• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of Crack Growth Rates of a High Strength Titanium Alloy for Deep Sea Pressure Hull under Three Loading Patterns

    2016-05-16 06:16:02,,
    船舶力學(xué) 2016年6期
    關(guān)鍵詞:海洋大學(xué)耐壓科學(xué)研究

    ,,

    (1.Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;2.China Ship Scientific Research Center,Wuxi 214082,China; 3.State Key Laboratory of Deep-sea Manned Vehicle,China Ship Scientific Research Center,Wuxi 214082,China)

    Prediction of Crack Growth Rates of a High Strength Titanium Alloy for Deep Sea Pressure Hull under Three Loading Patterns

    WANG Fang1,WANG Ying-ying2,3,CUI Wei-cheng1

    (1.Shanghai Engineering Research Center of Hadal Scicence and Technology,College of Marine Sciences,Shanghai Ocean University,Shanghai 201306,China;2.China Ship Scientific Research Center,Wuxi 214082,China; 3.State Key Laboratory of Deep-sea Manned Vehicle,China Ship Scientific Research Center,Wuxi 214082,China)

    Fatigue life assessment of deep sea pressure hull has become more and more important due to the increase in the requirement of the safety.The pressure hull during its service life will experience periods of both fluctuating and steady stresses with creep and fatigue involved.This should be treated reasonably but up to now no proper model was proposed.Large uncertainty of the fatigue life assessment results existed in the traditional fatigue life prediction method which often neglected the creep effect.To obtain a better understanding of the problem,the crack growth rates of a beta-annealed titanium alloy TC4 ELI used for deep sea pressure hull is theoretically analyzed in this paper.The crack growth rate prediction models for the three load patterns are respectively introduced. In order to validate the theoretical assumption,a series of crack growth tests under cyclic triangular loading form with a period of overload and dwell time in the stable crack growth region are conducted,which will provide a basis for developing a proper life estimation method of deep sea manned submersibles.

    deep sea pressure hull;fatigue crack growth;creep;dwell time

    0 Introduction

    The pressure hull is the pivotal component of deep manned submersibles,which provides a safe living space for pilots and scientists,and should be designed to have enough strength and be as light as possible[1-2].Fatigue life assessment of deep sea pressure hull has become more and more important due to the increase in the requirement of the safety.

    It is well-known that different loading pattern will affect the fatigue life of metal structures.The pressure hull of deep manned submersibles during their service life will experience cyclic periods of loading,then fatigue problem should be properly considered.The fatigue life prediction method based on crack growth rate theory is currently more promising in industry as inside defects of the material is ineluctable.Currently,fatigue strength assessment of the manned sphere of deep sea submersibles has become more and more important in the maintenance process due to the increase in the requirement of the safety which is an extremely complex physical process governed by a great number of parameters related to,for example, fatigue loading behavior,local geometry and material properties of the structural region surrounding the crack growth path.Fatigue loading is the most important parameter.The researchers have realized that the loading history for fatigue prediction of manned sphere is not a normal cyclic history but a rather complex pattern with dwell time.However,most of the existing researches concerning the failure of spherical hull during service as a problem of lowcycle fatigue under a common cyclic load history due to diving task but neglecting the dwell time effect during service beneath the sea.

    In order to obtain a proper fatigue design,the fatigue failure with creep interaction due to dwell time has attracted attention even in room temperature which is more easily neglected in the past.Typically,linear accumulation model is used to consider the common interaction of fatigue and creep,e.g.Munz&Bachmann(1980)[3].In the past four decades,significant efforts and progresses have been made to study dwell fatigue and pure fatigue behavior of metal alloys to find out how the material responds to dwell time.The prior research attributes dwell sensitivity to many deleterious mechanisms.However,there is no consensus on the basic cause of the dwell fatigue sensitivity of titanium alloys.Up to now,the problem remains opened on the scientific as well as on the engineering point of view.And till now,there is no proper life prediction model which has been proposed for the manned spheres with dwell time effect considered.To obtain a better understanding of the problem,Fig.1 illustrates three simplified load patterns.Pattern A is a typical constant-amplitude cyclic loading;pattern B is a constant-amplitude cyclic loading with the same dwell time in each cycle(called cyclic creep loading);pattern C is a constant-amplitude cyclic loading with a period of dwell time in one cycle.The crack growth rate law in Pattern A has received lots of studies,e.g. McEvily et al(1999)[4],Sadananda&Vasudevan(2003)[5],and the research on crack growth rate prediction model is still in progress.At the same time,it has been revealed in literature that a period of dwell time in a certain cycle as Pattern C can result in an observable crack growth retardation in some metal materials,e.g.Zhao et al(2006)[6].The retardation mechanism is similar to retardation effect from overload.But for Pattern B in which dwell time exists in each cycle,the crack growth rate is observed to be much higher than that under Pattern A[7].

    Fig.1 A schematic illustration of three load patterns

    To establish a reasonable fracture mechanics based fatigue life prediction process for deep sea manned pressure hull,improvement of the crack growth rate prediction equations should be proposed first to explain phenomenon of creep effect.In the past several years,the authors’group has made some efforts in improving the ability of the crack growth rate model for marine structures.The extended McEvily model[4]was established progressively by Wang &Cui(2011)[8],et al.And validation on the improved model has been made by comparing the predicted results with test data for a wide range of materials.

