江浩然 荊國(guó)杰
[摘要] 替莫唑胺(Temozolomide,TMZ)作為一種新型烷化劑藥物對(duì)各種實(shí)體性腫瘤有著明顯的抗腫瘤作用,其中在膠質(zhì)瘤的治療中,其作為一線用藥更是有著不可取代的地位。替莫唑胺能夠?qū)蚪MDNA造成損傷,從而殺傷腫瘤細(xì)胞,但是這種損傷能被O6-甲基鳥嘌呤-DNA 甲基轉(zhuǎn)移酶(O6-methylguanine DNA methyltranferase,MGMT)所修復(fù),從而造成化療耐藥,直接影響替莫唑胺的殺傷腫瘤的作用。本綜述主要敘述了近期在本領(lǐng)域中最新的針對(duì)MGMT增敏替莫唑胺的研究。
[關(guān)鍵詞] 膠質(zhì)瘤;MGMT;TMZ;增敏
[中圖分類號(hào)] R739.4 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-9701(2016)06-0165-04
Strategies to improve the sensibility of temozolomide in glioma treatment:Targeting the protein MGMT
JIANG Haoran JING Guojie
Department of Neurosurgery, the First People's Hospital of Huizhou City, Affiliated to Guangdong Medical College,Huizhou 516003,China
[Abstract] Alkylating agents such as temozolomide(TMZ)are effective anticancer drugs for treating a variety of solid tumors. What's more,it has an irreplaceable position in glioma treatment as a first-line drugs.TMZ exerts its effects mainly via a cytotoxic DNA lesion. Unfortunately,this damage may be repaired by the DNA repair enzyme O6-methylguanine DNA methyltransferase(MGMT), a key player in the resistance of cancers to TMZ. In this review, we provide an overview of recent advances about improving the killing of tumor cells by TMZ, with inhibition of MGMT being the most promising.
[Key words] Glioma; MGMT; TMZ; Sensibilization
腦膠質(zhì)瘤是中樞神經(jīng)系統(tǒng)最常見的原發(fā)惡性腫瘤,約占所有原發(fā)顱內(nèi)腫瘤的33.7%,主要治療方式是以手術(shù)、放療和化療為主的綜合治療。但其預(yù)后并不如想象的樂(lè)觀,特別是在惡性腦膠質(zhì)瘤中、其對(duì)于常規(guī)放療及化療有高度抵抗性,即便術(shù)后行TMZ同期放化療,膠質(zhì)母細(xì)胞瘤患者的中位生存期也僅由12.1個(gè)月提高到14.6個(gè)月,5年生存率僅為9.8%[1]。除自身生物學(xué)特性及血腦屏障的原因以外,導(dǎo)致惡性腦膠質(zhì)瘤治療瓶頸的重要原因之一就是化療耐藥,所以增強(qiáng)化療藥物在治療腦膠質(zhì)瘤的作用是一個(gè)迫在眉睫的問(wèn)題。
