曾蓓蓓,王 歡,賀 星,李冬曉,趙燕熹,黃 濤
(中南民族大學(xué)化學(xué)與材料科學(xué)學(xué)院 催化材料科學(xué)國家民委-教育部重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430074)
?
四面體Rh納米顆粒的控制合成與表征
曾蓓蓓,王歡,賀星,李冬曉,趙燕熹,黃濤
(中南民族大學(xué)化學(xué)與材料科學(xué)學(xué)院 催化材料科學(xué)國家民委-教育部重點(diǎn)實(shí)驗(yàn)室,湖北 武漢 430074)
摘要:以Na3RhCl6為前驅(qū)體、三縮四乙二醇(TEG)為還原劑和溶劑、聚乙烯吡咯烷酮(PVP)為穩(wěn)定劑、葡萄糖為形貌控制劑,在Na3RhCl6∶PVP∶C6H12O6=1∶10∶40(物質(zhì)的量比)時(shí),于160 ℃油浴加熱2 h得到了形貌單一、大小均勻的四面體Rh納米顆粒,并通過TEM、SEM、XRD、XPS對(duì)其結(jié)構(gòu)進(jìn)行了表征。在此過程中,葡萄糖在四面體Rh納米顆粒的控制合成中起關(guān)鍵作用。
關(guān)鍵詞:銠;納米顆粒;四面體;三縮四乙二醇;葡萄糖
鉑族金屬納米材料的形貌控制合成是考察其結(jié)構(gòu)與性質(zhì)的構(gòu)效關(guān)系的關(guān)鍵,已成為該領(lǐng)域備受關(guān)注的研究熱點(diǎn)[1-2]。相對(duì)于納米顆粒的粒徑控制,金屬納米材料的形貌及表面結(jié)構(gòu)的控制仍是該領(lǐng)域的挑戰(zhàn)性難題。為提高鉑族金屬的催化效率、降低其使用成本,人們?cè)谘芯啃×姐K族金屬納米顆粒的同時(shí),探索了不同形貌鉑族金屬納米顆粒的制備方法。迄今為止,不同形貌的Pd、Pt納米顆粒的控制合成已有較多報(bào)道。例如,采用不同方法成功制備了形貌單一的Pd或Pt納米線[3-4]、納米片[5-6]、立方體[7-8]、四面體[9]、正八面體[10]、正二十面體[5,11-12]、二十四面體[13]、內(nèi)凹四面體[14-15]、四足/三菱形納米晶[16]、八角形納米晶[17-18]、多級(jí)四足形納米晶[19]等,并且,其催化性能顯著增強(qiáng)。但是,另一種重要的鉑族金屬Rh納米顆粒的形貌控制合成研究報(bào)道較少[20-25]。Rh被廣泛用作CO氧化及眾多有機(jī)反應(yīng)的催化劑。因此,開展Rh納米顆粒的形貌控制合成對(duì)于探索提高其催化性能的有效途徑具有重要意義。
作者以Na3RhCl6為前驅(qū)體、三縮四乙二醇(TEG)為還原劑和溶劑、聚乙烯吡咯烷酮(PVP)為穩(wěn)定劑、葡萄糖為形貌控制劑,采用一步法快速合成四面體Rh納米顆粒,并利用透射電子顯微鏡(TEM)、掃描電子顯微鏡(SEM)、X-射線粉末衍射儀(XRD)、X-射線光電子能譜儀(XPS)等技術(shù)對(duì)四面體Rh納米顆粒進(jìn)行表征。
1實(shí)驗(yàn)
1.1試劑與儀器
Na3RhCl6·12H2O(>17%),昆明貴金屬研究所;TEG,Acros公司;葡萄糖(C6H12O6,純度>99.5%),Sigma公司;PVP(K30)、無水乙醇、丙酮,國藥集團(tuán)上?;瘜W(xué)試劑有限公司;所用試劑均為分析純,用前未進(jìn)一步純化。
FEITecnaiG20型透射電子顯微鏡;BrukerD8型X-射線衍射儀;VGMultilab2000型X-射線光電子能譜儀;DF-101B型集熱式恒溫加熱磁力攪拌器;KQ-100E型超聲波分散儀;H-1650型臺(tái)式離心機(jī),湘儀離心機(jī)儀器有限公司。
1.2四面體Rh納米顆粒的控制合成
在50mL燒瓶中加入0.3964g葡萄糖、0.0556gPVP及9mLTEG,攪拌溶解。將燒瓶放入油浴鍋中加熱至160 ℃,然后加入1mL0.05mol·L-1Na3RhCl6的TEG溶液,使反應(yīng)體系中Na3RhCl6∶PVP∶C6H12O6=1∶10∶40(物質(zhì)的量比,下同)。在160 ℃下攪拌反應(yīng)2h,得到棕黑色膠體溶液。加入適量丙酮,離心,黑色沉淀用乙醇-丙酮混合溶液洗滌3~4次,即得四面體Rh納米顆粒。用10倍體積的乙醇重新分散,備用。