    In this paper,the improved crack growth rate model considering overload effect is further extended to crack growth rate calculation under the conditions of load patterns B and C shown in Fig.1.The corresponding formulas are introduced and analyzed by comparing the crack growth rate under the three typical loading patterns,especially for TC4 ELI,a beta-annealed titanium alloy as the widely used material in the existing pressure hulls of submersibles.

    1 Theoretical model and analysis

    A unified fatigue life prediction method is proposed by the authors’group[8],which can be expressed by the following equations,

    Considering this phenomenon that the experimental data are closure free at higher load ratio,it is proposed that the term ΔKeffin the constitution relation can be expressed by the above piece-wise function.And Newman’s function[9]for fopis modified by introducing a constraint factor α′as follows,

    where A is a material and environmentally sensitive constant of dimensions(MPa)-2;m is a constant representing the slope of the corresponding fatigue crack growth rate curve;n is the index indicating the unstable fracture;KICis the plane strain fracture toughness of the material;KCfis the fracture toughness of the material under fatigue loading which is equal to KICfor simplification;reis an empirical material constant of the inherent flaw length of the order of 1 μm;a is the modified crack length which is equal to re plus the actual crack length;σmaxis the maximum applied stress,σminis the minimum applied stress;Y(a)is a geometrical factor;is a geometrical factor when a is equal to re;R is the stress ratiois the threshold value of stress intensity factor range;athis the threshold value corresponding to ΔKth;ΔKeffis the effective range of the stress intensity factor;ΔKeffthis the effective range of the stress intensity factor at the threshold level;Kopis the stress intensity factor at the opening level;α′is the crack tip stress/strain constraint ratio,which is 1 for the plane stress state and 1/(1-2ν)for the plane strain state.The effect of n is significant only in the unstable propagation region;a constant value of 6 is recommended for a quick and simple engineering analysis. Eq.(4)can be used to determine the value of ΔKeffthand we recommend the values of β and β1are 0.4 and 0.36 respectively for titanium alloys.

    Suppose that a short period of dwell time will not induce crack propagation but just result in a monotonic plastic zone.Based on the assumption,Fig.2 is proposed to illustrate the plastic zone distribution for three load patterns together with the change of stress intensity factor in the level of crack opening which will be introduced specifically as follows.

    As the basis of crack growth rate model for pattern B and pattern C,the crack growth rate model to consider overload effect will be introduced first.In considering the overload effect,it is assumed that the single overload effect is due to variations in crack closure stress in metals and the large plastic zone as a result of overloading can raise the stress intensity factor at theopening level.A large plastic zone is created as a result of an overload,and the crack closure level instantaneously rises to the maximum value,and then gradually recovers to the initial level under constant loading when the crack penetrates the large plastic zone in the subsequent cycles.A modified coefficient Φ has been introduced as a magnification factor to correct the amount of the stress intensity factor at crack opening level during the recovering period after an overload in the improved constitutive model illustrated in Fig.3.

    The coefficient Φ to account for the change of the crack closure level in the improved constitutive model can be defined as follows,

    Fig.2 The plastic zone distribution for three load patterns

    Then it is important to estimate the plastic zone size in front of the crack tip.Liu et al(2006)[10]proposed an equation to calculate the plastic zone size in front of the crack tip as follows,

    Fig.3 Schematic representation of the assumed change of Kopunder load sequence with single overloading

    The plastic zone size mentioned above is also called monotonic plastic zone,which can be used to calculate the plastic zone due to one overload.As the minimum cyclic load in a cycle is approached,yielding in compression occurs in a region of a smaller size,called the cyclic plastic zone,as expressed in Eq.(6)[11]:

    The monotonic plastic zone can be simply modified to the following equation,

    where KOLCis the value of stress intensity factor resulting from an instant overload.

    Based on the assumption of plastic zone change,Fig.4 is proposed to illustrate the plastic zone distribution due to the cyclic loading with overload and dwell time.Among them, rdtis defined as the plastic zone increment due to dwell time.Then the total monotonic plastic zone can be expressed as the summation of rOLand rdt.And Eq.(4)will be modified to,

    Fig.4 Schematic representation of the plastic zone due to cyclic loading with overload and dwell time

    The physical mechanisms causing creep in room temperature differ markedly for different classes of materials.In addition,even for a given material,different mechanisms act at various combinations of stress and temperature[12].During low temperature creep(<0.25Tm)of many metals and alloys,primary creep is the dominant deformation mode.At low creep stresses and creep strains(<2×10-3),the primary creep deformation of many metals and alloys has been described by a logarithmic creep law of the form ε=llnt+C.In cases where there is larger accumulation of primary creep strains,the deformation can be often described by a power law function of creep strain with time,

    where C and k are constants.And the dimension of time T is hour in the present paper.It is supposed that the plastic zone increasing rate with dwell time is the same as the stable creep strain rate under yield stress during the dwell time.Then the value of rdtcan be easily estimated by Eq.(9).

    Furthermore,it is supposed that there is an equivalent instant overload stress σOL′as shown in Fig.5 which results in the same plastic zone rOL′as that resulted from the combination effects of the actual instant overload and dwell time,rOL+rdt.