在替莫唑胺上市之前的幾十年間,亞硝脲類藥物已經(jīng)作為治療惡性膠質(zhì)瘤的一線藥物廣泛應(yīng)用,然而由于其骨髓抑制等毒性較為嚴(yán)重,加之療效不明顯,化療在膠質(zhì)瘤治療中的地位一直沒(méi)有得到重視。替莫唑胺作為新一代抗腫瘤藥物,它的口服生物利用率接近100%,并且能透過(guò)血腦屏障,滲透至包括大腦的人體各個(gè)組織[2,3]。能夠有效延長(zhǎng)惡性膠質(zhì)瘤患者的中位無(wú)進(jìn)展生存時(shí)間(progression free survival,PFS)及總生存時(shí)間(overall survival,OS)[4],但是與人類其他惡性腫瘤的化療效果相比,在膠質(zhì)瘤化療方面所取得的進(jìn)展仍不盡人意,目前研究表明,膠質(zhì)瘤細(xì)胞對(duì)化療藥物的抵抗作用的分子機(jī)制非常復(fù)雜,其中MGMT作為一種DNA損傷修復(fù)蛋白,是當(dāng)今研究的熱點(diǎn)[5]。為了有效改善TMZ的抗腫瘤作用,很多針對(duì)MGMT的方案不斷地被提出,包括偽底物療法、基因療法、抗癲癇藥物療法和病毒療法等。
1 MGMT在替莫唑胺治療膠質(zhì)瘤中的角色
TMZ是一種烷化劑藥物,主要通過(guò)在DNA水平O6鳥嘌呤的位置添加一個(gè)甲基基團(tuán)導(dǎo)致胸腺嘧啶與O6甲基鳥嘌呤(O6-meG)的結(jié)合替代了原來(lái)的胞嘧啶殘基,從而導(dǎo)致DNA復(fù)制停滯,誘導(dǎo)細(xì)胞凋亡[6]。而MGMT作為一種DNA損傷修復(fù)蛋白,是TMZ化療耐藥關(guān)鍵的因素,科學(xué)家們多年來(lái)對(duì)此做了很多的研究,發(fā)現(xiàn)糖皮質(zhì)激素、AMP、蛋白酶C和DNA的損傷都會(huì)促進(jìn)轉(zhuǎn)錄因子特異性蛋白1,激活蛋白1,2與MGMT啟動(dòng)子的結(jié)合,使其表達(dá)增加[7]。研究表明,MGMT的過(guò)表達(dá)以及啟動(dòng)子甲基化使腫瘤細(xì)胞更有效抵抗TMZ藥物的毒性,這表明MGMT與腫瘤藥物化療抵抗有密切的關(guān)系,并且與患者預(yù)后有直接的關(guān)系[8]。MGMT可以通過(guò)去除甲基化基團(tuán)來(lái)修復(fù)由TMZ造成的DNA損傷,但是一分子MGMT只能修復(fù)一個(gè)DNA損傷,所以當(dāng)過(guò)量的DNA損傷出現(xiàn),MGMT就會(huì)完全耗盡[9]。O6-meG 殘基如果不能被修復(fù),將會(huì)引起O6-meG:C在DNA復(fù)制后轉(zhuǎn)換突變成了O6-meG:T[10]。錯(cuò)配修復(fù)系統(tǒng)復(fù)合體MutSα and MutLα對(duì)O6-meG:T這樣的錯(cuò)配馬上便能發(fā)現(xiàn),且其對(duì)它有很強(qiáng)的親和力[11],迅速激活整個(gè)錯(cuò)配修復(fù)系統(tǒng),從而導(dǎo)致細(xì)胞分裂合成期及其后的細(xì)胞分裂的第二間隙期的停滯不前[12]。MGMT介導(dǎo)的修復(fù)功能在DNA修復(fù)通路中是單一的,首先、其并沒(méi)有與其他蛋白或者細(xì)胞因子共同發(fā)揮作用;其二、將烷基基團(tuán)轉(zhuǎn)移到蛋白質(zhì)內(nèi)部的胞嘧啶殘基,即作為烷基基團(tuán)的轉(zhuǎn)運(yùn)體和受體,當(dāng)從鳥嘌呤那里接收到烷基,馬上失活,所以,是一個(gè)自殺性蛋白[13]??偟膩?lái)說(shuō),通過(guò)調(diào)節(jié)MGMT的表達(dá)能夠有效改善烷基化藥物的化療作用。
2 針對(duì)MGMT增敏TMZ的治療方案
2.1 MGMT偽底物聯(lián)合TMZ