1.3四面體Rh納米顆粒的表征
將四面體Rh納米顆粒的乙醇分散液緩慢滴在碳膜銅網(wǎng)上,室溫自然晾干后進(jìn)行TEM測試,操作電壓200kV。
將四面體Rh納米顆粒的乙醇分散液在玻片上反復(fù)涂膜,紅外干燥后,進(jìn)行XRD測試。Cu靶Κα射線,操作電流50mA,操作電壓40kV。
XPS分析以單色MgΚα射線(1 253.6eV)為光源,樣品真空度2×10-8Pa,以C1s的結(jié)合能(284.6eV)為校正標(biāo)準(zhǔn)。
2結(jié)果與討論
2.1四面體Rh納米顆粒的TEM和SEM表征
Rh納米顆粒的TEM和SEM照片分別如圖1a和圖1b所示。
從圖1a、1b可以看出,所得到的Rh納米顆粒呈四面體結(jié)構(gòu),平均粒徑約(20±2) nm,大小較均勻,形貌較單一,分散性良好。
實(shí)驗(yàn)發(fā)現(xiàn),反應(yīng)溫度對(duì)四面體Rh納米顆粒的形貌控制有顯著影響,最適反應(yīng)溫度為160 ℃。反應(yīng)溫度低于160 ℃時(shí),得到海膽形Rh納米顆粒組裝體(圖1c);反應(yīng)溫度高于160 ℃時(shí),得到形貌不規(guī)則的Rh納米顆粒組裝體(圖1d)。
a.TEM照片 b.SEM照片
實(shí)驗(yàn)還發(fā)現(xiàn),保持其它條件不變,葡萄糖用量對(duì)四面體Rh納米顆粒的合成有較大影響。當(dāng)不加入葡萄糖時(shí),得到不規(guī)則的小顆粒;當(dāng)葡萄糖用量較少,即Na3RhCl6∶PVP∶C6H12O6=1∶10∶30時(shí),得到不規(guī)則的Rh納米顆粒組裝體(圖2a);當(dāng)葡萄糖用量較多,即Na3RhCl6∶PVP∶C6H12O6=1∶10∶50時(shí),得到海膽形的Rh納米顆粒組裝體(圖2b)??梢姡咸烟菍?duì)四面體Rh納米顆粒的合成起著重要作用,這可能與葡萄糖在Rh晶核表面的選擇性吸附有關(guān)。合成四面體Rh納米顆粒的最適宜Na3RhCl6∶PVP∶C6H12O6為1∶10∶40。
a.Na3RhCl6∶PVP∶C6H12O6=1∶10∶30
2.2四面體Rh納米顆粒的XRD分析(圖3)
圖3 四面體Rh納米顆粒的XRD圖譜
從圖3可以看出,4個(gè)特征衍射峰的2θ值分別為41.19°、47.93°、69.97°、84.47°。與金屬Rh的標(biāo)準(zhǔn)粉末衍射圖譜(JCPDS卡No.005-0685)進(jìn)行對(duì)照,4個(gè)衍射峰分別歸屬于單質(zhì)Rh的(111)、(200)、(220)、(311)晶面,說明所合成的四面體Rh納米顆粒屬于面心立方(fcc)結(jié)構(gòu)。利用最強(qiáng)的Rh的(111)晶面衍射峰的半峰寬,通過Scherrer公式計(jì)算得到四面體Rh納米顆粒的平均粒徑為18.4 nm,與TEM測試結(jié)果相吻合。
2.3四面體Rh納米顆粒的XPS分析(圖4)
圖4 四面體Rh納米顆粒的XPS圖譜
從圖4可以看出,Rh3d3/2、Rh3d5/2的電子結(jié)合能分別為311.00 eV和306.25 eV,峰間距為4.75 eV,與金屬Rh的標(biāo)準(zhǔn)光電子能譜[26](Rh3d3/2、Rh3d5/2結(jié)合能分別為311.75 eV、307.00 eV,峰間距4.75 eV)基本一致。表明,所合成的四面體Rh納米顆粒由零價(jià)態(tài)的Rh原子組成。
3結(jié)論
以Na3RhCl6為前驅(qū)體、PVP為穩(wěn)定劑、TEG為還原劑和溶劑,在一定量葡萄糖存在下,160 ℃油浴加熱2 h得到四面體Rh納米顆粒。反應(yīng)體系中,葡萄糖用量對(duì)四面體Rh納米顆粒的控制合成具有決定性作用,合成四面體Rh納米顆粒的最適宜Na3RhCl6∶PVP∶C6H12O6為1∶10∶40(物質(zhì)的量比)。
參考文獻(xiàn):
[1]NARAYANAN R,EL-SAYED M A.Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes:Electron-transfer reaction[J].J Am Chem Soc,2004,126(23):7194-7195.