    Fig.5 Schematic representation of the load patterns for(a)cyclic loading with overload and dwell time and(b)the cyclic loading with an equivalent overload

    Then the equivalent stress intensity factor KOL′can be calculated from the following equation,

    Therefore,the crack growth rate for the load pattern of Fig.5(a)can be calculated by combining Eqs.(2),(8)and(10).Pattern C in Fig.1 is a special case of Fig.5(a)when its overload ratio is 1.0.

    Fig.6(a)Stress-strain curve of the material TC4 ELI used for test;(b)Results of creep strain versus time curve for normal creep of TC4 ELI;(c)Crack growth rate of TC4 ELI under R=0;(d) Comparison between test data of crack growth rate versus cycles under basic loading with and without single overload(TC4 ELI,R=0,Overload ratio=2)

    In order to validate the model expressed by Eqs.(2),(8)and(10),a series of basic tests are conducted to obtain model parameters,including a standard tensile test,a standard normal creep test in room temperature on TC4 ELI and a normal crack growth test and a crack growth rate test under basic loading with a single overload are conducted.The results are shown in Figs.6(a)-(d).The crack growth test specimens were conducted using an MTS810 servo-hydraulic testing machine.Standard C-T specimens with dimensions of B=12.5 mm;W=100 mm were cut and machined from 90 mm-thick hot rolled thick plate at load ratio of 0.0 to obtain crack growth rate data.The relationship of strain versus time can be expressed by a power law model as Eq.(9).Another crack growth rate test is conducted on the same C-T specimen undercyclic loading with a period of dwell time at a=14.15 mm.Fig.7 shows the comparison between test data and prediction curve of crack growth rate versus cycles under basic loading with a cycle of 8h dwell time.It can be seen that the prediction model can reasonably reflect the effect of dwell time(Pattern C).

    In Pattern B,each cycle has a period of dwell time.It is assumed that the existence of the dwell time will result in a larger plastic zone than that in Pattern A.That means that the elastic-plastic behavior when deriving the nonlinear expression of Kmaxin Eq.(1)should be modified according to the description in McEvily(2001)[13],which introduced that the linear-elastic approach should be extended to include elastic-plastic behavior,i.e.,those cases where the crack-tip plastic zone size is large with respect to the crack length,by increasing the actual crack length,a,by one-half of the plastic zone size.And the Dugdale equation[14]for plastic zone size is adopted for modification. According to this theory,the parameter aimod()B can be written to,

    Fig.7 Comparison between test data and prediction curve of crack growth rate versus cycles under basic loading with a cycle of 8h dwell time(TC4 ELI,R=0)

    Then the expression of Kmaxfor pattern B can be expressed as follows,

    where a is calculated by Eq.(11)for pattern B.Therefore,as Kmaxcontains the dwell time effect,then the modified crack length including half of plastic zone for Pattern B will be larger than that for pattern A,which causes faster crack growth in Pattern B.Fig.8 is an example of crack growth rate curve predicted by the models introduced above.It can be obviously seen from the comparison that there will be clear retardation effect on crack growth due to a period of dwell time in a certain loading cycle and evident acceleration effect on crack growth under cyclic creep condition during the whole crack growth region.The effects on crack growth under Patterns B and C are opposite.For deep sea manned submersibles under normal circumstances,there will be a period of operation time beneath the sea in each diving cycle,then the loading condition is generally close to Pattern B in common sense.Therefore,the acceleration effect due to dwell time existence in each cycle(cyclic creep condition)must be considered when service life estimation of the pressure hull is conducted while the traditional low-cycle fatigue life prediction approach based on damage accumulation theory is too risky.

    Fig.8 Comparison between the prediction results of crack growth rate curves for Patterns A,B and C

    2 Summary and conclusions

    With the improvement of safety requirement of the deep sea manned submersibles,the fatigue life estimation of pressure hull attracts more attention.In order to obtain a better understanding of the loading condition effect on the fatigue life of the deep sea pressure hull,the crack growth rates of a beta-annealed titanium alloy TC4 ELI used for deep sea pressure hull is theoretically analyzed in this paper.The following conclusions can be drawn:

    (1)Suppose that a short period of dwell time will not induce crack propagation but just result in a monotonic plastic zone,a model for calculating the effect of overload followed by a period of dwell time in a certain load cycle is proposed based on the crack growth rate model considering one single overload.Accordingly,the separate dwell time effect is regarded as a special case of above condition and the corresponding retardation effect can be taken into account.

    (2)When dwell time exists in each load cycle,the change of the plastic zone due to dwell time above the normal cyclic plastic zone should be considered,which directly extends the modified crack length during the calculation of nonlinear stress intensity factor and then causes the acceleration effect on crack growth.The effect is just opposite to that under the load condition with a single dwell time period,but not in contradiction with each other in theory. The acceleration effect due to dwell time existence in each cycle must be considered when service life estimation of the pressure hull is conducted while the traditional low-cycle fatigue life prediction approach based on damage accumulation theory is too risky.

    (3)The crack growth rate prediction model under the three load patterns is compared.In order to validate the theoretical assumption,a series of crack growth tests under cyclic triangular loading form with a period of overload and dwell time in the stable crack growth regionhave been conducted.These test results have validated the new crack growth rate prediction model,which will provide a basis for developing a proper life estimation method of deep sea manned submersibles.