O6芐基(O6-benzylguanine,O6-BG)是應(yīng)用廣泛的MGMT抑制劑,它有效使MGMT失活,增強(qiáng)TMZ在治療人腦膠質(zhì)瘤中的抑制腫瘤生長(zhǎng)作用[14]。Koch等發(fā)現(xiàn),術(shù)中切除腦腫瘤后輔以顱內(nèi)局部使用O6-BG聯(lián)合TMZ規(guī)范化治療,與復(fù)發(fā)膠質(zhì)母細(xì)胞瘤的患者短暫的腫瘤穩(wěn)態(tài)有明顯關(guān)系,且并沒(méi)有明顯的副作用[15]。隨后在很多不同腫瘤的領(lǐng)域,如腦腫瘤、黑色素瘤、淋巴瘤、結(jié)腸癌和結(jié)腸,O6-BG 聯(lián)合TMZ的一期及二期臨床試驗(yàn)不斷完成,后面二期和三期的臨床試驗(yàn)不斷地進(jìn)行[16,17]。喜人的是,Quinn等[18]隨后進(jìn)行二期臨床研究,發(fā)現(xiàn)O6-BG聯(lián)合TMZ確實(shí)能延長(zhǎng)患者的生存時(shí)間。預(yù)示著O6-BG在腦膠質(zhì)瘤治療中是一個(gè)很有前景的治療策略。
2.2 抗癲癇藥物聯(lián)合TMZ
癲癇是腦膠質(zhì)瘤患者常見的伴隨癥狀,抗癲癇藥物在膠質(zhì)瘤患者中使用頻率非常高,而丙戊酸鈉與左乙拉西坦都是臨床上使用非常廣泛的抗癲癇藥物。①丙戊酸鈉在體外實(shí)驗(yàn)中發(fā)現(xiàn),聯(lián)合TMZ能顯著增強(qiáng)TMZ對(duì)細(xì)胞增殖抑制的作用,且明顯降低MGMT的表達(dá)[19]。丙戊酸鈉在動(dòng)物實(shí)驗(yàn)中聯(lián)合TMZ效果依然顯著,Hosein等[20]在裸鼠實(shí)驗(yàn)中發(fā)現(xiàn)丙戊酸鈉聯(lián)合TMZ能明顯延長(zhǎng)裸鼠的生存期,同時(shí)Krauze[21]在臨床試驗(yàn)中,同樣發(fā)現(xiàn)該方案也能顯著延長(zhǎng)患者的PFS及OS。②左乙拉西坦是抗癲癇藥物中最有效的MGMT抑制劑,具有多種MGMT調(diào)節(jié)作用。在體外實(shí)驗(yàn)中,治療癲癇劑量范圍的能下調(diào)MGMT蛋白的量和其mRNA的表達(dá),有效增敏TMZ。其機(jī)制主要通過(guò)上調(diào)突變型P53,P53就是一個(gè)通過(guò)激活多種基因來(lái)治療膠質(zhì)瘤的轉(zhuǎn)錄因子,它可以抑制細(xì)胞增殖,誘導(dǎo)凋亡和衰老,在DNA損傷應(yīng)答及修復(fù)過(guò)程中發(fā)揮很大的作用[22,23]。所以MGMT很有可能是由P53調(diào)節(jié)的,且P53的上調(diào)能抑制MGMT轉(zhuǎn)錄。最近有臨床試驗(yàn)證實(shí),左乙拉西坦聯(lián)合TMZ治療膠質(zhì)母細(xì)胞瘤患者中,能顯著延長(zhǎng)PFS及OS,這一結(jié)果或許會(huì)使左乙拉西坦聯(lián)合TMZ這一治療方案在臨床中廣泛應(yīng)用[24]。
2.3 基因療法聯(lián)合TMZ
目前基因治療模式大多專注于腫瘤抑制基因和抗腫瘤免疫反應(yīng)的調(diào)節(jié)。①β-干擾素(IFN-β)屬于一型干擾素,它表現(xiàn)出各種各樣的生物學(xué)作用,包括免疫調(diào)節(jié)作用、抗血管生成作用和直接的抗腫瘤作用。研究[25,26]發(fā)現(xiàn)IFN-β聯(lián)合TMZ在膠質(zhì)母細(xì)胞系及其干細(xì)胞樣細(xì)胞系中可以下調(diào)MGMT表達(dá)來(lái)提高TMZ對(duì)膠質(zhì)瘤細(xì)胞的抑制作用,隨后的臨床試驗(yàn)中發(fā)現(xiàn)該治療方案有效延長(zhǎng)OS,且得到核磁共振(MRI)圖像的支持[27]。②RNA干擾在人類腫瘤治療中被賦予很高的評(píng)價(jià),它能夠有效下調(diào)目的基因的表達(dá),達(dá)到抗腫瘤的目的。在體外實(shí)驗(yàn)中,Kato[28]用MGMT靶性siRNA處理細(xì)胞,再用TMZ規(guī)范化治療,使TMZ耐藥的細(xì)胞系重新煥發(fā)他們對(duì)TMZ的敏感性。然而,隨后有科學(xué)家用MGMT-siRNA聯(lián)合TMZ在大鼠與豬的顱內(nèi)成瘤模型中,發(fā)現(xiàn)siRNA聯(lián)合替莫唑胺在動(dòng)物試驗(yàn)中并未表現(xiàn)增敏TMZ的作用[29]。
