• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A necessary and sufficient stabilization condition for discrete time-varying stochastic system s with multiplicative noise

    2016-05-14 03:40:36RongGAOXiaohuaLIUHuanshuiZHANG
    Control Theory and Technology 2016年2期
    關(guān)鍵詞:靜秋全因額頭

    Rong GAO ,Xiaohua LIU ,Huanshui ZHANG

    1.School of Control Science and Engineering,Shandong University,Jinan Shandong 250061,China;

    2.School of Mathematics and Statistics Science,Ludong University,Yantai Shandong 264025,China

    1 Introduction

    Linear stochastic system s with multiplicative noise in the state and control channels are quite important in practice.Many system s can be modeled by stochastic differential equations or difference equations with multiplicative noise such as system s with hum an operator,mechanical system s,aerospace system s and network system s[1–3],etc.Hence over the past decades,considerable attention has been devoted to the study of different issues related to the linear stochastic system s with multiplicative noise.The mean-square stabilization problem,as one of a fundamental stochastic control problem,has been studied by many researchers in[3–12].For instance,based on linear quadratic method,different results for mean-square stabilization were given in[3–8].Ghaoui[9]gave the stabilization conditions using linear matrix inequality(LM I).In[10]Zhang et al.studied the mean-square stabilization based on generalized Lyapunov equation.In[11,12]the uncertain network system w as modeled by stochastic multiplicative noise model and the necessary and sufficient conditions for mean-square stabilization of the network control system were given.In recent years,stabilizing control of time-varying stochastic system s has been a hot area of research,see for example[13,14]and references therein.It should be noted that for time-varying stochastic system s a necessary and sufficient stabilization condition remains to be investigated.

    In order to solve stabilization problem for time varying stochastic system s,receding horizon control(RHC)was adopted.The essence of the RHC is to solve an optimization problem on the finite horizon at the current time and implement only the first solution as a current control.This procedure then repeats at the next time.Due to its many advantages,such as good tracking performance,effective control for time-varying system s and I/O constraint hand ling capability,a great deal of attention has been devoted to RHC.RHC was first pioneered for dealing with the stabilization of time-varying system s by Kwon et al.[15].Since then,it has been widely investigated as a successful feedback strategy for deterministic system s,especially for time-varying deterministic system s[15–19].

    In this paper different from the previous literatures on stochastic RHC [20, 21], which focus on constraind linear time-invariant stochastic systems, we consider unconstrained linear time-varying stochastic systems. The main contribution of this paper is as follows: By defining the optimal cost value as a Lyapunov function, the necessary and sufficient RHC stabilization condition for time-varying stochastic system with multiplicative noise is presented for the first time. In the previous literature,even for deterministic systems the RHC stabilization condition is only sufficient as far as we know.

    The remainder of this paper is organized as follow s:Section 2 gives the formulation of the problem for stochastic system s with multiplicative noise.The corresponding RHC law and the necessary and sufficient condition for the asymptotic mean-square stability of the closed system are obtained in Section 3.In Section 4 RHC for stochastic system s with multiple multiplicative noises is studied.Three examples are provided in Section 5 to validate the performance of the proposed receding horizon control.Finally,conclusions are given in Section 6.

    NotationRnstands for then-dimensional Euclidean space.The subscript“′”represents the matrix transpose;a symmetric matrixM>0(≥0)means that it is strictly positive definite(positive semi-definite);{Ω,F,P,{Fk}k≥0}denotes a complete probability space on which a scalar white noise ωkis defined such that{Fk}k≥0is the natural filtration generated by ωk,i.e.,Fk=σ{ω0...ωk}.

    2 Problem statement

    Consider the following linear discrete time-varying stochastic system

    For simplicity,letthen system(1)becomes

    wherexk∈Rnis the state;uk∈Rmis the control input;andBkare matrices of appropriate dimensions;and ωkis a scalar random white noise with zero mean and variance σ.