    Acknowledgments

    This work is supported by the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deepsea Manned Submersibles’(Grant No.51439004),the Scientific Innovation Program Project of‘Key Technology Research and Experimental Validation of Deep Manned Submersible’by the Shanghai Committee of Science and Technology(Grant No.14DZ1205500),Project of Shanghai Engineering Research Center of Hadal Science and Technology(Grant No.14DZ2250900),and the National Hi-tech Research and Development Plan(863 Plan)Project of China(Grant No.2014AA09A110).

    [1]ABS.Rules for building and classing underwater vehicles,systems and hyperbaric facilities[S].2010.

    [2]Pan B B,Cui W C.An overview of buckling and ultimate strength of pressure hull under external pressure[J].Marine Structures,2010,23(3):227-240.

    [3]Munz D,Bachmann V.Effect of hold time and environment on fatigue crack growth rate in Ti alloys[J].Materialwissenschaft und Werkstofftechnik,1980,11(5):168-172.

    [4]McEvily A J,Bao H,Ishihara S.A modified constitutive relation for fatigue crack growth[C]//Proceedings of the seventh International Fatigue Congress(Fatigue’99).ed.Wu X R and Wang Z G,Beijing,China,Higher Education Press,1999: 329-336.

    [5]Sadananda K,Vasudevan A K.Fatigue crack growth mechanisms in steels[J].International Journal of Fatigue,2003,25 (9):899-914.

    [6]Zhao J,Mo T,Nie D F,Ren M F,Guo X L,Chen W X.Acceleration and retardation of fatigue crack growth rate due to room temperature creep at crack tip in a 304 stainless steel[J].Journal of Materials Science,2006,41(19):6431-6434.

    [7]Wakai T,Poussard C,Drubay B.A comparison between Japanese and French A16 defect assessment procedures for creepfatigue crack growth[J].Nuclear Engineering and Design,2003,224(3):245-252.

    [8]Cui W C,Wang F,Huang X P.A unified fatigue life prediction method for marine structures[J].Marine Structures,2011, 24(2):153-181.

    [9]Newman J.A crack opening stress equation for fatigue crack growth[J].International Journal of Fracture,1984,24(4): R131-R135.

    [10]Liu Q,Wang F,Huang X P,Cui W C.Three dimensional FE analysis of the plastic zone size near the crack tip[J].Journal of Ship Mechanics,2006,10(5):90-99.

    [11]Voorwald H J C,Torres M A S,Pinto Júnior C C E.Modelling of fatigue crack growth following overloads[J].International Journal of Fatigue,1991,13(5):423-427.

    [12]Dowling N E.Mechanical behavior of materials:engineering methods for deformation,fracture,and fatigue[M].Prentice Hall,1993.

    [13]McEvily A,Ishihara S.On the dependence of the rate of fatigue crack growth on theparameter[J].International Journal of Fatigue,2001,23:115-120.

    [14]Dugdale D S.Yielding of steel sheets containing slits[J].Journal of the Mechanics and Physics of Solids,1960,8:100-104.

    高強(qiáng)度鈦合金深潛器載人艙在三種不同類型載荷下的裂紋擴(kuò)展預(yù)報

    王 芳1,王瑩瑩2,3,崔維成1

    (1.上海海洋大學(xué) 海洋科學(xué)學(xué)院 上海深淵科學(xué)工程技術(shù)研究中心,上海 201306;2.中國船舶科學(xué)研究中心,江蘇 無錫 214082;3.中國船舶科學(xué)研究中心 深海載人裝備國家重點實驗室,江蘇 無錫 214082)

    隨著安全性要求的提高,深潛器耐壓艙的疲勞壽命評估變得越來越重要。對于耐壓艙,在其服役期間經(jīng)歷的載荷歷程包括擾動疲勞載荷和相對穩(wěn)定的蠕變載荷,目前尚未有公認(rèn)合適的模型來描述這一載荷譜歷程。傳統(tǒng)疲勞壽命預(yù)報方法通常忽略蠕變效應(yīng)導(dǎo)致疲勞壽命預(yù)測較大的不確定性。為了更清楚地理解這一機(jī)理,該文對深潛器耐壓艙用β-退火鈦合金TC4 ELI的裂紋擴(kuò)展率進(jìn)行了理論分析,分別引入了三種類型載荷作用下的裂紋擴(kuò)展率模型。并開展了在包含過載和保載載荷的一系列循環(huán)三角載荷下的疲勞裂紋擴(kuò)展試驗,對理論模型進(jìn)行了驗證,為合理評估深海載人潛水器的疲勞壽命提供了基礎(chǔ)。

    深潛器耐壓艙;疲勞裂紋擴(kuò)展;蠕變;保載時間

    U661.4

    A

    王 芳(1979-),女,上海海洋大學(xué)副研究員;

    U661.4

    A

    10.3969/j.issn.1007-7294.2016.06.006

    1007-7294(2016)06-0699-11

    王瑩瑩(1983-),女,中國船舶科學(xué)研究中心博士研究生;

    崔維成(1963-),男,上海海洋大學(xué)教授,博士生導(dǎo)師。

    Received date:2016-04-22

    Founded item:Supported by the State Key Program of National Natural Science of China‘Structural Reliability Analysis on the Spherical Hull of Deepsea Manned Submersibles’(Grant No.51439004);The Scientific Innovation Program Project of‘Key Technology Research and Experimental Validation of Deep Manned Submersible’by the Shanghai Committee of Science and Technology(Grant No. 14DZ1205500);Project of Shanghai Engineering Research Center of Hadal Science and Technology (Grant No.14DZ2250900);The National Hi-tech Research and Development Plan(863 Plan)Project of China(Grant No.2014AA09A110)

    Biography:WANG Fang(1979-),female,associate professor;WANG Ying-ying(1983-),female,Ph.D.student, E-mail:yunbeidou@yeah.net;CUI Wei-cheng(1963-),male,professor/tutor.

