欧美一区二区三区| 我的老师免费观看完整版| 亚洲av电影在线进入| 免费在线观看黄色视频的| 人人妻人人看人人澡| 国产精品综合久久久久久久免费| 欧美在线黄色| 亚洲性夜色夜夜综合| 狂野欧美白嫩少妇大欣赏| www.熟女人妻精品国产| 国产精品免费视频内射| 亚洲精品美女久久久久99蜜臀| 亚洲色图 男人天堂 中文字幕| 99热这里只有精品一区 | 麻豆国产97在线/欧美 | 久久久国产成人精品二区| 天堂影院成人在线观看| 亚洲专区国产一区二区| 久久婷婷人人爽人人干人人爱| 极品教师在线免费播放| 国产v大片淫在线免费观看| 国产精品亚洲美女久久久| 午夜福利18| 亚洲中文av在线| 高清毛片免费观看视频网站| 国产人伦9x9x在线观看| 91老司机精品| 欧美日韩精品网址| 国产精品影院久久| 听说在线观看完整版免费高清| 狠狠狠狠99中文字幕| 夜夜夜夜夜久久久久| 高清在线国产一区| 欧美性长视频在线观看| 一级a爱片免费观看的视频| 最近最新中文字幕大全免费视频| www国产在线视频色| 91九色精品人成在线观看| 久久久久久久久免费视频了| 日本成人三级电影网站| 少妇人妻一区二区三区视频| 午夜免费观看网址| 香蕉丝袜av| 精品熟女少妇八av免费久了| 99久久99久久久精品蜜桃| 国内少妇人妻偷人精品xxx网站 | 久久欧美精品欧美久久欧美| 午夜亚洲福利在线播放| 久久草成人影院| 不卡av一区二区三区| 激情在线观看视频在线高清| 色噜噜av男人的天堂激情| 夜夜爽天天搞| 国产成人啪精品午夜网站| 国产乱人伦免费视频| 亚洲精品粉嫩美女一区| 麻豆av在线久日| www.精华液| 女同久久另类99精品国产91| 99久久精品热视频| 免费搜索国产男女视频| 啦啦啦韩国在线观看视频| 黄色成人免费大全| 久久精品aⅴ一区二区三区四区| 又大又爽又粗| 看免费av毛片| 国产野战对白在线观看| 男女之事视频高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 精品不卡国产一区二区三区| 国产三级中文精品| a级毛片在线看网站| 国产成人啪精品午夜网站| 国产精品亚洲一级av第二区| 国产91精品成人一区二区三区| 亚洲成av人片免费观看| 一级毛片高清免费大全| 好男人电影高清在线观看| 最近视频中文字幕2019在线8| 国产区一区二久久| 天天一区二区日本电影三级| 国产精品香港三级国产av潘金莲| 久久久久九九精品影院| 久久国产精品人妻蜜桃| 悠悠久久av| 变态另类丝袜制服| 国内精品久久久久久久电影| 国内精品一区二区在线观看| 男女下面进入的视频免费午夜| 69av精品久久久久久| 午夜福利成人在线免费观看| www日本在线高清视频| 亚洲精品在线观看二区| 在线观看舔阴道视频| 国产真人三级小视频在线观看| 亚洲成av人片免费观看| 国产伦在线观看视频一区| 日韩 欧美 亚洲 中文字幕| 制服诱惑二区| 看黄色毛片网站| 99久久久亚洲精品蜜臀av| 欧美黑人欧美精品刺激| 好男人在线观看高清免费视频| 成人一区二区视频在线观看| 999精品在线视频| 床上黄色一级片| 一级作爱视频免费观看| 欧美日本视频| 午夜免费观看网址| 操出白浆在线播放| 无限看片的www在线观看| 岛国视频午夜一区免费看| 两人在一起打扑克的视频| 色老头精品视频在线观看| 黄片小视频在线播放| 免费搜索国产男女视频| 欧美国产日韩亚洲一区| 日本黄大片高清| 亚洲九九香蕉| 亚洲欧洲精品一区二区精品久久久| 欧美三级亚洲精品| 舔av片在线| 国内精品久久久久久久电影| 精品不卡国产一区二区三区| 日韩大码丰满熟妇| 十八禁网站免费在线| 97超级碰碰碰精品色视频在线观看| 欧美精品亚洲一区二区| 久久精品影院6| 色综合欧美亚洲国产小说| 在线a可以看的网站| 国产亚洲精品久久久久5区| 最近最新中文字幕大全电影3| 国产精品久久久久久亚洲av鲁大| 免费人成视频x8x8入口观看| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 黄色片一级片一级黄色片| 亚洲成av人片在线播放无| 亚洲国产看品久久| 久久久久久亚洲精品国产蜜桃av| 三级国产精品欧美在线观看 | 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 18禁黄网站禁片午夜丰满| 国产激情欧美一区二区| 国产蜜桃级精品一区二区三区| 