• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Leader-following consensus for uncertain second-order nonlinear multi-agent system s

    2016-05-14 07:49:06WeiLIUJieHUANG
    Control Theory and Technology 2016年4期

    Wei LIU,Jie HUANG

    Department of Mechanical and Automation Engineering,The Chinese University of Hong Kong,Shatin,N.T.,Hong Kong,China

    1 Introduction

    In the past few years,the cooperative control problem s for multi-agent system s have attracted extensive attention due to their applications in sensor networks,robotic team s,satellite clusters,unmanned air vehicle formations and so on.The consensus problem is one of the basic cooperative control problem s,w hose objective is to design a distributed control law for each agent such that the states (or outputs) of all agents synchronize to a common trajectory[1-4].Depending on whether or not a multi-agent system has a leader,the consensus problem can be divided into two classes:leaderless and leader-following.The leaderless consensus problem does not specify the common trajectory[2,3],while the leader-following consensus problem requires the states(or outputs)of all agents to track a desired trajectory generated by a so-called leader system[4-7].

    An important class of multi-agent system s is the second-order nonlinear multi-agent system s.Recently,considerable efforts have been made to hand le the leader-following consensus problem for a class of second-order nonlinear multi-agent system s[8-13].For example,references[8-10]studied the leader-following consensus problem for some second-order nonlinear multiagent system s under the assumption that the nonlinear functions satisfy the global Lipschitz condition or global Lipschitz-like condition.The system studied in reference[11]contains disturbance but no uncertainty.The system s considered in[12,13]allow both disturbance and uncertainty,but the boundary of the uncertainty is known.

    In this paper,we will further consider the leader following consensus problem for a class of secondorder nonlinear m ulti-agent system s subject to linearly parameterized uncertainty and disturbance.Com pared with[8-10],we do not impose the global Lipschitz condition or the global Lipschitz-like condition on the nonlinear functions.Com pared with[8-11],the nonlinear multi-agent system here contains both linearly parameterized uncertainty and disturbance.Finally,com pared with[12,13],our uncertainty can be arbitrarily large,and we do not assume the uncontrolled system has an equilibrium point at the origin.

    Our distributed control law is based on a combination of the adaptive control technique and the adaptive distributed observer method developed in[14].It turns out that such a control law is quite effective in dealing with the problem studied in this paper.

    The rest of this paper is organized as follow s.In Section 2,we will give our problem formulation and some preliminaries.In Sections 3,we will give our main result.In Section 4 we will provide an example to illustrate our design.Finally,in Section 5,we will finish the paper with some conclusions.

    NotationFor any column vectorsai,i=1,...,s,denotedenotes the Kronecker product of matrices.‖x‖denotes the Euclidean norm of vectorx.‖A‖denotes the induced norm of matrixAby the Euclidean norm.

    2 Problem formulation

    Consider a class of second-order nonlinear multiagent system s as follows:

    w hereqi,pi∈Rnare the states,ui∈Rnis the input,is a matrix with every elem ent being known continuous function,θi∈ Rmis an unknown constant parameter vector,denotes the disturbance withdi(·)being some C1function,andwis generated by the following linear exosystem

    withw∈ RnwandSb∈ Rnw×nw.It is assumed that the reference signal is generated by the following linear exosystem

    System(1)and the exosystem (4) together can be viewed be viewed as a multi-agent system of(N+1)agents with(4)as the leader and theNsubsystem s of(1)asNfollowers.

    Next,we introduce some graph notation which can also be found in[15].A digraph G=(V,E)consists of a finite set of nodes V={1,...,N}and an edge set E?V×V.An edge of E from nodeito nodejis denoted by(i,j),where nodeiandjare called the parent node and the child node of each other.Define Ni={j|(j,i)∈E},which is called the neighbor set of nodei.The edge(i,j)is called undirected if(i,j)∈E implies(j,i)∈E.The digraph G iscalled undirected ifevery edge in E is undirected.If the digraph G contains a sequence of edges of the form(i1,i2),(i2,i3),...,(ik,ik+1),then the set{(i1,i2),(i2,i3),...,(ik,ik+1)}is called a path of G from nodei1to nodeik+1and nodeik+1is said to be reachable from nodei1.A digraph is called connected if there exists a nodeisuch that any other nodes are reachable from nodei.The weighted adjacency matrix of the digraph G is a nonnegative matrix A=[aij] ∈ RN×Nwhereaii=0 andaij>0?(j,i)∈E,i,j=1,...,N.On the other hand,given a matrix A=[aij]∈ RN×Nsatisfyingaii=0 andaij≥0 fori,j=0,1,...,N,we can always define a digraph G such that A is the weighted ad jacencymatrix of thedigraph G.We call G thedigraph of A.