    Rem ark 1It should be noted that the results to be presented in this paper are applicable to more general stochastic system s with multiple multiplicative noises with no substantial difference

    where the variance of the noise is given by

    3 Asymptotic mean-square stability of discrete time-varying stochastic system s via RHC

    In this section,we shall present our main result on asymptotic mean-square stability for the discrete time varying stochastic system s(1).

    3.1 Receding horizon control

    In order to solve the problem formulated in Section 2,we define the following cost function:

    where E is the mathematical expectation over the noise{ωk,...,ωk+N}.Qk+i≥0,Rk+i>0,Ψk+N+1>0 andNis a finite positive integer.xk+i|kanduk+i|kdenote the state and control sequence with initial timekin the finite horizon optimal control.

    We apply Pontryagin’s maximum principle[22,23]to system(1)with cost function(4).Then the optimal controller is given by

    wherePj(k+N)satisfies the following generalized Ric-cati equation:

    with the terminal value

    The receding horizon control at timekis given as

    whereHkis as in(8)withj=k.

    3.2 Asymptotic mean-square stability

    In this section,firstly we present a matrix inequality on the terminal weighting matrix Ψk,under which the optimal costJ*(xk,k)is nonincreasing with the increasing ofk.Then a necessary and sufficient condition for mean-square stabilization is obtained.

    Lemma1Assume there exists Ψk>0 in(4)satisfying the following matrix inequality for someHk,

    The optimal costJ*(xk,k)satisfies the following relation:

    ProofLetJ*(xk,k)be the optimal cost resulting from the optimal control(5)with the initial statexk.

    whereare optimal controls minimizing the cost function(4)with initial state,respectively.are optimal state trajectories generated when the system is controlled by

    Let us rep lace the controlin(12)with

    whereHk+N+1is the control gain to be selected.Then,it follows from(12),(13)that

    Further,note that the termin(14)can be rewritten as

    where(2)has been used in the above equalities.

    Thus it follow s from(14)that

    where the facthas been used.By using the property of conditional expectation,we have

    Therefore,

    According to(10),we obtain

    By using Lemma1,the main result of the paper is presented in the following Theorem 1.

    Theorem 1GivenQk>0 andRk>0,then system(1)with the receding horizon control(9)is asymptotically mean square stable if and only if there exists Ψk>0 andHksatisfying(10).

    Proof(Sufficiency)According to Lemma 1,there exists Ψksatisfying(10),then we obtainSinceJ*(xk,k)is nonincreasing andJ*(xk,k)>0,thus

    exists,and

    By virtue of(16),(17)and(10),we obtain

    Com bined with(20),it yields

    Note thatRk>0,thus we get

    Combining(23)and(22),one has

    Note thatQk>0,then

    (Necessity)System(1)is mean-square stabilizable.There existuk=Hkxksuch that the closed-loop system is mean-square stability.Then according to stochastic Lyapunov stability theorem[24],for each sequence of positive definite matrices Θ(k)>0,the following matrix difference equation

    has positive definite solutions Π(k).let Θk=Qk+we obtain

    which im p ly(10)holds.

    Rem ark 2If w e letsystem(1)reduces to a deterministic system.The corresponding stabilizability condition(10)becomes

    Com pared with the result in[16]and[17],where only sufficient stabilization condition has been considered,we give the necessary and sufficient RHC stabilization condition in this paper.Further,we have generalized the result from deterministic system to stochastic system s with multiplicative noise in this paper.

    因?yàn)槌贿@么看。他與靜秋相戀兩年,除了吻過(guò)她的額頭,兩個(gè)人從沒(méi)有越雷池一步。他認(rèn)為靜秋對(duì)他越來(lái)越冷淡全因了康芳。——康芳有一個(gè)需要照顧的丈夫,康芳只有一個(gè)女兒,自私的她希望女兒和女婿能夠守在她的身邊。

    In the following the time-invariant stochastic system is considered.If we letin(1),then system(1)reduced to a time-invariant stochastic system

    Consider the cost function as:

    The result analogous to Theorem 1 is expressed as follow s:

    Corollary 1GivenQ>0 andR>0 in(28),then system(27)with the receding horizon control is asymptotically mean square stable if and only if there exists Ψ>0 andHsatisfying

    Rem ark 3Note that inequality(29)is equivalent to the following LMI,which is easier to be tested.

    where

    4 RHC for stochastic system s with multiple multiplicative noises

    In this section,w e shall generalize the results in the previous section to stochastic system s with multiple multiplicative noises.Consider the more general system(3)and cost function(4).We first generalize the backwards recursion in(6)–(8)as follows:Forj=k,...,k+N,

    with the terminal valueThe receding horizon control at timekis

    Theorem 2GivenQk>0 andRk>0,then system(3)with the receding horizon control(31)is asymptotically mean square stable if and only if there exists Ψk>0 andHksatisfying

    ProofAs the proof is similar to that for Theorem 1,we have omitted it.□

    5 Simulation

    In this section,three examples are presented to illustrate the proposed method.

    Example 1Consider a discrete time-varying stochastic system with multiplicative noise whose model parameters are given by

    The weighting matricesQk,Rk,and Ψkin(10)are chosen to be 5,1,and 10,respectively.Hkin(10)is chosen to be?1.The horizon lengthNis chosen to be 3.According to Theorem 1 the stabilization condition(10)is satisfied.The corresponding receding horizon control gain curve is drawn in Fig.1 according to(9).

    Fig.1 Control gain curve.

    with the controller the state trajectory of the closed-loop system is drawn in Fig.2.From Fig.2,we can see that the proposed RHC stabilizes the discrete-time multiplicative noise system with differentQk,Rk,and Ψkof the cost.

    Fig.3 represents the optimal receding horizon costsJ*against time.It can be seen that the optimal receding horizon costsJ*decrease monotonically with time and converge to zero.This cost monotonicity implies that the proposed RHC stabilizes the time-varying stochastic system.

    Exam p le 2Consider the network control system depicted in[25].Suppose there is only data packet dropout in the network control system,then the overall network control system can be described as

    w herexk∈Rnis the state,uk∈Rpis the control input.{γk}k≥0is modeled as a i.i.d Bernoulli process with probability distribution P(γk=0)=pand P(γk=1)=1?p,w herep∈(0,1)is named as the packet dropout rate.It can be seen that(32)is the special case of(1)with

    Suppose system(32)withG=1.2,L=0.4,x0=0.1,p=0.5,and the cost function withQk=1,Rk=1,N=5,Ψk=10.By applying Theorem 1,it is easy to verify that condition(10)is satisfied.The state trajectoryof the closed-loop system with the controller is drawn in Fig.4.It can be seen that the proposed RHC stabilizes the network control system from Fig.4.

    Fig.2 State trajectory E(x(k)′x(k))due to the proposed RHC.

    Fig.3 Optimal receding horizon cost.

    Fig.4 State trajectory E(x(k)′x(k))of network control system due to the proposed RHC.

    Example 3Consider the two dimensional stochastic system with multiplicative noise whose parameters are given by

    The weighting matrixesQandRin(29)are chosen to beI2andI1.The weighting matrixes Ψ and feedback gainHin(29)are decided by solving the linear matrix inequality(30)using MATLAB LM I toolbox which are given as

    According to(9)the receding horizon controller is given as

    The state trajectory of the closed loop system with the controller(33)is drawn in Fig.5.It is shown that the proposed RHC stabilizes the stochastic system with multiplicative noise.

    Fig.5 State trajectory E(x(k)′x(k))due to the proposed RHC.

    6 Conclusions

    The paper has proposed a receding horizon control approach for stabilization of discrete time-varying stochastic system s.Explicit stabilization controller has been obtained by solving a generalized Riccati equation.By applying the tools of stochastic stability,a necessary and sufficient condition on the terminal weighting matrix has been proposed to guarantee the asymptotic mean-square stability of the closed-loop system.Some desirable extensions would be to time-varying stochastic system s with state or control delay.

    References

    [1]X.R.Mao.Stochastic Differential Equations and Applications.2nd ed.Chichester,U.K.:Horwood Publication,2007.

