王科鑫,何 敏,郝 琦,劉 陽,曾德平
(重慶醫(yī)科大學 生物醫(yī)學工程學院,省部共建超聲醫(yī)學工程國家重點實驗室培育基地,
超聲醫(yī)學工程重慶市重點實驗室,重慶 400016)
?
1-3型壓電復合材料殼式聚焦換能器的研究
王科鑫,何敏,郝琦,劉陽,曾德平
(重慶醫(yī)科大學 生物醫(yī)學工程學院,省部共建超聲醫(yī)學工程國家重點實驗室培育基地,
超聲醫(yī)學工程重慶市重點實驗室,重慶 400016)
摘要:為解決壓電陶瓷聚焦換能器阻抗高、帶寬窄,電聲轉(zhuǎn)換效率低等問題,采用新型的1-3型壓電復合材料作為聚焦超聲換能器材料,設計并制作了一種新型的1-3壓電復合材料殼式聚焦換能器。通過對新型換能器的頻率特性,電聲轉(zhuǎn)換效率研究后和當前應用的PZT殼式聚焦換能器進行對比,證明了1-3型壓電復合材料殼式聚焦換能器的阻抗較低,相對帶寬達61%,是PZT壓電陶瓷殼式聚焦換能器的3.39倍,以及較高的電聲轉(zhuǎn)換效率η為54%,是PZT壓電陶瓷殼式聚焦換能器的1.68倍。將換能器實際聲場檢測結(jié)果與Matlab聲場仿真結(jié)果進行對比研究,得出換能器具有較好的聲場特性及聚焦效果。為高性能的聚焦換能器的實現(xiàn)提供了理論及實驗基礎。
關鍵詞:1-3壓電復合材料;聚焦換能器;電聲轉(zhuǎn)換效率;頻率特性;聲場特性
0引言
高強度聚焦超聲(high intensity focused ultrasound,HIFU)腫瘤治療技術是一種新型的非侵入性腫瘤治療手段,已成功用于臨床“消融”多種腫瘤,被認為當今世界的前沿科學技術[1]。換能器是HIFU治療設備的核心器件[2],其性能直接影響治療效果,為此國內(nèi)外諸多學者已致力于對HIFU換能器的研究。目前普遍使用的聚焦超聲換能器主要是用壓電陶瓷(Pb-based lanthanumdoped zirconate-titanates,PZT)材料制作的,它通過壓電陶瓷的厚度振動來實現(xiàn)電聲能量轉(zhuǎn)換,但由于壓電陶瓷內(nèi)部各向異性小,振動時產(chǎn)生的橫向分量較大,徑向振動明顯,存在多振動模耦合問題,從而降低了換能器的電聲轉(zhuǎn)換效率。且壓電陶瓷材料阻抗高,帶寬窄,使換能器不易和超聲介質(zhì)(通常是水)以及生物組織相匹配。
近年來,換能器材料的研制取得良好的進展,1-3型壓電復合材料在帶寬,阻抗和電聲轉(zhuǎn)換效率等方面相對于PZT陶瓷材料呈現(xiàn)出了優(yōu)勢,逐步走向應用。1-3壓電復合材料是由一維連通的壓電相平行排列于三維連通的聚合物中形成的兩相壓電復合材料,不僅具有壓電陶瓷的壓電性和剛度,還增強了其各向異性[3-5]。目前,國內(nèi)外許多學者已對1-3壓電復合材料進行了研究,如Martin L Dunn等[6-8]充分證明了1-3壓電復合材料在性能上相對PZT材料的優(yōu)點,何敏[9]對1-3壓電復合材料的制作及性能進行了研究,并做了相關報道。但目前國內(nèi)外關于用1-3壓電復合材料制作大功率聚焦超聲換能器的研制報道較少。本文在前文[9]1-3壓電復合材料制備及性能研究的基礎上,考慮到制作工藝的復雜程度和系統(tǒng)穩(wěn)定性等因素,設計并制作了1-3壓電復合材料殼式聚焦換能器,并從換能器的頻率特性,電聲轉(zhuǎn)換效率,以及聲場特性方面進行了研究。
1換能器的設計及制作
實驗采用的材料為本實驗前文[9]中研制的1-3壓電復合材料,材料的基本參數(shù)如表1所示。
表1 1-3壓電復合材料參數(shù)
圖1為1-3壓電復合材料的頻率-阻抗特性曲線。由圖1可知,實驗采用的材料具有純凈的厚度振動模態(tài),能夠有效的抑制多振動模耦合現(xiàn)象。
對換能器的結(jié)構(gòu)進行設計,如圖2所示為1-3殼式聚焦換能器的結(jié)構(gòu)圖,圖3為實物圖。
本聚焦換能器為組合式換能器,由10片性能相同的1-3壓電復合材料組成,中間為圓形,r0=25 mm。換能器的開口半徑r=60 mm,焦距R=120 mm,換能器最底端到開口水平面h=20mm, 1-3壓電復合材料的厚度t=1.8 mm。
圖1 1-3型壓電復合材料頻率-阻抗曲線
Fig 1 Frequency-impedance curve of 1-3 type piezoelectric composite material
圖2 1-3壓電復合材料殼式聚焦換能器結(jié)構(gòu)圖