    with respect to the plant(1)and the exosystem(4),we can define a digraphwith={0,1,...,N}andwhere the node 0 is associated with the leader system(4)and the nodei,i=1,...,N,is associated with theith subsystem of system(1).Fori=1,...,N,j=0,1,...,Nandif and only ifuican use the information of thejth subsystem for control.Letbe the weighted ad jacency matrix of.Letdenote the neighbor set of agenti.

    We describe our control law as follows:

    wherehiandliare some nonlinear functions.A control law of the form(5)is called a distributed control law,sinceuionly dependson the information ofitsneighbors and itself.Our problem is described as follow s.

    Prob lem 1Given the multi-agent system(1),the exosystem(4)and a digraphdesign a control law of the form(5),such that,for any initial statesqi(0),pi(0),ζi(0)andv(0),qi(t)andpi(t)exist for allt≥ 0,and satisfy

    Rem ark 1Note that,like in[12,13],here we assume that the reference signal and the disturbance are generated by a linear exosystem(4)called the leader.Indeed,this formulation is more general than the case that the disturbancedi(w)is generated by an individual exosystem for each follower.

    To solve our problem,we make two assumptions as follow s.

    Assum p tion 1The exosystem(4)is neutrally stable,i.e.,all the eigenvalues ofSare sem i-sim p le with zero real parts.

    Assum p tion 2Every nodei=1,...,Nis reachable from the node 0 in the diagraph.

    Rem ark 2Assum ption 1 is standard and has been used in[12].Under Assumption 1,the exosystem(2)can generate arbitrarily large constant signals and some sinusoidal signals with arbitrary initial phases and am plitudes,and >with arbitrary initial phases with arbitrary initial phases and am plitudes.What’s more,under Assum ption 1,given any com pact setV0,thereexistsa com pactsetVsuch that,foranyv(0)∈V0,the trajectoryv(t)of the exosystem(4)remains inVfor allt≥0.

    Rem ark 3Assum ption 2 is also a standard assumption and has been used in m any literatures on cooperative control problem s of multi-agent systems[12-14,16].Note that Assum ption 2 allows the network to be directed and thus is less restrictive than that in[11,17].

    3 Main resu lt

    In this section,we will consider the leader-following consensus problem for system(1)and exosystem(4).

    We first recall the concept of the distributed observer for the leader system developed in[16]as follow s:

    wherefori=1,...,N,μ0is any positive constant.By Theorem 1 and Rem ark 4 of[16],under assumptions 1 and 2,we havei=1,...,N.That is why w e call(6)the distributed observer for(4).

    However,adrawback of(6)is thatthematrixSis used by every follower which may not be realistic in some applications.To overcome this drawback,an adaptive distributed observer was further proposed in[14]as follow s:

    whereμ1and μ2are any positive constants.The adaptive distributed observer(7)is more realistic than the distributed observer(6),since heredepends onSat the timetiff the leader is the neighbor of theith follower at timet,while the matrixSis used by every follower in(6).

    Letandfori=0,1,...,N.Then,fori=1,...,N,

    Let,andThen(8)can be put into the following com pact form

    wherewithforThen we introduce the following lemm a.

    Lemm a 1(Lemma 2 of[14])Under assumptions 1 and 2,we have

    exponentially and

    exponentially.

    To synthesize our control law,let

    where α is a positive constant,and

    Then,our control law is as follow s:

    w herekiis some positive constant,and

    The closed-loop system com posed of(1)and(17)is as follow s:

    whereandIt is easy to see thatfor allw∈Rnw.Under Assum ption 1,by Rem ark 2,we know thatw∈W for allt≥0 with W being some com pact subset of Rnw.Then,by Lemma 7.8 of[18],there exists some smooth functionsuch that,for allw∈W,

    Now we give our result as follows.