    [2]L.Li,H.Zhang.Linear quadratic regultion for discrete-time systems with state delays and multiplicative noise.Control Theory and Technology,2015,13(4):348–359.

    [3]J.L.willems,J.C.willems.Feedback stabilizability for stochastic system s with state and control dependent noise.Automatica,1976,12(3):277–283.

    [4]U. Haussmann. Stability of linear systems with control dependent noise. SIAM Journal on Control, 1973, 11(2): 382 – 394.

    [5]T.Morozan.Stabilization of some stochastic discrete-timecontrol system s.Stochastic Analysis and Applications,1983,1(1):89–116.

    [6]E.Yaz.Stabilization of discrete-time system s with stochastic parameters.System s&Control Letters,1985,5(5):321–326.

    [7]E.Yaz.Certainty equivalent control of stochastic system s:stability property.IEEE Transactions on Automatic Control,1986,3(12):178–180.

    [8]M.A.Ram i,X.Zhou.Linear matrix inequalities,Riccati equations,and indefinite stochastic linear quadratic controls.IEEE Transactions on Automatic Control,2000,45(6):1131–1143.

    [9]L.E.Ghaoui.State-feedback control of systems with multiplicative noise via linear matrix inequalities.System s&Control Letters,1995,24(3):223–228.

    [10]W.Zhang,H.Zhang,B.Chen.Generalized Lyapunov equation app roach to state-dependent stochastic stabilization/detectability criterion.IEEE Transactions on Automatic Control,2008,53(7):1630–1642.

    [11]N.Elia.Remote stabilization over fading channels.System s&Control Letters,2005,54(3):237–249.

    [12]K.Y.You,L.H.Xie.Minimum data rate for mean square stabilization of discrete LTI system s over lossy channels.IEEE Transactions on Automatic Control,2010,55(10):2373–2378.

    [13]S.Aberkane,V.Dragan.Robust stability and robust stabilization of a class of discrete-time time-varying linear stochastic system s.SAIM Journal on Control and Optimization,2015,53(1):30–57.

    [14]L.Sheng,W.Zhang,M.Gao.Mixed H2/H∞control of time-varying stochastic discrete-time system s under uniform detectability.IET Control Theory and Application,2014,8(17):1866–1874.

    [15]W.H.Kwon,A.E.Pearson.A modified quadratic cost problem and feedback stabilization of a linear system.IEEE Transactions on Automatic Control,1977,22(5):838–842.

    [16]J.W.Lee,W.H.Kwon,J.H.Choi.On stability of constrained receding horizon control with finite terminal weighting matrix.Automatica,1998,34(12):1607–1612.

    [17]W.H.Kwon,K.B.Kim.On stabilizing receding horizon controls for linear continuous time-invariant system s.IEEE Transactions on Automatic Control,2000,45(7):1329–1334.

    [18]G.D.Nicolao,L.Magni,R.Scattolini.Stabilizing receding horizon control of nonlinear time-varying system s.IEEE Transactions on Automatic Control,1998,43(7):1030–1036.

    [19]M.A.Mohammadkhani,F.Bayat,A.A.Jalali.Design of explicit model predictive control for constrained linear system s with disturbances.International Journal of Control,Automation,and System s,2014,12(2):294–301.

    [20]J.A.Primbs,C.H.Sung.Stochastic receding horizon control of constrained linear system s with state and control multiplicative noise.IEEE Transactions on Automatic Control,2009,54(2):221–230.

    [21]D.Bernardini,A.Bemporad.Stabilizing model predictive control of stochastic constrained linear system s.IEEE Transactions on Automatic Control,2012,57(6):1468–1480.

    [22]H.Zhang,H.Wang,L.Li.Adapted and casual maxim um principle and analytical solution to optimal control for stochastic multiplicative noise systems with multiplt input-delays.Proceedings of the 51st IEEE Annual Conference on Decision and Control,Hawaii:IEEE,2012:2122–2177.