2.4 病毒療法聯(lián)合TMZ
最新的研究表明[30],腺病毒和單純皰疹病毒等溶瘤病毒已經(jīng)作為一種新的治療方法在臨床使用,其中在膠質(zhì)瘤治療中也被重點(diǎn)研究。與其他化療藥物不同的是,溶瘤病毒并非造成膠質(zhì)瘤細(xì)胞的DNA損傷,而是通過(guò)控制或失活DNA修復(fù)系統(tǒng)來(lái)發(fā)揮抗腫瘤作用。同時(shí),溶瘤病毒在腫瘤細(xì)胞中有高度選擇性,其聯(lián)合TMZ對(duì)腫瘤也證實(shí)的殺傷作用遠(yuǎn)遠(yuǎn)大于正常細(xì)胞。另一方面,腫瘤細(xì)胞對(duì)TMZ的細(xì)胞應(yīng)答可以延遲腫瘤體積的增大,這使病毒提早釋放以致在腫瘤塊中更快地復(fù)制[31]。溶瘤病毒△-24-RGD在研究中發(fā)現(xiàn)能沉默MGMT啟動(dòng)子,聯(lián)合TMZ在膠質(zhì)瘤細(xì)胞系產(chǎn)生更好的殺傷作用,在隨后的裸鼠模型中,也證實(shí)能明顯延長(zhǎng)裸鼠的生存時(shí)間[32]。
2.5 其他
前期有很多研究發(fā)現(xiàn),41℃~42℃的高溫會(huì)直接導(dǎo)致腫瘤細(xì)胞死亡,有趣的是,這樣溫和的高溫的確能夠增加細(xì)胞毒性藥物的藥物作用[33,34]。最近有研究表明在黑色素瘤細(xì)胞系中,在一個(gè)預(yù)設(shè)的環(huán)境中,高溫可以明顯增強(qiáng)TMZ的抗腫瘤作用[35]。其機(jī)制很可能是經(jīng)過(guò)TMZ處理過(guò)的細(xì)胞系在高溫的環(huán)境下比在37℃的環(huán)境中所形成的O6-meG數(shù)量明顯增加。事實(shí)上,當(dāng)處理藥物移去后,在41.5℃高溫下,MGMT的復(fù)蘇明顯會(huì)延遲,導(dǎo)致MGMT修復(fù)DNA損傷的能力明顯下降。以上的這些發(fā)現(xiàn)預(yù)示著,高溫聯(lián)合TMZ的治療是一個(gè)非常有潛力的一個(gè)新方向。
3 結(jié)論
TMZ是一個(gè)對(duì)各種實(shí)體性腫瘤效果顯著的化療藥物,但是腫瘤對(duì)其耐藥性以不可預(yù)測(cè)的速度在發(fā)展,增敏替莫唑胺的研究迫在眉睫。TMZ化療耐藥其中一個(gè)重要機(jī)制就是MGMT的過(guò)表達(dá),MGMT的高表達(dá)與化療的效果呈明顯的反比關(guān)系。很多改善TMZ抗腫瘤作用的研究不斷被發(fā)現(xiàn),如偽底物療法、基因療法、抗癲癇藥物療法和病毒療法。但我們必須承認(rèn),盡管很多研究獲得很大的成功,但是其研究進(jìn)展大多停留在體外實(shí)驗(yàn)及動(dòng)物實(shí)驗(yàn)中,能夠到達(dá)臨床試驗(yàn)的研究少之又少。在研究中發(fā)現(xiàn),很多MGMT表達(dá)很低的細(xì)胞系依然對(duì)TMZ有明顯的耐藥作用,這表明還有更多的耐藥機(jī)制我們并未發(fā)現(xiàn),為闡明這些機(jī)制,我們?nèi)孕枳鞲嗟呐Α?/p>
[參考文獻(xiàn)]
[1] Stupp R,Mason WP,Van den Bent MJ,et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma[J]. N Engl J Med,2005,352(10):987-996.