[2]BURDA C,CHEN X,NARAYANAN R,et al.Chemistry and pr-operties of nanocrystals of different shapes[J].Chem Rev,2005,105(4):1025-1102.
[3]HUANG X,ZHENG N.One-pot,high-yield synthesis of 5-fold twinned Pd nanowires and nanorods[J].J Am Chem Soc,2009,131(13):4602-4603.
[4]FU X,WANG Y,WU N,et al.Preparation of colloidal solutions of thin platinum nanowires[J].J Mater Chem,2003,13(5):1192-1195.
[5]NIU Z,PENG Q,GONG M,et al.Oleylamine-mediated shape evolution of palladium nanocrystals[J].Angew Chem Int Ed,2011,50(28):6315-6319.
[6]HUANG X,TANG S,MU X,et al.Freestanding palladium nanosheets with plasmonic and catalytic properties[J].Nature Nanotech,2011,6(1):28-32.
[7]REN J T,TILLEY R D.Preparation,self-assembly,and mechanistic study of highly monodispersed nanocubes[J].J Am Chem Soc,2007,129(11):3287-3291.
[8]XIONG Y J,CHERT J Y,WILEY B,et al.Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesizedviaa seed etching process[J].Nano Lett,2005,5(7):1237-1242.
[9]FU G,TAO L,ZHANG M,et al.One-pot,water-based and high-yield synthesis of tetrahedral palladium nanocrystals decorated grapheme[J].Nanoscale,2013,5(7):8007-8014.
[10]LIU M,ZHENG Y,ZHANG L,et al.Transformation of Pd nan-ocubes into octahedra with controlled sizes by maneuvering the rates of etching and regrowth[J].J Am Chem Soc,2013,135(32):11752-11755.
[11]CHEN Y,HE B,HUANG T,et al.Controlled synthesis of palladium icosahedra nanocrystals by reducing H2PdCl4with tetraethylene glycol[J].Colloid Surf A:Physicochem Eng Asp,2009,348(1-3):145-150.
[12]YU Y,ZHAO Y,HUANG T,et al.Shape-controlled synthesis of palladium nanocrystals by microwave irradiation[J].Pure Appl Chem,2009,81(12):2377-2385.
[13]TIAN N,ZHOU Z Y,SUN S G,et al.Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J].Science,2007,316(5825):732-735.