    [23]L.Chen,Z.Wu.Maxim um principle for the stochastic optimal control problem with delay and application.Automatica,2010,46(6):1074–1080.

    [24]S.Niwa,M.Hayase,I.Sugiura.Stability of linear time-varying system s with state dependent noise.IEEE Transactions on Automatic Control,1976,21(5):775–776.

    [25]C.Tan,L.Li,H.Zhang.Stabilization of networked control system s with both network-induced delay and packet dropout.Automatica,2015,59:194–199.

    猜你喜歡
    靜秋全因額頭
    全人群補(bǔ)維生素D并非必要
    為什么發(fā)燒時(shí)要給額頭降溫
    烏司他丁聯(lián)合連續(xù)性腎臟替代療法治療重癥燒傷患者的效果及對(duì)炎癥因子、28d全因死亡率的影響
    老年缺血性腦卒中急性期血壓與預(yù)后的關(guān)系
    兩張小紙片
    一束光在孩子的額頭上
    夷陵那棵山楂樹(shù)
    周冬雨 找到真我
    山楂樹(shù)之戀》:文革歲月中的純愛(ài)
    額頭上的數(shù)字
    成人鲁丝片一二三区免费| 亚洲人成网站在线播| 国产亚洲午夜精品一区二区久久 | 人妻一区二区av| 欧美xxxx性猛交bbbb| 亚洲激情五月婷婷啪啪| 国产91av在线免费观看| 免费av毛片视频| 欧美日韩亚洲高清精品| 国产一区二区三区av在线| 国产一区二区三区综合在线观看 | 国产成人精品婷婷| freevideosex欧美| 岛国毛片在线播放| 亚洲av在线观看美女高潮| 午夜福利视频精品| 嫩草影院精品99| 国产免费福利视频在线观看| 国产有黄有色有爽视频| 亚洲国产高清在线一区二区三| 欧美区成人在线视频| 看黄色毛片网站| 晚上一个人看的免费电影| 中文字幕亚洲精品专区| 亚洲不卡免费看| 免费黄网站久久成人精品| 日韩欧美国产在线观看| 少妇的逼水好多| 亚洲在线自拍视频| 国产大屁股一区二区在线视频| 亚洲丝袜综合中文字幕| 国产伦一二天堂av在线观看| 一个人看的www免费观看视频| 国产一区二区三区综合在线观看 | 国产国拍精品亚洲av在线观看| 七月丁香在线播放| 亚洲国产欧美人成| 两个人视频免费观看高清| 亚洲av中文av极速乱| 国产精品99久久久久久久久| 国内精品一区二区在线观看| 91精品伊人久久大香线蕉| 男女啪啪激烈高潮av片| 久久久a久久爽久久v久久| 国产黄片视频在线免费观看| 人妻一区二区av| 亚洲精品亚洲一区二区| 青春草国产在线视频| 日韩精品青青久久久久久| 亚洲精品日本国产第一区| 在线观看美女被高潮喷水网站| av免费在线看不卡| 永久免费av网站大全| 亚洲在线观看片| 国产精品一二三区在线看| 欧美日韩国产mv在线观看视频 | 日韩 亚洲 欧美在线| 亚洲av国产av综合av卡| 国产亚洲5aaaaa淫片| 街头女战士在线观看网站| 国产成人91sexporn| 亚洲成人中文字幕在线播放| av在线蜜桃| 看十八女毛片水多多多| 能在线免费看毛片的网站| 欧美+日韩+精品| 在线观看人妻少妇| 蜜桃久久精品国产亚洲av| 最近最新中文字幕免费大全7| 国产黄片美女视频| 国产午夜精品论理片| 欧美97在线视频| 