[2] Middlemas DS,Stewart CF,Kirstein MN,et al. Biochemical correlates of temozolomide sensitivity in pediatric solid tumor xenograft models[J]. Clin Cancer Res,2000,6(3):998-1007.
[3] Plummer ER,Middleton MR,Jones C,et al. Temozolomide pharmacodynamics in patients with metastatic melanoma:DNA damage and activity of repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1[J].Clin Cancer Res,2005,11(9):3402-3409.
[4] Roos WP,Batista LF,Naumann SC,et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine[J]. Oncogene,2007, 26(2):186-197.
[5] Johannessen TC,Bjerkvig R. Molecular mechanisms of temozolomide resistance in glioblastoma multiforme[J]. Expert Rev Anticancer Ther, 2012,12(5):635-642.
[6] Roos WP,Batista LF,Naumann SC,et al. Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine[J]. Oncogene,2007, 26(2):186-197.
[7] Gerson SL. MGMT:Its role in cancer aetiology and cancer therapeutics[J]. Nat Rev Cancer,2004,4(4):296-307.
[8] Cen L,Carlson BL,Pokorny JL,et al. Efficacy of protracted temozolomide dosing is limited in MGMT unmethylated GBM xenograft models[J]. Neuro Oncol,2013,15(6):735-746.
[9] Sharma S,Salehi F,Scheithauer BW,et al. Role of MGMT in tumor development,progression,diagnosis,treatment and prognosis[J]. Anticancer Res,2009,29(10):3759-3768.
[10] Karran P,Bignami M. Self-destruction and tolerance in resistance of mammalian cells to alkylation damage[J]. Nucleic Acids Res,1992,20(12):2933-2940.
[11] Stojic L,Brun R,Jiricny J. Mismatch repair and DNA damage signalling[J]. DNA Repair(Amst),2004,3(8-9):1091-1101.
[12] Yoshioka K,Yoshioka Y,Hsieh P. ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts[J]. Mol Cell,2006, 22(4):501-510.
[13] Hegi ME,Liu L,Herman JG,et al. Correlation of O6-methylguanine methyltransferase(MGMT) promoter me-thylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity[J]. J Clin Oncol,2008,26(25):4189-4199.
[14] Lai IC,Shih PH,Yao CJ,et al. Elimination of cancer stem-like cells and potentiation of temozolomide sensitivity by Honokiol in glioblastoma multiforme cells[J]. PLoS One,2015,12(3):e0114830.
[15] Koch D,Hundsberger T,Boor S,et al. Local intracerebral administration of O(6)-benzylguanine combined with systemic chemotherapy with temozolomide of a patient suffering from a recurrent glioblastoma[J]. J Neurooncol,2007,82(1):85-89.
[16] Quinn JA,Jiang SX,Reardon DA,et al. Phase I trial of temozolomide plus O6-benzylguanine 5-day regimen with recurrent malignant glioma[J]. Neuro Oncol,2009,11(5):556-561.
[17] Verbeek B,Southgate TD,Gilham DE,et al. O6-Methylguanine DNA methyltransferase inactivation and che-motherapy[J]. Br Med Bull,2008,85:17-33.