Fig 2 The structure of 1-3 piezoelectric composite shell-focused transducer
圖3 1-3壓電復合材料殼式聚焦換能器實物圖
Fig 3 Thephysical of 1-3 piezoelectric composite shell-focused transducer
2結(jié)果與討論
2.1換能器頻率-阻抗特性研究
頻率-阻抗特性是換能器的重要性能,它取決于制作換能器材料的性能和換能器的結(jié)構(gòu)以及制作工藝。本文用Agilent 4294A阻抗分析儀進行檢測,其結(jié)果如圖4(a)所示,實線是1-3壓電復合材料殼式聚焦換能器的頻率-阻抗特性曲線,虛線是換能器的頻率-相位特性曲線。從頻率-阻抗曲線可以看到,1-3殼式聚焦換能器的諧振點阻抗Zt=0.595 Ω,反諧振點阻抗Za=28 Ω,諧振點頻率ft=680 kHz,反諧振點頻率fa=1.095 MHz,帶寬Δf=415 kHz;圖4(b)中實線為PZT壓電陶瓷材料殼式聚焦換能器的頻率-阻抗特性曲線,虛線為換能器的頻率-相位特性曲線,從圖4(b)可知,PZT殼式聚焦換能器的諧振點阻抗Zt=4.51 Ω,反諧振點阻抗Za=36.79 Ω,諧振點頻率ft=574.5 kHz,反諧振點頻率fa=678 kHz,帶寬Δf=103.5 kHz;由此可見,PZT殼式聚焦換能器阻抗高,帶寬窄,相對帶寬為18%,而1-3型殼式聚焦換能器具有阻抗低,帶寬較寬,相對帶寬達61%,是PZT殼式聚焦換能器的3.39倍,在一定程度上提高了換能器的穩(wěn)定性[10-14],降低了換能器與超聲介質(zhì)的匹配難度,這對HIFU換能器很重要。
圖41-3壓電復合材料殼式和PZT壓電陶瓷材料殼式聚焦換能器頻率-阻抗特性測試曲線
Fig 4 Frequency-impedance test curve of 1-3 piezoelectric composite shell-focused transducer and PZT piezoelectric ceramic materials shell-focused transducer
2.2換能器電-聲轉(zhuǎn)換效率研究
采用輻射力天平(聲功率計)測量殼式聚焦換能器的聲功率[15],測試方法見圖5所示,用信號源和功率源驅(qū)動換能器。對于全吸收靶的輻射力天平,中心未開孔的聚焦換能器在不考慮衰減的情況下,換能器聲功率的計算公式如式(1)
(1)
式中,P為聲功率,W;F為吸收靶所受的法向輻射力,c為聲在水中傳播的速度,β1為聚焦換能器的口徑半會聚角, 本文中殼式聚焦換能器口徑半會聚焦β1=30°。將1-3型殼式聚焦換能器的測試結(jié)果和PZT殼式聚焦換能器進行對比,其結(jié)果如圖6(a)、(b)所示。從圖6(a)可知,換能器輸出聲功率隨驅(qū)動電功率的增大呈線性增大,圖6(b)中1-3型殼式聚焦換能器的電聲轉(zhuǎn)換效率約為54%,是PZT殼式聚焦換能器的1.68倍。
圖5 輻射力天平測量換能器聲功率系統(tǒng)圖
Fig 5 The system of radiation force balance measures transducer’s sound power
圖61-3壓電復合材料和PZT壓電陶瓷殼式聚焦換能器聲功率測試結(jié)果和電-聲轉(zhuǎn)換效率測試結(jié)果
Fig 6 Sound power test results of 1-3 piezoelectric composite and PZT piezoelectric ceramic shell-focused transducer, electro-acoustic conversion efficiency test results
2.3換能器聲場特性研究
聲場是高強度聚焦超聲換能器非常重要的性能,換能器從理論分析和實驗測量兩方面研究了殼式聚焦換能器的聲場特性和聚焦效果。根據(jù)線性聲場計算理論,對于有限尺寸的換能器輻射聲場,可以按照線性疊加原理進行分析, 即將換能器的聲場輻射面看作由無數(shù)個微元(聲源)的組合而成,而輻射場中某一點的聲壓是由輻射面上所有微元(聲源)在該點產(chǎn)生的聲壓疊加后的結(jié)果[16-17]。對于法向振動均勻的換能器,其輻射面上任意聲源發(fā)射的球面、單頻聲波在輻射場中M點不考慮媒質(zhì)中衰減的情況下產(chǎn)生的聲壓為