高清在线视频一区二区三区| 欧美3d第一页| 色5月婷婷丁香| 在线 av 中文字幕| 亚洲av一区综合| 成人高潮视频无遮挡免费网站| 少妇熟女欧美另类| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 天堂av国产一区二区熟女人妻| 国产精品伦人一区二区| 最近2019中文字幕mv第一页| 亚洲熟妇中文字幕五十中出| 色网站视频免费| 国产精品麻豆人妻色哟哟久久 | av免费在线看不卡| 国产伦在线观看视频一区| 嘟嘟电影网在线观看| 肉色欧美久久久久久久蜜桃 | 日韩人妻高清精品专区| av女优亚洲男人天堂| av又黄又爽大尺度在线免费看| 亚洲成色77777| 久久精品久久久久久久性| 少妇熟女aⅴ在线视频| 一区二区三区乱码不卡18| 日韩制服骚丝袜av| 伦理电影大哥的女人| 午夜激情欧美在线| 黄色一级大片看看| 亚洲av成人精品一区久久| 熟女人妻精品中文字幕| 亚洲国产精品成人久久小说| 久久久久久久午夜电影| 日韩,欧美,国产一区二区三区| 亚洲精品色激情综合| 中文字幕免费在线视频6| 超碰97精品在线观看| 在线观看美女被高潮喷水网站| av国产免费在线观看| ponron亚洲| 老司机影院成人| 真实男女啪啪啪动态图| 少妇裸体淫交视频免费看高清| 欧美变态另类bdsm刘玥| 亚洲va在线va天堂va国产| 亚洲第一区二区三区不卡| 观看美女的网站| 日韩欧美精品v在线| 精品亚洲乱码少妇综合久久| 国产亚洲午夜精品一区二区久久 | 国产精品蜜桃在线观看| 美女大奶头视频| 亚洲精品色激情综合| 18禁在线播放成人免费| 亚洲精品一二三| 亚洲精品影视一区二区三区av| 全区人妻精品视频| 在线免费十八禁| 精品国产露脸久久av麻豆 | 777米奇影视久久| 91精品国产九色| 免费大片18禁| 国产一区二区在线观看日韩| 国产白丝娇喘喷水9色精品| 色尼玛亚洲综合影院| 成人无遮挡网站| 黄片wwwwww| 一级毛片黄色毛片免费观看视频| 99久久人妻综合| 午夜福利在线观看吧| 亚洲综合色惰| 久久鲁丝午夜福利片| 观看免费一级毛片| 精品人妻熟女av久视频| 久久99热这里只频精品6学生| 日韩欧美精品v在线| 全区人妻精品视频| 欧美日本视频| 久久精品国产亚洲av天美| 精品一区二区三区视频在线| 国产日韩欧美在线精品| 亚洲精品成人av观看孕妇| 黄片wwwwww| 国产久久久一区二区三区| 69人妻影院| 菩萨蛮人人尽说江南好唐韦庄| 国产男女超爽视频在线观看| 亚洲国产精品国产精品| 亚洲欧美清纯卡通| 亚洲国产欧美在线一区| 寂寞人妻少妇视频99o| 亚洲av成人精品一区久久| 国产成人a∨麻豆精品| 99热网站在线观看| 蜜臀久久99精品久久宅男| 国产成人freesex在线| 亚洲av不卡在线观看| 免费大片18禁| 少妇人妻一区二区三区视频| 精品人妻熟女av久视频| 有码 亚洲区| 亚洲精品乱码久久久久久按摩| 国产精品一区二区三区四区免费观看| 久久精品国产亚洲av天美| 国产成人精品婷婷| 日产精品乱码卡一卡2卡三| 成年版毛片免费区| 大又大粗又爽又黄少妇毛片口| 韩国高清视频一区二区三区| 免费观看在线日韩| 国产亚洲91精品色在线| 亚洲欧美日韩无卡精品| 国产伦一二天堂av在线观看| 麻豆成人午夜福利视频| 爱豆传媒免费全集在线观看| 欧美激情久久久久久爽电影| 亚洲精品456在线播放app| 国产精品三级大全| 精品一区二区三区人妻视频| 欧美潮喷喷水| 五月天丁香电影| 久久久久久伊人网av| av天堂中文字幕网| 久久久久九九精品影院| 少妇的逼好多水| 精品一区二区免费观看| 美女大奶头视频| 国产一级毛片七仙女欲春2| 亚洲在线观看片| 成人无遮挡网站| 97在线视频观看| av播播在线观看一区| 