    Theorem 1Under assumptions 1 and 2,the leaderfollowing consensus problem for the system com posed of(1)and(4)is solvable by the distributed control law(17).

    ProofLet

    Then the time derivative ofValong the trajectory of the closed-loop system(19)is given by

    and thus

    (25)can be view ed as a stable first order linear system inqiwith a bounded input sinceand ξiare all bounded,bothqiand˙qiare bounded.Therefore,from(15)and(18),priandare both bounded.From the second equation of(19),is bounded.Thusis also bounded.Note that

    Sinceandare all bounded,we can conclude thatis bounded for allt≥0.Then,by Barbalat’s Lemm a,and thus,from(23),we haveNext,by(7),(15)and(16),we have

    our proof is thus com p leted.

    4 An exam p le

    Consider the leader-following consensus problem for a group of Vol del Pol system s as follow s:

    whereClearly,system(29)is in the form of(1)withand

    The communication graph is described by Fig.1 where the node 0 is associated with the leader and the other nodes are associated with the followers.Clearly,every nodei=1,2,3,4 is reachable from the node 0 in the diagraphand thus Assumption 2 is satisfied.From Fig.1,we obtain that the ad jacency matrix ofis

    Then,by Theorem 1,we can design a distributed control law as follow s:

    where

    siand˙priare defined as in(16)and(18)withD=[1 0 0 0]and α=1.

    Fig.1 Communication graph

    Sim ulation is perform ed with

    and the following initial conditions:

    Fig.2 shows the states of the leader system which are bounded for all timet≥0.Figs.3-6 show the estimation errors of the observer for each follower.It can be seen that all four estimations of leader’s states converge to the leader’s states ast→ +∞.

    Fig.2 States of leader system:

    Fig.3 Estimation errors:

    Fig.4 Estimation errors:

    Fig.6 Estimation errors:

    Figs.7 and 8 further show the tracking performance ofqiandpi.As expected,the states of all followers approach the states of the leader asymptotically.

    Fig.7 Tracking errors:

    Fig.8 Tracking errors:pi-p0.

    5 Conclusions

    In this paper,we have studied the leader-following consensus problem for a class of second-order nonlinear multi-agent system s subject to linearly parameterized uncertainty and disturbance.We have solved the problem by integrating the adaptive control technique and the adaptive distributed observer method.It is interesting to further consider the case where the network topology is switching and satisfies the jointly connected condition.

    References

    [1] A.Jadbabaie,J.Lin,A.S.Morse.Coordination of groups of mobile agents using nearest neighbor rules.IEEE Transactions on Automatic Control,2003,48(6):988-1001.

    [2]R.O lfati-Saber,R.M.Murray.Consensus problem s in networks of agents with switching topology and time-delays.IEEE Transactions on Automatic Control,2004,49(9):1520-1533.

    [3]W.Ren.On consensus algorithm s for double-integrator dynamics.IEEE Transactions on Automatic Control,2008,53(6):1503-1509.

    [4] Y.Su,J.Huang.Stability of a class of linear switching system s with applications to two consensus problem s.IEEE Transactions on Automatic Control,2012,57(6):1420-1430.

    [5]Y.Hong,G.Chen,L.Bushnell.Distributed observers design for leader-following control of multi-agent networks.Automatica,2008,44(3):846-850.

    [6]J.Hu,Y.Hong.Leader-following coordination of m ulti-agent system s with coupling time delays.Physica A:Statistical Mechanics and its Applications,2007,374(2):853-863.

    [7]W.Ni,D.Cheng.Leader-following consensus of multi-agent system s under fixed and switching topologies.System s&Control Letters,2010,59(3/4):209-217.

    [8]J.Mei,W.Ren,G.Ma.Distributed coordination for second-order m ulti-agent system s with nonlinear dynamics using only relative position measurem ents.Automatica,2013,49(7):2107-2115.

    [9]Q.Song,J.Cao,W.Yu.Second-order leader-following consensus of nonlinear multi-agents via pinning control.System s&Control Letters,2010,59(9):553-562.

    [10]W.Yu,W.Ren,W.Zheng,et al.Distributed control gains design for consensus in m ulti-agent system s with second-order nonlinear dynamics.Automatica,2013,49(5):1419-1427.