(2)
其中,pM為聲場中第M點處的聲壓,ρ為媒質(zhì)密度,f為換能器的頻率
為換能器輻射面的法向振速
為1周期內(nèi)含有的波數(shù),c為在媒質(zhì)中的聲速,s為聲源M1中心到場點M處的距離,S為換能器輻射面的表面積,即凹球面換能器在場點M處產(chǎn)生的總的聲壓可以看成是各聲源在場點M處的疊加[18]
(3)
式(3)為瑞利(Rayleigh)積分,它可以從克希霍夫(Helmholtz)積分得到嚴格的證明。圖7為瑞利積分模擬殼式換能器聲壓示意圖。
圖7 瑞利積分模擬殼式換能器聲壓示意圖
Fig 7 The Schematic diagram of rayleigh points simulation sound pressure of shell transducers
對于軸對稱結(jié)構(gòu)的殼式換能器,計算XOY面的聲壓,M點坐標為(x0,y0,z0)
(4)
(6)
將式(4)、(5)、(6)代入式(3)后,將瑞利積分化成極坐標形式如式(7)[18-20]
(7)
根據(jù)式(7),在頻率f=827.217 kHz時,用Matlab對1-3殼式聚焦換能器沿聲軸方向和垂直聲軸方向進行聲壓的歸一化仿真,同時與在相同頻率下,驅(qū)動功率為30 W時,用水聽器檢測的沿聲軸方向和垂直聲軸方向的聲壓進行對比分析,如圖8(a)、(b)所示。
圖8 垂直聲軸和沿聲軸方向聲壓理論值和檢測值對比
Fig 8 Compare sound pressure theoretical value of vertical axis sound and along axis with sound pressure detection value of along axis
分析圖8(a)和(b)可得,聲壓理論值和實測值很吻合,在X軸理論上聲壓旁瓣約為6%左右,實際測量聲壓旁瓣約為8%左右,聲焦域?qū)挾葹?.4 mm。在Z軸,理論上聲壓旁瓣約為12%左右,實際檢測聲壓旁瓣約為14%左右,聲焦域長度為15.2 mm,即1-3殼式聚焦換能器在沿聲軸方向上也具有較好的聲場特性。
同時在頻率f=827.217 kHz時,用Matlab對1-3型殼式聚焦換能器在XOY面的聲壓進行仿真,其結(jié)果和在相同的頻率下,30 W功率驅(qū)動時用水聽器檢測的XOY面的聲壓進行對比研究,其結(jié)果如圖9(a)、(b)、(c)所示。
將圖9(a)和(b)進行對比發(fā)現(xiàn),XOY面掃描聲壓和XOY面理論聲壓都具有較好的焦域形態(tài),其焦域半徑約為1.2 mm,即換能器表現(xiàn)出較好的聚焦性能,從圖9(c)可以看出換能器在XOY面聲壓旁瓣較小,具有較好的聲場特性。
圖9XOY面聲壓實際掃描結(jié)果和歸一化仿真以及歸一化三維仿真
Fig 9 Results of sound pressure actual scan in XOY,simulation of sound pressure normalized in XOY,three-dimensional simulation of sound pressure normalized in XOY
3結(jié)論
采用1-3型壓電復合材料設計并制作殼式聚焦超聲換能器,并對其進行研究后與PZT壓電陶瓷材料殼式聚焦換能器進行對比,得到以下結(jié)論:
(1)1-3型壓電復合材料殼式聚焦超聲換能器具有較高的電聲轉(zhuǎn)換效率,達到54%,約為PZT殼式聚焦換能器的1.68倍,且1-3型殼式聚焦換能器阻抗較低,帶寬很寬,相對帶寬達到61%,約為PZT殼式聚焦換能器的3.39倍,說明本換能器充分展示了新型1-3型壓電復合材料的優(yōu)點,具有良好的性能。
(2)從理論仿真和實驗測試兩方面證明了研制的1-3型殼式聚焦換能器具有較好的聲場特性和聚焦特性,焦域尺寸為短軸為2.4 mm,長軸為15.2 mm。
在未來高強度聚焦超聲(HIFU)換能器應用中,1-3型壓電復合材料換能器將扮演重要角色,它能改善聚焦超聲換能器的寬帶,提高換能器電聲轉(zhuǎn)換效率,對改進和提升高強度聚焦超聲治療設備的性能具有重要作用。
參考文獻:
[1]Fu Liyuan, Li Faqi. High-intensity focused ultrasound transducer[J]. Journal of Biomedical Engineering, 2009, 26(3): 667.