[18] Quinn JA,Jiang SX,Carter J,et al. Phase II trial of Gliadel plus O6-benzylguanine in adults with recurrent glioblastoma multiforme[J]. Clin Cancer Res,2009,15(3):1064-1068.
[19] Ryu CH,Yoon WS,Park KY,et al. Valproic acid downregulates the expression of MGMT and sensitizes temozolomide-resistant glioma cells[J]. J Biomed Biotechnol,2012,2012:987495.
[20] Hosein AN,Lim YC,Day B,et al. The effect of valproic acid in combination with irradiation and temozolomide on primary human glioblastoma cells[J]. J Neurooncol,2015, 122(2):263-271.
[21] Krauze AV,Myrehaug SD,Chang MG,et al. A phase 2 study of concurrent radiation therapy,Temozolomide,and the histone deacetylase inhibitor valproic acid for patients with glioblastoma[J]. Int J Radiat Oncol Biol Phys,2015,92(5):986-992.
[22] Bobustuc GC,Baker CH,Limaye A,et al. Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide[J]. Neuro Oncol,2010, 12(9):917-927.
[23] Marchetti A,Cecchinelli B,D'Angelo M,et al. p53 can inhibit cell proliferation through caspase-mediated cleavage of ERK2/MAPK[J]. Cell Death Differ,2004,11(6):596-607.
[24] Kim YH,Kim T,Joo JD,et al. Survival benefit of levetiracetam in patients treated with concomitant chemoradiotherapy and adjuvant chemotherapy with temozolomide for glioblastoma multiforme[J]. Cancer,2015,121(17):2926-2932.
[25] Yoshino A,Ogino A,Yachi K,et al. Effect of IFN-beta on human glioma cell lines with temozolomide resistance[J].Int J Oncol,2009,35(1):139-148.
[26] Shen D,Guo CC,Wang J,et al. Interferon-alpha/beta enhances temozolomide activity against MGMT-positive glioma stem-like cells[J]. Oncol Rep,2015,34(5):2715-2721.
[27] Kawaji H,Tokuyama T,Yamasaki T,et al. Interferon-beta and temozolomide combination therapy for temozolomide monotherapy-refractory malignant gliomas[J]. Mol Clin Oncol,2015,3(4):909-913.
[28] Kato T,Natsume A,Toda H.,et al. Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozoomide in GBM-initiating cells[J]. Gene Ther,2010, 17(11):1363-1371.
[29] Tsujiuchi T,Natsume A,Motomura K,et al. Preclinical evaluation of and O(6)-methylguanine-DNA methyltransferase-siRNA/liposome complex administered by convection-enhanced delivery to rat and porcine brains[J].Am J Transl Res,2014,6(2):169-178.
[30] Gomez-Manzano C,F(xiàn)ueyo J. Oncolytic adenoviruses for the treatment of brain tumors[J]. Curr Opin Mol Ther,2010,12(5):530-537.
[31] Aghi M,Rabkin S,Martuza RL. Effect of chemotherapy-induced DNA repair on oncolytic herpes simplex viral replication[J]. J Natl Cancer Inst,2006,98(1):38-50.
[32] Alonso MM,Gomez-Manzano C,Bekele BN,et al. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter[J]. Cancer Res,2007,67(24):11499-11504.
[33] Wust P,Hildebrandt B,Sreenivasa G,et al. Hyperthermia in combined treatment of cancer[J]. Lancet Oncol,2002, 3(8):487-497.
[34] Hildebrandt B,Wust P,Ahlers O,et al. The cellular and molecular basis of hyperthermia[J]. Crit Rev Oncol Hematol,2002,43(1):33-56.
[35] Pagani E,F(xiàn)alcinelli S,Pepponi R,et al. Combined effect of temozolomide and hyperthermia on human melanoma cell growth and O6-methylguanine-DNA methyltransferase activity[J]. Int J Oncol,2007,30(2):443-451.
(收稿日期:2015-12-07)