    [11]C.Wang,H.Ji.Robust consensus tracking for a class of heterogeneous second-order nonlinear m ulti-agent system s.International Journal of Robust and Nonlinear Control,2015,25(17):3367-3383.

    [12]Y.Su,J.Huang.Cooperative global output regulation of heterogenous second-order nonlinear uncertain m ulti-agent system s.Automatica,2012,49(11):3345-3350.

    [13]X.Wang,D.Xu,Y.Hong.Consensus control of nonlinear leader-follower m ulti-agent systems with actuating disturbances.System s&Control Letters,2014,73:58-66.

    [14]H.Cai,F.L.Lew is,G.Hu,et al.The adaptive distributed observer approach to the cooperative output regulation of linear m ulti-agent system s.Automatica,2016:DOI 10.1016/j.automatica.2016.09.038.

    [15]C.Godsil,G.Royle.Algebraic Graph Theory.New York:Springer,2001.

    [16]Y.Su,J.Huang.Cooperative output regulation of linear m ultiagent system s.IEEE Transactions on Automatic Control,2012,57(4):1062-1066.

    [17]J.Wang,K.Chen,Q.Ma.Adaptive leader-following consensus of m ulti-agent system s with unknown nonlinear dynamics.Entropy,2014,16(9):5020-5031.

    [18]J.Huang.Non linear Output Regu lation:Theory and Applications.Phildelphia:SIAM,2004.