付麗媛,李發(fā)琪.高強度聚焦超聲換能器[J].生物醫(yī)學工程學雜志, 2009, 26(3): 667.
[2]Zhang Dejun. High intensity focused ultrasound transducer[J]. Journal of Ultrasonic Diagnosis of China, 2000,1(2):1.
張德俊.高強度聚焦超聲換能器[J].中國超聲診斷雜志,2000,1(2):1.
[3]Zhao Shougen, Cheng Wei.1-3 type piezoelectric composite materials and their research progress[J]. Advances in Mechanics,2002, 32(1): 57-68.
趙壽根,程偉.1-3型壓電復合材料及其研究進展[J].力學進展,2002,32(1): 57-68.
[4]Xu Lingfang, Chen Wen, Zhou Jing, et al. Preparation and properties of 1-3 piezoelectric composites[J]. Journal of Wuhan University of Technology, 2006,28(6): 1-3.
徐玲芳,陳文,周靜,等.1-3壓電復合材料的制備及性能研究[J].武漢理工大學學報,2006,28(6):1-3.
[5]Qiu Yanqin, Liu Jun, Meng Xianfeng, et al. The fabrications and performance analysis of 1-3 piezoelectric fibers composite material[J]. Material Engineering, 2007, 12(1):45-48.
邱艷芹,劉軍,孟獻豐,等.1-3壓電纖維復合材料的制備及性能研究[J].材料工程, 2007,12(1):45-48.
[6]Schulgasser K. Relationships between the effective properties of transversely isotropic piezoelectric composites[J]. Journal of Mechanics Physics of Solids, 1992, 40(2): 473-479.
[7]Benveniste Y, Dvorak G J. Uniform fields and universal relations in piezoelectric composites[J]. Journal of Mechanics Physics of Solids, 1992, 40(6): 1295-1312.
[8]Martin L Dunn.Micromechanics of coupled electroelastic composites: effevtive thermal expansion and pyroelectric coefficients[J]. Journal of Applied Physics, 1993, 73(10): 5131-5140.
[9]He Min, Hao Qi, Wang Kexin, et al. Research of a lens-focused transducer based on piezoelectric composites[J]. Journal of Inorganic Materials,2015, 30(7): 745-750.
何敏,郝琦,王科鑫,等.壓電復合材料用于透鏡式聚焦換能器的研究[J].無機材料學報,2015,30(7):745-750.
[10]Niederhauser J J, Jaeger M, Frenz M. Real-time three-dimensional optoacoustic imaging using an acoustic lens system[J]. Applied Physics Letters, 2004, 85(5): 846-848.
[11]Andreas Hakansson, Francisco Cervera, Jose Sanchez-Dehesaa. Sound focusing by flat acoustic lenses without negative refraction[J]. Applied Physics Letters, 2005, 86(5): 0541021-3.
[12]Zhang Kai.The study of high-frequeney broad-band piezocomposite transducers[D]. Harbin: Harbin Engineering University, 2011.
張凱. 高頻寬帶壓電復合材料換能器研究[D].哈爾濱:哈爾濱工程大學,2011.
[13]Tong Hui, Zhou Yiming, Wang Jialin, et al. Study of high frequency broadband transducer[J]. Technical Acoustics,2013, 32(6):524-527.