高清午夜精品一区二区三区| 欧美变态另类bdsm刘玥| 最近2019中文字幕mv第一页| 一个人观看的视频www高清免费观看| 国产 亚洲一区二区三区 | 日韩欧美三级三区| 3wmmmm亚洲av在线观看| 久久99精品国语久久久| 国产精品久久久久久久电影| 日韩成人伦理影院| 免费看不卡的av| 极品少妇高潮喷水抽搐| 毛片一级片免费看久久久久| 一级毛片电影观看| 亚洲综合色惰| 在线免费观看的www视频| 精品久久久久久久久亚洲| 看十八女毛片水多多多| 精品不卡国产一区二区三区| 国产日韩欧美在线精品| 午夜爱爱视频在线播放| 国国产精品蜜臀av免费| 免费大片18禁| 国国产精品蜜臀av免费| 亚洲精品久久午夜乱码| 午夜亚洲福利在线播放| 在线免费观看的www视频| 久久久成人免费电影| 精品久久久久久久久av| 国产 亚洲一区二区三区 | 日产精品乱码卡一卡2卡三| 国产一区二区在线观看日韩| 九九久久精品国产亚洲av麻豆| 亚洲精品日韩av片在线观看| 九九久久精品国产亚洲av麻豆| 七月丁香在线播放| 免费电影在线观看免费观看| 国产一区二区在线观看日韩| 九九久久精品国产亚洲av麻豆| 亚洲自偷自拍三级| 少妇被粗大猛烈的视频| 久久99热这里只有精品18| 亚洲欧洲国产日韩| 日韩一本色道免费dvd| av播播在线观看一区| 亚洲av中文av极速乱| 亚洲精品久久久久久婷婷小说| 国产精品福利在线免费观看| 街头女战士在线观看网站| 少妇人妻一区二区三区视频| 国产av在哪里看| 午夜福利网站1000一区二区三区| 高清午夜精品一区二区三区| 免费观看av网站的网址| 日本免费在线观看一区| 免费av不卡在线播放| 九九在线视频观看精品| 纵有疾风起免费观看全集完整版 | 亚洲国产最新在线播放| 国产真实伦视频高清在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧洲日产国产| 国产精品爽爽va在线观看网站| 又粗又硬又长又爽又黄的视频| 五月伊人婷婷丁香| 少妇被粗大猛烈的视频| 丰满人妻一区二区三区视频av| 国产精品一区二区三区四区久久| 欧美日韩在线观看h| 中文字幕av在线有码专区| 亚洲在久久综合| 三级经典国产精品| 最近中文字幕2019免费版| 在线播放无遮挡| 中文在线观看免费www的网站| 亚洲久久久久久中文字幕| 国产美女午夜福利| 亚洲aⅴ乱码一区二区在线播放| 能在线免费看毛片的网站| 最近2019中文字幕mv第一页| 国产淫片久久久久久久久| 久热久热在线精品观看| 久久6这里有精品| 久久99热这里只有精品18| 国产精品人妻久久久影院| 亚洲成人中文字幕在线播放| 日韩一本色道免费dvd| 亚洲va在线va天堂va国产| 久久精品人妻少妇| 中文天堂在线官网| av卡一久久| 亚洲va在线va天堂va国产| 免费黄色在线免费观看| 99热这里只有精品一区| 午夜精品一区二区三区免费看| 精品少妇黑人巨大在线播放| 欧美三级亚洲精品| 亚洲真实伦在线观看| 亚洲欧美成人综合另类久久久| 亚洲av成人av| 国产亚洲最大av| 日韩欧美精品免费久久| 青春草国产在线视频| 直男gayav资源| 国产老妇伦熟女老妇高清| 国产精品久久久久久久久免| 欧美极品一区二区三区四区| 久久精品熟女亚洲av麻豆精品 | 精品一区二区免费观看| 97人妻精品一区二区三区麻豆| 在线免费观看的www视频| 中国国产av一级| 成人无遮挡网站| 99热6这里只有精品| 免费黄频网站在线观看国产| 色5月婷婷丁香| 一级毛片黄色毛片免费观看视频| 日韩欧美精品v在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品亚洲一区二区| 