    欧美日韩国产亚洲二区| 国产爱豆传媒在线观看| 日韩欧美精品v在线| 免费不卡的大黄色大毛片视频在线观看 | 成人二区视频| 亚洲人成网站在线观看播放| 国产熟女欧美一区二区| 丰满的人妻完整版| 91在线精品国自产拍蜜月| 精品人妻熟女av久视频| 免费人成在线观看视频色| 人人妻人人澡人人爽人人夜夜 | 久久这里有精品视频免费| 不卡视频在线观看欧美| 亚洲自拍偷在线| 国产国拍精品亚洲av在线观看| 免费搜索国产男女视频| 如何舔出高潮| 国产精品乱码一区二三区的特点| 国产精品无大码| 国国产精品蜜臀av免费| 99在线视频只有这里精品首页| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精华国产精华液的使用体验 | a级毛色黄片| 国产高清三级在线| 小说图片视频综合网站| 国产精品福利在线免费观看| 麻豆国产97在线/欧美| 亚洲va在线va天堂va国产| 特大巨黑吊av在线直播| 国产探花极品一区二区| 91aial.com中文字幕在线观看| 亚洲内射少妇av| 性色avwww在线观看| 老司机福利观看| 97超碰精品成人国产| 国产免费一级a男人的天堂| 五月伊人婷婷丁香| 日本av手机在线免费观看| 能在线免费观看的黄片| 天堂av国产一区二区熟女人妻| 你懂的网址亚洲精品在线观看 | 成人午夜高清在线视频| 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看| 国产午夜精品久久久久久一区二区三区| 国产国拍精品亚洲av在线观看| 午夜福利视频1000在线观看| 青春草视频在线免费观看| 九九在线视频观看精品| 免费电影在线观看免费观看| 一本久久精品| 婷婷精品国产亚洲av| 91午夜精品亚洲一区二区三区| 亚洲成人精品中文字幕电影| 久久精品影院6| 一本久久中文字幕| 黄色欧美视频在线观看| 永久网站在线| 97在线视频观看| 国产老妇伦熟女老妇高清| 一本精品99久久精品77| 午夜福利在线观看免费完整高清在 | 美女 人体艺术 gogo| 日韩视频在线欧美| 国产精品一区二区性色av| 我的女老师完整版在线观看| videossex国产| 亚洲不卡免费看| 色综合色国产| 最新中文字幕久久久久| 亚洲精品影视一区二区三区av| 特大巨黑吊av在线直播| 久久鲁丝午夜福利片| 亚洲精品日韩av片在线观看| 一区二区三区四区激情视频 | 国产成人91sexporn| 卡戴珊不雅视频在线播放| 老司机福利观看| 久久鲁丝午夜福利片| 日韩中字成人| 久久韩国三级中文字幕| 久久草成人影院| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 夜夜爽天天搞| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 久久精品影院6| 国产淫片久久久久久久久| 亚洲在线观看片| 国产极品精品免费视频能看的| 亚洲av免费在线观看| 久久久久九九精品影院| 国产精品电影一区二区三区| 国产精品福利在线免费观看| 一个人免费在线观看电影| 国产单亲对白刺激| 看免费成人av毛片| 国产精品久久久久久精品电影| 欧美成人一区二区免费高清观看| 99热这里只有是精品50| 国产乱人视频| av视频在线观看入口| 亚洲欧美精品综合久久99| 日本熟妇午夜| 久久久久久伊人网av| 亚洲精品影视一区二区三区av| 国内久久婷婷六月综合欲色啪| 小说图片视频综合网站| 国产成年人精品一区二区| 好男人在线观看高清免费视频| 国产成人a区在线观看| 国产极品精品免费视频能看的| 国产亚洲91精品色在线| 免费在线观看成人毛片| 一个人看视频在线观看www免费| 亚洲欧美精品专区久久| 国产精品久久久久久av不卡| 午夜久久久久精精品| 插逼视频在线观看| 深夜精品福利| 久久人人爽人人片av| 精品久久久久久久人妻蜜臀av| 99国产极品粉嫩在线观看| 一级毛片久久久久久久久女| 亚洲av不卡在线观看| 色综合色国产| 国产成人精品婷婷| 热99re8久久精品国产| kizo精华| 久久这里只有精品中国| 亚洲国产色片| 日本熟妇午夜| 久久久成人免费电影| 一级毛片我不卡| 国产成人精品一,二区 | 国产乱人偷精品视频| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 非洲黑人性xxxx精品又粗又长| 欧美高清成人免费视频www| 久久人人精品亚洲av| 亚洲aⅴ乱码一区二区在线播放| 亚洲第一电影网av| 欧美一区二区精品小视频在线| 最近视频中文字幕2019在线8| 国产v大片淫在线免费观看| 国产精品一区二区三区四区免费观看| 