童輝,周益明,王佳麟,等.高頻寬帶換能器研究[J].聲學技術,2013,32(6):524-527.
[14]Benjamin K C. The design, fabrication, and measured acoustic performance of a 1-3 piezoelectric composite Navy calibration standard transducer[J]. Journal of the Acoustical Society of America, 2001, 109(5):1973-1978.
[15]Li Xing.Study of the effect of ultrasound frequency on the lesion induced by high-intensity focused ultrasound in layered tissue [D].Chongqing: Medical University of Chongqing,2015.
李興.頻率對高強度聚焦超聲在層狀生物組織中形成損傷的影響研究[D].重慶:重慶醫(yī)科大學,2015.
[16]Cheng Jianzheng, Zhou Yulu,Mao Yanxin, et al. Study on acoustic field characteristics of focusing transducer based on rayleigh integral superposition method[J]. Chinese journal of Computational Physics, 2008, 25(4):493-498.
程建政,周玉祿,毛彥欣,等.基于瑞利積分疊加法的聚焦換能器聲場特性研究[J].計算物理,2008,25(4):493-498.
[17]Xiang Jun. The research on focal region of multi-focus in HIFU [D]. Chongqing: Medical University of Chongqing,2010.
向軍.HIFU多焦點聲焦域形態(tài)研究[D].重慶:重慶醫(yī)科大學,2010.
[18]Zhao Liyan. The focused sound of an concave spherical phased focusing array transducer[J]. Technical Acoustics, 2009, 28(2):267-269.
趙麗艷.凹球面陣相控聚焦聲場仿真研究[J].聲學技術,2009,28(2):267-269.
[19]Lu Mingzhu, Wan Mingxi,Shi Yu. Optimization of the mode of the direct synthesis of the phased array ultrasound hyperthermia[J]. Journal of Physics,2001, 50(2):347-352.
陸明珠,萬明習,施雨.相控陣超聲熱療場共軛直接合成的模式優(yōu)化研究[J].物理學報,2001,50(2):347-352.
[20]Xiang Jun, Wang Hua, Zeng Deping,et al. Phased array multifocal sound field modes merge large focal-domain method [J]. Chongqing Medical University, 2010,35(9):1381-1383.
向軍,王華,曾德平,等.相控陣多焦點聲場模式合并大焦域方法[J].重慶醫(yī)科大學學報,2010,35(9):1381-1383.
Research of a shell-focused transducer based on 1-3 piezoelectric composites
WANG Kexin,HE Min,HAO Qi,LIU Yang,ZENG Deping
(State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016,China)
Abstract:To solve the problems that current piezoelectric ceramic focused transduce- rs have the high impedance, narrow bandwidth and low electro-acoustic conversion efficiency, this paper used 1-3 piezoelectric composites as the focused ultrasound transducer materials to design and produce a new type of shell-focused transducer. By researching the new transducer’s frequency characteristics,electro-acoustic conversi- on efficiency and compared with the currently applied PZT shell-focused transducer, we proved that the impedance of 1-3 shell- focused transducer is low, the relative bandwidth is 61%. The relative bandwidth of 1-3 shell-focused transducer is PZT piezoelectric ceramic shell-focused transducer 3.39 times. The electro-acoustic conve- rsion efficiency η of 1-3 shell-focused transducer is 54%. It is PZT piezoelectric ceramic shell-focused transducer 1.68 times. Besides, by compared the result of actual sound field test with the simulation of acoustic field in Matlab of transducer, we can conclude that the transducer in this study has a great acoustic field characteristics and focusing effect. It provides a theoretical and experimental basis for the realization of high performance focused transducer.
Key words:1-3 piezoelectric composites; focused transducer; electro-acoustic conversion efficiency; frequency characteristic; sound field characteristic
DOI:10.3969/j.issn.1001-9731.2016.03.029
文獻標識碼:A
中圖分類號:TM282
作者簡介:王科鑫(1990-),男,山東聊城人,在讀碩士,從事1-3壓電復合材料換能器的研究。
基金項目:國家自然科學基金委重大科學儀器設備研制專項資助項目(81127901);國家自然科學基金資助項目(81201102);重慶市教委資助項目(KJ1500204)
文章編號:1001-9731(2016)03-03158-05
收到初稿日期:2015-07-20 收到修改稿日期:2015-12-10 通訊作者:曾德平,E-mail: zengdp@haifu.com.cn