国产麻豆成人av免费视频| 免费在线观看视频国产中文字幕亚洲| 久久天堂一区二区三区四区| 欧美色视频一区免费| 99国产精品一区二区三区| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 成人国产综合亚洲| 99国产综合亚洲精品| 精品高清国产在线一区| 国产精品,欧美在线| 成人18禁在线播放| 51午夜福利影视在线观看| 非洲黑人性xxxx精品又粗又长| 欧美精品亚洲一区二区| 国产亚洲欧美在线一区二区| 法律面前人人平等表现在哪些方面| 好男人电影高清在线观看| 午夜免费激情av| 天天一区二区日本电影三级| 亚洲无线在线观看| 高清在线国产一区| 国产男靠女视频免费网站| 黄片大片在线免费观看| 亚洲专区字幕在线| 亚洲熟妇中文字幕五十中出| www国产在线视频色| 亚洲熟女毛片儿| 国产亚洲精品久久久久5区| 国产成人av激情在线播放| 久久久国产欧美日韩av| 1024手机看黄色片| 国产乱人伦免费视频| 天天添夜夜摸| 久久久精品大字幕| 男人舔女人下体高潮全视频| 1024手机看黄色片| 午夜激情av网站| 日韩欧美免费精品| 色综合婷婷激情| 美女高潮喷水抽搐中文字幕| 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 久久久久九九精品影院| 又黄又爽又免费观看的视频| 听说在线观看完整版免费高清| 男女那种视频在线观看| 中文字幕人成人乱码亚洲影| 99久久国产精品久久久| 亚洲人成网站在线播放欧美日韩| 天天添夜夜摸| 看片在线看免费视频| 91麻豆精品激情在线观看国产| 国产v大片淫在线免费观看| 一进一出抽搐gif免费好疼| 久久精品成人免费网站| 亚洲最大成人中文| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清在线视频| 一区福利在线观看| 国产69精品久久久久777片 | 日韩欧美在线乱码| 亚洲熟妇熟女久久| aaaaa片日本免费| 国产爱豆传媒在线观看 | 免费在线观看视频国产中文字幕亚洲| 国产黄a三级三级三级人| 国内久久婷婷六月综合欲色啪| 午夜影院日韩av| 久久午夜亚洲精品久久| 亚洲午夜精品一区,二区,三区| 亚洲人成77777在线视频| 国产精品一区二区免费欧美| 色噜噜av男人的天堂激情| 久久久国产成人精品二区| 男人舔奶头视频| 久久香蕉激情| 日本黄色视频三级网站网址| 亚洲精华国产精华精| 亚洲va日本ⅴa欧美va伊人久久| 国产一区二区激情短视频| 看免费av毛片| www.999成人在线观看| 国产人伦9x9x在线观看| 国产真人三级小视频在线观看| 欧美色欧美亚洲另类二区| 午夜免费成人在线视频| 一进一出抽搐动态| 妹子高潮喷水视频| 99riav亚洲国产免费| 亚洲午夜精品一区,二区,三区| 欧美日韩乱码在线| 香蕉久久夜色| 中文字幕熟女人妻在线| 怎么达到女性高潮| 日本精品一区二区三区蜜桃| 午夜成年电影在线免费观看| 日韩 欧美 亚洲 中文字幕| 久久久久国产一级毛片高清牌| 日韩欧美国产一区二区入口| 成人av在线播放网站| 免费在线观看影片大全网站| 欧美乱妇无乱码| 国产午夜福利久久久久久| 高清毛片免费观看视频网站| 国产视频一区二区在线看| 国产精品 国内视频| 成年版毛片免费区| 亚洲黑人精品在线| 亚洲av五月六月丁香网| 亚洲aⅴ乱码一区二区在线播放 | 宅男免费午夜| 九色国产91popny在线| 欧美黄色片欧美黄色片| xxx96com| 免费在线观看完整版高清| 最新美女视频免费是黄的| 一进一出好大好爽视频| 国产av一区在线观看免费| 他把我摸到了高潮在线观看| 欧洲精品卡2卡3卡4卡5卡区| 男女做爰动态图高潮gif福利片| 欧洲精品卡2卡3卡4卡5卡区| 两个人免费观看高清视频| 亚洲第一电影网av| 免费av毛片视频| 观看免费一级毛片| 国产欧美日韩精品亚洲av| 麻豆一二三区av精品| 国产午夜精品久久久久久| 午夜日韩欧美国产| 亚洲狠狠婷婷综合久久图片| 男男h啪啪无遮挡| 听说在线观看完整版免费高清| 久久精品亚洲精品国产色婷小说| 18禁美女被吸乳视频| 国产精品98久久久久久宅男小说| 给我免费播放毛片高清在线观看| 日本免费一区二区三区高清不卡| 国产成人一区二区三区免费视频网站| 精品久久久久久,| 色尼玛亚洲综合影院| 亚洲熟妇熟女久久| 国产成+人综合+亚洲专区| 亚洲av熟女|