精品午夜福利在线看| 成人性生交大片免费视频hd| 内射极品少妇av片p| 男人舔女人下体高潮全视频| 日韩亚洲欧美综合| 色5月婷婷丁香| 男人舔女人下体高潮全视频| 给我免费播放毛片高清在线观看| 国产伦理片在线播放av一区 | 99热全是精品| av天堂中文字幕网| 国产精品人妻久久久影院| 午夜爱爱视频在线播放| 黄色配什么色好看| 国产一区亚洲一区在线观看| 日本黄色片子视频| 黄色配什么色好看| 国产一区二区激情短视频| 成年免费大片在线观看| 欧美区成人在线视频| 中文精品一卡2卡3卡4更新| 秋霞在线观看毛片| 欧美不卡视频在线免费观看| 亚洲国产欧美在线一区| 国产单亲对白刺激| 国产高潮美女av| 激情 狠狠 欧美| 成人亚洲精品av一区二区| 中文亚洲av片在线观看爽| АⅤ资源中文在线天堂| 国产精品蜜桃在线观看 | 欧美日韩乱码在线| 久久久精品大字幕| 日韩中字成人| 国产精品美女特级片免费视频播放器| 成人永久免费在线观看视频| 国产精品国产三级国产av玫瑰| 人妻少妇偷人精品九色| 国产伦在线观看视频一区| 日韩精品有码人妻一区| 国产麻豆成人av免费视频| 免费看光身美女| 久久久成人免费电影| 久久久久网色| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频 | 国产女主播在线喷水免费视频网站 | 一区二区三区高清视频在线| 亚洲av一区综合| 日韩欧美精品免费久久| 亚洲人成网站在线播| 不卡一级毛片| 日日摸夜夜添夜夜爱| 精品久久久噜噜| 国产精品福利在线免费观看| 精品一区二区三区视频在线| 国产精品一区二区在线观看99 | 亚洲欧美精品自产自拍| 亚洲av熟女| 老女人水多毛片| 欧美一区二区精品小视频在线| 最近中文字幕高清免费大全6| 真实男女啪啪啪动态图| 久久人人精品亚洲av| 日韩欧美精品免费久久| 精品少妇黑人巨大在线播放 | 国产精华一区二区三区| 尾随美女入室| 中文精品一卡2卡3卡4更新| 欧美丝袜亚洲另类| 在线天堂最新版资源| 丰满乱子伦码专区| 丝袜喷水一区| 日韩精品青青久久久久久| 91久久精品国产一区二区成人| 久久久精品大字幕| 哪个播放器可以免费观看大片| 亚洲四区av| 国产成人freesex在线| 国产高清视频在线观看网站| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 精品久久久久久久末码| 两性午夜刺激爽爽歪歪视频在线观看| 国产黄a三级三级三级人| 久久99热6这里只有精品| 在线观看66精品国产| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说 | 麻豆成人午夜福利视频| 日本成人三级电影网站| 两个人视频免费观看高清| 国内精品久久久久精免费| 亚洲国产精品sss在线观看| 午夜福利视频1000在线观看| 国产白丝娇喘喷水9色精品| 国产黄a三级三级三级人| 精品久久久久久成人av| 日韩欧美精品v在线| 在现免费观看毛片| 一个人看视频在线观看www免费| 亚洲熟妇中文字幕五十中出| 又爽又黄a免费视频| 日日啪夜夜撸| 国产片特级美女逼逼视频| 成人高潮视频无遮挡免费网站| 国产高清视频在线观看网站| 国产乱人偷精品视频| 久久99精品国语久久久| 久久久国产成人免费| 国产精品一区二区三区四区免费观看| 偷拍熟女少妇极品色| 精品久久久久久久久久免费视频| 深夜a级毛片| 亚洲国产色片| 久久精品91蜜桃| 天美传媒精品一区二区| 成人午夜精彩视频在线观看| 99热只有精品国产| 日本三级黄在线观看| 日日啪夜夜撸| 国产成人aa在线观看| 网址你懂的国产日韩在线| 国产一区二区激情短视频| 天堂影院成人在线观看| 少妇被粗大猛烈的视频| 亚洲一区高清亚洲精品| 欧美+亚洲+日韩+国产| 一本久久精品| 变态另类成人亚洲欧美熟女| 色播亚洲综合网| 亚洲人成网站在线观看播放| 床上黄色一级片| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 亚洲av二区三区四区| 激情 狠狠 欧美| 亚洲在线观看片| 亚洲欧洲国产日韩| 99热这里只有是精品在线观看| 三级国产精品欧美在线观看| 我要搜黄色片| 久久久久免费精品人妻一区二区| 中文精品一卡2卡3卡4更新| 日本三级黄在线观看| 国产一区二区三区av在线 | 村上凉子中文字幕在线| 99热6这里只有精品| 午夜福利在线观看免费完整高清在 | 国产激情偷乱视频一区二区| 久久人人爽人人爽人人片va| 99热这里只有是精品50| 在线免费观看的www视频| 人妻久久中文字幕网| 国产亚洲5aaaaa淫片| 