[14]HUANG X,TANG S,ZHANG H,et al.Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals[J].J Am Chem Soc,2009,131(39):13916-13917.
[15]ZHU H,CHI Q,ZHAO Y,et al.Controlled synthesis of concave tetrahedral palladium nanocrystals by reducing Pd(acac)2with carbon monoxide[J].Mater Res Bull,2012,47(11):3637-3643.
[16]ZHU H,LI G,CHI Q,et al.Controlled synthesis of tetrapod/Mitsubishi-like palladium nanocrystals[J].Cryst Eng Comm,2012,14(5):1531-1533.
[17]HUANG X,ZHAO Z,FAN J,et al.Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets[J].J Am Chem Soc, 2011,133(13):4718-4721.
[18]DAI L,CHI Q,ZHAO Y,et al.Controlled synthesis of novel octapod platinum nanocrystals under microwave irradiation[J].Mater Res Bull,2014,49(1):413-419.
[19]ZHU H,LI G,Lü X,et al.Controlled synthesis of hierarchical tetrapod Pd nanocrystals and their enhanced electrocatalytic properties[J].RSC Advances,2014,4(13):6535-6539.
[20]HOEFELMEYER J D,NIESZ K,SOMORJAI G A,et al.Radial anisotropic growth of rhodium nanoparticles[J].Nano Lett,2005,5(3):435-438.
[21]KIM H,KHI N T,YOON J,et al.Fabrication of hierarchical Rh nanostructures by understanding the growth kinetics of facet-controlled Rh nanocrystals[J].Chem Commun,2013,49(22):2225-2227.
[22]XIE S,ZHANG H,LU N,et al.Synthesis of rhodium concave tetrahedrons by collectively manipulating the reduction kinetics,facet-selective capping,and surface diffusion[J].Nano Lett,2013,13(12):6262-6268.
[23]CHEN Y,CHEN Q S,PENG S Y,et al.Manipulating the concavity of rhodium nanocubes enclosed by high-index facetsviasite-selective etching[J].Chem Commun,2014,50(14):1662-1664.
[24]XIE S,LU N,XIE Z,et al.Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores[J].Angew Chem Int Ed,2012,51(41):10266-10270.
[25]DUAN H,YAN N,YU R,et al.Ultrthin rhodium nanosheets[J].Nat Commun,2014,5(1):3093-3100.
[26]WAGNER C D,RIGGS W M,DAVIS L E,et al.Handbook of X-ray Photoelectron Spectroscopy[M].Eden Prairie:Perkin-Elmer,Physical Electronics Division,1979:108-109.
Controlled Synthesis and Characterization of Tetrahedral Rh Nanoparticles
ZENG Bei-bei,WANG Huan,HE Xing,LI Dong-xiao,ZHAO Yan-xi,HUANG Tao
(KeyLaboratoryofCatalysisandMaterialScienceoftheStateEthnicAffairsCommission&MinistryofEducation,CollegeofChemistry
andMaterialScience,South-CentralUniversityforNationalities,Wuhan430074,China)
Abstract:Well-defined tetrahedral Rh nanoparticles with uniform size were synthesized using Na3RhCl6 as a precursor,tetraethylene glycol(TEG) as both reducing agent and solvent,polyvinylpyrrolidone(PVP) as a stabilizer,glucose as a morphology control agent in the presence of an optimal molar ratio of 1∶10∶40 for Na3RhCl6∶PVP∶C6H12O6 by oil-bath heating at 160 ℃ for 2 h.Their structures were characterized by TEM,SEM,XRD and XPS.Glucose played an essential role in controlling the synthesis of tetrahedral Rh nanoparticles.
Keywords:rhodium;nanoparticle;tetrahedron;tetraethylene glycol;glucose
中圖分類號(hào):O 643.3
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1672-5425(2016)04-0009-03
doi:10.3969/j.issn.1672-5425.2016.04.003
作者簡介:曾蓓蓓(1990-),女,湖北蘄春人,碩士研究生,研究方向:納米材料;通訊作者:黃濤,博士,教授,E-mail:huangt208@163.com。
收稿日期:2015-12-31
基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(21273289)