    猜你喜歡
    海洋大學(xué)耐壓科學(xué)研究
    歡迎訂閱《林業(yè)科學(xué)研究》
    環(huán)肋對耐壓圓柱殼碰撞響應(yīng)的影響
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    鈦合金耐壓殼在碰撞下的動力屈曲數(shù)值模擬
    中國海洋大學(xué)作品選登
    紡織科學(xué)研究
    耐壓軟管在埋地管道腐蝕治理中的研究與應(yīng)用
    新型裝卸軟管耐壓試驗方法探討
    中國海洋大學(xué) 自主招生,讓我同時被兩所211大學(xué)錄取
    成年免费大片在线观看| 日韩欧美精品免费久久| 精品人妻视频免费看| av.在线天堂| 18+在线观看网站| 亚洲av成人精品一区久久| 九九爱精品视频在线观看| 国产美女午夜福利| 女人十人毛片免费观看3o分钟| 菩萨蛮人人尽说江南好唐韦庄 | 国产熟女欧美一区二区| 国产免费男女视频| 亚洲人成网站高清观看| 国产一级毛片在线| 能在线免费观看的黄片| 欧美xxxx黑人xx丫x性爽| 国产视频首页在线观看| 校园人妻丝袜中文字幕| 男女下面进入的视频免费午夜| 亚洲精品久久久久久婷婷小说 | 久久这里只有精品中国| 日产精品乱码卡一卡2卡三| 久久热精品热| 在线观看66精品国产| kizo精华| 免费人成在线观看视频色| 久久久a久久爽久久v久久| 成人鲁丝片一二三区免费| 欧美色视频一区免费| 97热精品久久久久久| 一夜夜www| 淫秽高清视频在线观看| 久久久久精品久久久久真实原创| 深夜a级毛片| 麻豆久久精品国产亚洲av| 人人妻人人澡人人爽人人夜夜 | 国产视频内射| 1024手机看黄色片| 好男人视频免费观看在线| 九九热线精品视视频播放| 久久精品夜夜夜夜夜久久蜜豆| 波多野结衣高清无吗| 精品酒店卫生间| 国产午夜精品论理片| 18+在线观看网站| 欧美97在线视频| 高清在线视频一区二区三区 | 波多野结衣巨乳人妻| 日韩欧美国产在线观看| 建设人人有责人人尽责人人享有的 | 午夜视频国产福利| 蜜桃亚洲精品一区二区三区| 好男人视频免费观看在线| 我要搜黄色片| 噜噜噜噜噜久久久久久91| 男女边吃奶边做爰视频| 五月玫瑰六月丁香| 免费电影在线观看免费观看| 国产精品av视频在线免费观看| 日产精品乱码卡一卡2卡三| 日本与韩国留学比较| 日本免费一区二区三区高清不卡| 成人亚洲欧美一区二区av| 国产探花极品一区二区| av专区在线播放| 国产综合懂色| 欧美成人午夜免费资源| 久99久视频精品免费| 午夜爱爱视频在线播放| 热99re8久久精品国产| 国产精品嫩草影院av在线观看| 日韩av在线大香蕉| 精品免费久久久久久久清纯| 嫩草影院新地址| 欧美性猛交黑人性爽| 亚洲av成人av| 美女国产视频在线观看| 男女下面进入的视频免费午夜| 国产一区二区三区av在线| 午夜福利网站1000一区二区三区| 九九在线视频观看精品| 国产亚洲精品av在线| 啦啦啦观看免费观看视频高清| av在线老鸭窝| 在线播放国产精品三级| 亚洲美女搞黄在线观看| 精品99又大又爽又粗少妇毛片| 亚洲精品456在线播放app| 在线免费观看不下载黄p国产| 午夜福利在线观看吧| 欧美性猛交╳xxx乱大交人| 国产高清国产精品国产三级 | 日日撸夜夜添| 国产伦精品一区二区三区视频9| 26uuu在线亚洲综合色| 久久国产乱子免费精品| 久久久午夜欧美精品| 国产三级中文精品| 1000部很黄的大片| 一区二区三区高清视频在线| 国产成人精品久久久久久| 国内精品一区二区在线观看| 亚洲不卡免费看| 亚洲综合精品二区| 久久精品夜色国产| 卡戴珊不雅视频在线播放| 日本色播在线视频| 久久精品夜夜夜夜夜久久蜜豆| 中文欧美无线码| 国产av在哪里看| 午夜日本视频在线| 大话2 男鬼变身卡| 看十八女毛片水多多多| 国产在线男女| 男女那种视频在线观看| 亚洲精品456在线播放app| 久久精品国产亚洲网站| 午夜福利视频1000在线观看| 久久久久久久久大av| 亚洲电影在线观看av| 熟妇人妻久久中文字幕3abv| 久久久久久久国产电影| 啦啦啦啦在线视频资源| 青春草国产在线视频| 亚洲四区av| 国产精品久久久久久av不卡| 一区二区三区四区激情视频| 综合色丁香网| 中国国产av一级| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品电影| 成人三级黄色视频| 亚洲自拍偷在线| 国产三级在线视频| 国产高潮美女av| 插逼视频在线观看| 九草在线视频观看| 国产伦在线观看视频一区| 午夜视频国产福利| 国产欧美日韩精品一区二区| 九九爱精品视频在线观看| 色尼玛亚洲综合影院| 欧美另类亚洲清纯唯美| 国产综合懂色| 欧美97在线视频| 看片在线看免费视频| 日韩欧美在线乱码| 国产伦一二天堂av在线观看| 内射极品少妇av片p| 大香蕉久久网| 国产av码专区亚洲av| 男的添女的下面高潮视频| 在线观看av片永久免费下载| 亚洲电影在线观看av| 纵有疾风起免费观看全集完整版 | 久久精品国产99精品国产亚洲性色| 青春草国产在线视频| 人妻系列 视频| 18禁动态无遮挡网站| 国产成人a区在线观看| 精品久久久久久久人妻蜜臀av| 国产又色又爽无遮挡免| 内射极品少妇av片p| 免费看光身美女| 白带黄色成豆腐渣| 国产精品1区2区在线观看.