国产精品久久久久久精品电影小说 | 成人亚洲欧美一区二区av| 偷拍熟女少妇极品色| a级一级毛片免费在线观看| 亚洲一级一片aⅴ在线观看| 成熟少妇高潮喷水视频| 国产 一区精品| 在线免费观看不下载黄p国产| 国产一级毛片七仙女欲春2| 亚洲高清免费不卡视频| 搞女人的毛片| 久久综合国产亚洲精品| 亚洲无线观看免费| 淫秽高清视频在线观看| 中文在线观看免费www的网站| 午夜福利在线在线| 99久国产av精品国产电影| 内射极品少妇av片p| АⅤ资源中文在线天堂| 天堂网av新在线| 国产高清激情床上av| 久久精品国产99精品国产亚洲性色| 一区二区三区高清视频在线| 麻豆成人午夜福利视频| 边亲边吃奶的免费视频| 好男人在线观看高清免费视频| 在线观看免费视频日本深夜| 午夜老司机福利剧场| 岛国毛片在线播放| 亚洲aⅴ乱码一区二区在线播放| 伦精品一区二区三区| a级毛片a级免费在线| 国产日韩欧美在线精品| 国产一区亚洲一区在线观看| 国产成人a区在线观看| 亚洲av男天堂| 啦啦啦啦在线视频资源| 日产精品乱码卡一卡2卡三| 长腿黑丝高跟| 联通29元200g的流量卡| 少妇的逼好多水| 国产日韩欧美在线精品| 欧美精品国产亚洲| 国产探花在线观看一区二区| 美女国产视频在线观看| 如何舔出高潮| 男人舔女人下体高潮全视频| 内地一区二区视频在线| 久久精品国产自在天天线| 国产中年淑女户外野战色| 欧美区成人在线视频| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线| 青青草视频在线视频观看| 国产午夜精品一二区理论片| 久久精品综合一区二区三区| 成人午夜精彩视频在线观看| or卡值多少钱| 国产成人一区二区在线| 亚洲欧洲日产国产| 直男gayav资源| 国产不卡一卡二| 欧美3d第一页| 欧美日韩精品成人综合77777| 婷婷色av中文字幕| 97人妻精品一区二区三区麻豆| 国产69精品久久久久777片| 午夜福利在线在线| 99热这里只有是精品在线观看| 国产极品天堂在线| 色视频www国产| 国产精品福利在线免费观看| 99热全是精品| 国产午夜精品久久久久久一区二区三区| 99热全是精品| 日韩欧美精品v在线| 性欧美人与动物交配| 欧美日本亚洲视频在线播放| 91精品国产九色| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 精品人妻视频免费看| 麻豆av噜噜一区二区三区| 只有这里有精品99| 啦啦啦啦在线视频资源| 国产一区二区在线观看日韩| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久伊人网av| 老师上课跳d突然被开到最大视频| 草草在线视频免费看| 中出人妻视频一区二区| 最好的美女福利视频网| 亚洲一区高清亚洲精品| 国产不卡一卡二| 国产单亲对白刺激| 日产精品乱码卡一卡2卡三| 日本撒尿小便嘘嘘汇集6| 2021天堂中文幕一二区在线观| 韩国av在线不卡| 欧美又色又爽又黄视频| 久久草成人影院| 少妇被粗大猛烈的视频| 国产av一区在线观看免费| 国产蜜桃级精品一区二区三区| 国产乱人偷精品视频| 久久精品夜夜夜夜夜久久蜜豆| 精品99又大又爽又粗少妇毛片| 国产不卡一卡二| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一级一片aⅴ在线观看| 国产成人a区在线观看| АⅤ资源中文在线天堂| 日韩欧美在线乱码| 嫩草影院新地址| 国产精品.久久久| 卡戴珊不雅视频在线播放| 国产精品一区二区在线观看99 | 91av网一区二区| 欧美极品一区二区三区四区| 精品一区二区免费观看| av在线老鸭窝| 久久久久久国产a免费观看| 国产精品人妻久久久久久| 欧美性猛交╳xxx乱大交人| 久久久久免费精品人妻一区二区| 精品免费久久久久久久清纯| av天堂中文字幕网| 国产亚洲精品久久久com| 国产女主播在线喷水免费视频网站 | 色吧在线观看| 啦啦啦韩国在线观看视频| 有码 亚洲区| 国产成人午夜福利电影在线观看| 国产精品福利在线免费观看| 麻豆乱淫一区二区| 美女大奶头视频| 九九爱精品视频在线观看| 国产精品一及| 成人一区二区视频在线观看| 美女xxoo啪啪120秒动态图| 久久鲁丝午夜福利片| 性插视频无遮挡在线免费观看| 熟女电影av网| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| 国产69精品久久久久777片| 看非洲黑人一级黄片| 成人鲁丝片一二三区免费| 在线观看av片永久免费下载| 中文字幕精品亚洲无线码一区| 最好的美女福利视频网| 蜜桃久久精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品福利在线免费观看| 国产精品久久电影中文字幕| 美女黄网站色视频| 看黄色毛片网站| 日本爱情动作片www.