| 国产老妇女一区| 人妻夜夜爽99麻豆av| 日韩一本色道免费dvd| 国产精品福利在线免费观看| 26uuu在线亚洲综合色| 国产成人免费观看mmmm| 国产成年人精品一区二区| 久久久久久久午夜电影| 偷拍熟女少妇极品色| 亚洲av熟女| 美女内射精品一级片tv| 99久久精品国产国产毛片| 国产麻豆成人av免费视频| 秋霞在线观看毛片| 少妇人妻精品综合一区二区| 免费在线观看成人毛片| 久久久久久久国产电影| 国产亚洲av片在线观看秒播厂 | 卡戴珊不雅视频在线播放| 午夜福利视频1000在线观看| 欧美xxxx性猛交bbbb| 日本黄色片子视频| 在线播放国产精品三级| 啦啦啦韩国在线观看视频| 国产午夜精品一二区理论片| 欧美人与善性xxx| 一级黄色大片毛片| 国产成人精品久久久久久| 久久99精品国语久久久| 精品久久久久久久久亚洲| 亚洲怡红院男人天堂| АⅤ资源中文在线天堂| 免费观看性生交大片5| 日本黄色视频三级网站网址| 国产午夜福利久久久久久| 日产精品乱码卡一卡2卡三| av免费观看日本| 国产高清视频在线观看网站| 欧美一区二区亚洲| 能在线免费看毛片的网站| 午夜激情福利司机影院| 精品久久久久久成人av| 黄色欧美视频在线观看| kizo精华| 欧美最新免费一区二区三区| 午夜福利网站1000一区二区三区| 国产极品天堂在线| www日本黄色视频网| 久久久久久久久大av| 国产高清国产精品国产三级 | 69av精品久久久久久| 国内精品宾馆在线| 久久草成人影院| 国产欧美日韩精品一区二区| 国产伦在线观看视频一区| 亚洲国产高清在线一区二区三| 五月伊人婷婷丁香| 久久人人爽人人爽人人片va| 最近中文字幕高清免费大全6| 亚洲国产最新在线播放| 一级黄片播放器| 丝袜喷水一区| 日韩在线高清观看一区二区三区| 一级黄色大片毛片| 国产午夜精品久久久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 成人漫画全彩无遮挡| 国产精华一区二区三区| 建设人人有责人人尽责人人享有的 | 亚洲欧美精品专区久久| 爱豆传媒免费全集在线观看| 青青草视频在线视频观看| 简卡轻食公司| 国产久久久一区二区三区| 天堂av国产一区二区熟女人妻| 伦理电影大哥的女人| 日韩一本色道免费dvd| 色吧在线观看| 99九九线精品视频在线观看视频| 日韩欧美精品免费久久| 男人狂女人下面高潮的视频| 久久人妻av系列| 日韩,欧美,国产一区二区三区 | 午夜老司机福利剧场| 美女高潮的动态| 大又大粗又爽又黄少妇毛片口| 看十八女毛片水多多多| 国产亚洲5aaaaa淫片| 免费av毛片视频| 久久精品久久精品一区二区三区| 免费黄色在线免费观看| 亚洲在线观看片| 亚洲av二区三区四区| 亚洲精品自拍成人| 久久久成人免费电影| 欧美性猛交╳xxx乱大交人| 国产真实乱freesex| 日韩欧美在线乱码| 国产精品一区二区性色av| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| 国产成人aa在线观看| 国产在视频线在精品| 亚洲成av人片在线播放无| 亚洲电影在线观看av| 日本午夜av视频| 成人特级av手机在线观看| 男插女下体视频免费在线播放| 女人被狂操c到高潮| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久久免费av| 日韩欧美精品v在线| 国产黄a三级三级三级人| 18禁在线无遮挡免费观看视频| 婷婷色av中文字幕| 国产在线男女| 国产极品精品免费视频能看的| 精品国产三级普通话版| 听说在线观看完整版免费高清| 欧美色视频一区免费| 高清在线视频一区二区三区 | 久久热精品热| 亚洲精品乱久久久久久| 亚洲婷婷狠狠爱综合网| 久久久久久久国产电影| 国产伦一二天堂av在线观看| 久久久亚洲精品成人影院| 亚洲国产欧美在线一区| 亚洲婷婷狠狠爱综合网| 中文字幕制服av| 国产又色又爽无遮挡免| 男的添女的下面高潮视频| 国产成年人精品一区二区| 一个人观看的视频www高清免费观看| 成人二区视频| 久久久久免费精品人妻一区二区| 日韩一本色道免费dvd| 中文精品一卡2卡3卡4更新| 丝袜美腿在线中文| 超碰97精品在线观看| 日韩在线高清观看一区二区三区| 日韩一本色道免费dvd| 国产精品一区二区三区四区久久| 国产成人a∨麻豆精品| 国产午夜精品论理片| 日本五十路高清| 九九热线精品视视频播放| 水蜜桃什么品种好| 麻豆一二三区av精品| 日韩av在线免费看完整版不卡| 精品久久久久久久久av| 简卡轻食公司| 免费一级毛片在线播放高清视频| 亚洲av日韩在线播放| 精品久久久久久久久av| 国产精品一区www在线观看| 免费观看精品视频网站| 国产高潮美女av| 精品久久国产蜜桃| 欧美色视频一区免费| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 亚洲国产欧美在线一区| 国产精华一区二区三区| 国产免费又黄又爽又色| 身体一侧抽搐| 少妇的逼好多水| 在线免费十八禁| 国产精品野战在线观看| 国产三级中文精品| 成人漫画全彩无遮挡| 欧美丝袜亚洲另类| 尾随美女入室| 国产真实伦视频高清在线观看| 免费观看人在逋| 99久国产av精品| h日本视频在线播放| 亚洲av男天堂| 国产亚洲精品久久久com| 国产探花在线观看一区二区| 成人毛片a级毛片在线播放| 中文精品一卡2卡3卡4更新| 简卡轻食公司| 小蜜桃在线观看免费完整版高清| 深夜a级毛片| 欧美zozozo另类| 日本三级黄在线观看| 欧美日韩综合久久久久久| 丰满人妻一区二区三区视频av| 国产淫片久久久久久久久| 久久精品熟女亚洲av麻豆精品 | 国产成人精品一,二区| 两个人的视频大全免费| 国产精品一区二区三区四区久久| 精品欧美国产一区二区三| 大又大粗又爽又黄少妇毛片口| 大话2 男鬼变身卡| 九色成人免费人妻av| 国产人妻一区二区三区在| av专区在线播放| 婷婷色麻豆天堂久久 | 免费人成在线观看视频色| 天堂中文最新版在线下载 | 一个人观看的视频www高清免费观看| 中文字幕制服av| 看十八女毛片水多多多| 久久99热这里只有精品18| 男女视频在线观看网站免费| 尤物成人国产欧美一区二区三区| 欧美日韩综合久久久久久| 日日撸夜夜添| 男人和女人高潮做爰伦理| 免费一级毛片在线播放高清视频| 日韩精品青青久久久久久| 嫩草影院精品99| 蜜桃亚洲精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看| 婷婷色综合大香蕉| 精品久久久久久久末码| 日韩欧美国产在线观看| 国内精品美女久久久久久| 中文字幕熟女人妻在线| 嘟嘟电影网在线观看| 欧美日韩一区二区视频在线观看视频在线 | 男的添女的下面高潮视频| 噜噜噜噜噜久久久久久91| 婷婷色av中文字幕| 国产白丝娇喘喷水9色精品| 国产精品一及| 精品人妻熟女av久视频| 欧美+日韩+精品| 欧美bdsm另类| 大香蕉97超碰在线| 亚洲精华国产精华液的使用体验| 黄片wwwwww| 99久久精品国产国产毛片| 看黄色毛片网站| 黄片wwwwww| 日本一二三区视频观看| 中文字幕av在线有码专区| 美女大奶头视频| 男插女下体视频免费在线播放| 免费一级毛片在线播放高清视频| 97人妻精品一区二区三区麻豆| 狠狠狠狠99中文字幕| 又爽又黄a免费视频| 日韩一本色道免费dvd| 搡老妇女老女人老熟妇| 国产又黄又爽又无遮挡在线| av在线蜜桃| av在线天堂中文字幕| 午夜福利成人在线免费观看| 插逼视频在线观看| 高清av免费在线| 一级av片app| 小说图片视频综合网站| 久久久久久久午夜电影| 久久久久久久国产电影| 亚洲电影在线观看av| 丰满乱子伦码专区| 亚洲人成网站在线播| 国产午夜福利久久久久久| 中国国产av一级| 尤物成人国产欧美一区二区三区| 纵有疾风起免费观看全集完整版 | 国产女主播在线喷水免费视频网站 | 身体一侧抽搐| 噜噜噜噜噜久久久久久91| 久久精品国产亚洲av天美| 大话2 男鬼变身卡| 我要搜黄色片| 国产综合懂色| 国产 一区精品| 国语对白做爰xxxⅹ性视频网站| 看黄色毛片网站| 欧美高清性xxxxhd video| 麻豆久久精品国产亚洲av| 乱人视频在线观看| 中文在线观看免费www的网站| 亚洲第一区二区三区不卡| 我要看日韩黄色一级片| 内地一区二区视频在线| 精品熟女少妇av免费看| 久久综合国产亚洲精品| 国产高清三级在线| 深夜a级毛片| 国产精品嫩草影院av在线观看| 亚洲无线观看免费| 菩萨蛮人人尽说江南好唐韦庄 | 精品人妻一区二区三区麻豆| 男女啪啪激烈高潮av片| 99国产精品一区二区蜜桃av| 可以在线观看毛片的网站| eeuss影院久久| 一区二区三区乱码不卡18| 亚洲av成人精品一区久久| av在线老鸭窝| 