在线观看| 伦理电影大哥的女人| 能在线免费看毛片的网站| 国产免费一级a男人的天堂| 韩国av在线不卡| 久久精品国产自在天天线| 老师上课跳d突然被开到最大视频| АⅤ资源中文在线天堂| 成人永久免费在线观看视频| 一边摸一边抽搐一进一小说| 日本免费一区二区三区高清不卡| 日韩一区二区三区影片| 看非洲黑人一级黄片| 真实男女啪啪啪动态图| a级毛片a级免费在线| 人妻制服诱惑在线中文字幕| 97热精品久久久久久| 成人亚洲欧美一区二区av| 精品一区二区三区视频在线| 免费看a级黄色片| 国产精品一区www在线观看| 国产精品福利在线免费观看| 久久精品国产鲁丝片午夜精品| 国产亚洲91精品色在线| 欧美+日韩+精品| 99久久无色码亚洲精品果冻| 1000部很黄的大片| 久久精品国产99精品国产亚洲性色| 久久久成人免费电影| 成人一区二区视频在线观看| 国产黄片视频在线免费观看| 欧美三级亚洲精品| 桃色一区二区三区在线观看| 国产蜜桃级精品一区二区三区| 99热精品在线国产| 亚洲七黄色美女视频| 熟女电影av网| 久久精品国产亚洲网站| 婷婷六月久久综合丁香| 99久久精品一区二区三区| 最近中文字幕高清免费大全6| 在线观看免费视频日本深夜| 少妇人妻精品综合一区二区 | 国产中年淑女户外野战色| av免费观看日本| 最近最新中文字幕大全电影3| 久久久久久大精品| 国语自产精品视频在线第100页| 日本欧美国产在线视频| 国产精品无大码| 老师上课跳d突然被开到最大视频| 丰满乱子伦码专区| 三级经典国产精品| 国产精品久久久久久精品电影小说 | 26uuu在线亚洲综合色| 国产亚洲av片在线观看秒播厂 | 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 亚洲在线观看片| 免费大片18禁| 亚洲电影在线观看av| 99热这里只有是精品在线观看| 久久婷婷人人爽人人干人人爱| 美女被艹到高潮喷水动态| 亚洲七黄色美女视频| 国产一级毛片七仙女欲春2| 亚洲一区高清亚洲精品| 97超视频在线观看视频| 成人永久免费在线观看视频| 春色校园在线视频观看| 99国产极品粉嫩在线观看| 国内久久婷婷六月综合欲色啪| 国产一区二区在线av高清观看| www.av在线官网国产| 久久久久网色| 国产不卡一卡二| 国产精品电影一区二区三区| 丝袜美腿在线中文| 日本免费一区二区三区高清不卡| 免费黄网站久久成人精品| 少妇的逼好多水| 大香蕉久久网| 国产美女午夜福利| 九九久久精品国产亚洲av麻豆| 波多野结衣巨乳人妻| 91久久精品国产一区二区成人| ponron亚洲| 特大巨黑吊av在线直播| 国产黄a三级三级三级人| 国产精品一区二区三区四区免费观看| 成人性生交大片免费视频hd| 一区福利在线观看| 少妇的逼水好多| 午夜福利在线观看吧| av天堂在线播放| 99久久成人亚洲精品观看| a级毛片免费高清观看在线播放| 国产精品一区二区在线观看99 | 亚洲精品粉嫩美女一区| 成年版毛片免费区| 久久精品夜色国产| 精品人妻视频免费看| 欧美高清性xxxxhd video| 亚州av有码| 亚洲最大成人中文| 国产精品一区www在线观看| 国产精品av视频在线免费观看| 18+在线观看网站| 久久久久九九精品影院| 国产真实伦视频高清在线观看| 精品久久久噜噜| 欧美zozozo另类| ponron亚洲| 直男gayav资源| 一级二级三级毛片免费看| 国产一级毛片七仙女欲春2| 亚洲av不卡在线观看| 欧美一区二区国产精品久久精品| 日本成人三级电影网站| 色视频www国产| 亚洲熟妇中文字幕五十中出| 老熟妇乱子伦视频在线观看| 一级黄片播放器| 久久久久久久久久黄片| 国内精品一区二区在线观看| 国产麻豆成人av免费视频| 日日撸夜夜添| 日韩国内少妇激情av| 久99久视频精品免费| 国产精品久久久久久精品电影| 麻豆成人av视频| 国产真实乱freesex| 日韩制服骚丝袜av| 国产午夜精品论理片| 久久久国产成人免费| 99久久精品热视频| 伦精品一区二区三区| 国产真实乱freesex| 九九久久精品国产亚洲av麻豆| av在线亚洲专区| 麻豆成人午夜福利视频| 菩萨蛮人人尽说江南好唐韦庄 | 国产毛片a区久久久久| 一级黄片播放器| 精品午夜福利在线看| 久久久久久久久久久免费av| 国产精品一二三区在线看| 亚洲av成人av| 在线观看66精品国产| 国产单亲对白刺激| 国产一区二区亚洲精品在线观看|