内地一区二区视频在线| 特大巨黑吊av在线直播| 老女人水多毛片| 国产精品综合久久久久久久免费| 亚洲欧洲国产日韩| 中文字幕精品亚洲无线码一区| 女人久久www免费人成看片 | 久久久久久久亚洲中文字幕| 久久国产乱子免费精品| 日本欧美国产在线视频| 欧美+日韩+精品| 国产亚洲91精品色在线| 久久久久久久国产电影| 男人舔奶头视频| 亚洲综合精品二区| 少妇熟女aⅴ在线视频| 久久久久久国产a免费观看| 尤物成人国产欧美一区二区三区| 日韩欧美精品v在线| 能在线免费观看的黄片| 高清午夜精品一区二区三区| 日本av手机在线免费观看| 亚洲丝袜综合中文字幕| 久久这里只有精品中国| 久久精品久久久久久久性| 欧美一区二区精品小视频在线| 91精品伊人久久大香线蕉| 国产亚洲精品av在线| 国产精品一区二区三区四区久久| 亚洲一区高清亚洲精品| 久久久久久九九精品二区国产| 一区二区三区乱码不卡18| 亚洲最大成人中文| 国产视频首页在线观看| 亚洲在线观看片| 国产精品久久久久久精品电影| 女人被狂操c到高潮| 日韩av不卡免费在线播放| 国产在视频线精品| 大香蕉久久网| 一级毛片久久久久久久久女| 青春草视频在线免费观看| 久久这里只有精品中国| 又爽又黄无遮挡网站| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 天天一区二区日本电影三级| 国产一区二区亚洲精品在线观看| 99热这里只有是精品50| 搡女人真爽免费视频火全软件| 三级毛片av免费| 国产女主播在线喷水免费视频网站 | 日本午夜av视频| 成人二区视频| 精品人妻偷拍中文字幕| 亚洲va在线va天堂va国产| 国内精品一区二区在线观看| 免费看美女性在线毛片视频| 夜夜爽夜夜爽视频| 美女国产视频在线观看| 如何舔出高潮| 国产午夜精品久久久久久一区二区三区| 水蜜桃什么品种好| 国产午夜福利久久久久久| 国产精品久久久久久av不卡| 日韩国内少妇激情av| 日韩强制内射视频| 精品久久久噜噜| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 精品人妻视频免费看| 韩国av在线不卡| 日韩一本色道免费dvd| 欧美色视频一区免费| 美女脱内裤让男人舔精品视频| 69av精品久久久久久| 国产探花极品一区二区| 中国国产av一级| 国产午夜精品一二区理论片| 国产国拍精品亚洲av在线观看| 99热这里只有是精品50| 久久久久久久久大av| 在线播放国产精品三级| 久久精品夜夜夜夜夜久久蜜豆| 成人二区视频| 日本与韩国留学比较| 人妻系列 视频| 国产极品天堂在线| 亚洲欧美一区二区三区国产| 免费观看在线日韩| 亚洲va在线va天堂va国产| av福利片在线观看| 久久6这里有精品| 人妻制服诱惑在线中文字幕| 日韩成人av中文字幕在线观看| 亚洲国产日韩欧美精品在线观看| 国产精品日韩av在线免费观看| 可以在线观看毛片的网站| 国产av不卡久久| 亚洲三级黄色毛片| 日韩欧美三级三区| 高清在线视频一区二区三区 | 日日干狠狠操夜夜爽| 特级一级黄色大片| 日本av手机在线免费观看| 亚洲无线观看免费| 亚洲av电影在线观看一区二区三区 | 一区二区三区高清视频在线| 性色avwww在线观看| 精品不卡国产一区二区三区| av卡一久久| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 99视频精品全部免费 在线| 亚洲婷婷狠狠爱综合网| 亚洲经典国产精华液单| 亚洲aⅴ乱码一区二区在线播放| www.av在线官网国产| 日日干狠狠操夜夜爽| 99久久九九国产精品国产免费| 久久精品久久精品一区二区三区| 亚洲最大成人中文| 一级二级三级毛片免费看| 国产午夜精品一二区理论片| 久久精品综合一区二区三区| 国产欧美日韩精品一区二区| 九色成人免费人妻av| 中文在线观看免费www的网站| av免费在线看不卡| 精品久久久噜噜| 久久精品影院6| 亚洲丝袜综合中文字幕| 国产精品三级大全| a级一级毛片免费在线观看| 欧美一区二区国产精品久久精品| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 亚洲国产日韩欧美精品在线观看| 国产成人精品婷婷| 夜夜爽夜夜爽视频| 色哟哟·www| 97超碰精品成人国产| 少妇裸体淫交视频免费看高清| 91狼人影院| 丝袜美腿在线中文| 老司机影院毛片| 日本欧美国产在线视频| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器| 男人舔奶头视频| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看|