九九久久精品国产亚洲av麻豆| or卡值多少钱| 国产精品熟女久久久久浪| 麻豆乱淫一区二区| 观看免费一级毛片| 一个人观看的视频www高清免费观看| 亚洲人成网站在线播| 亚洲欧美成人精品一区二区| 日韩精品青青久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 国产探花极品一区二区| 女人久久www免费人成看片| 精品一区二区三区人妻视频| 国产精品综合久久久久久久免费| 久久99精品国语久久久| 国产一级毛片七仙女欲春2| 91久久精品电影网| 免费播放大片免费观看视频在线观看| 午夜激情久久久久久久| 国产精品国产三级国产av玫瑰| 乱人视频在线观看| 午夜福利视频精品| 国产精品国产三级国产专区5o| 在现免费观看毛片| 国产69精品久久久久777片| 成人性生交大片免费视频hd| 狠狠精品人妻久久久久久综合| 大又大粗又爽又黄少妇毛片口| 国产伦理片在线播放av一区| 亚洲av免费高清在线观看| 国产淫片久久久久久久久| 久久精品久久精品一区二区三区| 能在线免费观看的黄片| 毛片女人毛片| 卡戴珊不雅视频在线播放| 国产片特级美女逼逼视频| 久久久久久久国产电影| 国产欧美日韩精品一区二区| 波野结衣二区三区在线| 一个人看的www免费观看视频| 人体艺术视频欧美日本| av播播在线观看一区| 高清av免费在线| 欧美xxxx黑人xx丫x性爽| 乱系列少妇在线播放| 久久久久网色| 18禁在线播放成人免费| 大片免费播放器 马上看| 久久精品国产亚洲av天美| 午夜福利视频1000在线观看| 久久精品久久久久久久性| 乱码一卡2卡4卡精品| 久久韩国三级中文字幕| 国产精品久久久久久av不卡| 99久国产av精品| 亚洲精品乱码久久久v下载方式| 久久久久久久大尺度免费视频| 插阴视频在线观看视频| 欧美高清性xxxxhd video| 成人毛片60女人毛片免费| 嫩草影院精品99| 日日摸夜夜添夜夜添av毛片| xxx大片免费视频| 日本一本二区三区精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成网站在线播| 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| 亚洲国产高清在线一区二区三| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 在线观看美女被高潮喷水网站| 国产精品麻豆人妻色哟哟久久 | 中文字幕av在线有码专区| 欧美日韩在线观看h| 精品欧美国产一区二区三| 少妇熟女aⅴ在线视频| 亚洲内射少妇av| 日本三级黄在线观看| 久久久久久久久久成人| 亚洲自偷自拍三级| 美女cb高潮喷水在线观看| av在线亚洲专区| 在线免费观看的www视频| 国产亚洲一区二区精品| 精品一区二区三区人妻视频| 日韩欧美精品免费久久| 亚洲无线观看免费| 国产一级毛片七仙女欲春2| 观看美女的网站| 久久久精品免费免费高清| 亚洲国产精品专区欧美| 免费看日本二区| 欧美激情国产日韩精品一区| 女人十人毛片免费观看3o分钟| 国产又色又爽无遮挡免| 国产极品天堂在线| 亚洲最大成人手机在线| 成人亚洲欧美一区二区av| 亚洲国产av新网站| 亚洲真实伦在线观看| 毛片女人毛片| 国产精品伦人一区二区| 日韩欧美 国产精品| 亚洲av成人精品一二三区| 最近的中文字幕免费完整| 国产成人精品福利久久| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看| 国产老妇女一区| 成人国产麻豆网| 色综合站精品国产| 国产老妇伦熟女老妇高清| 成人一区二区视频在线观看| 五月伊人婷婷丁香| 久久久久久久国产电影| 人人妻人人看人人澡| 男女下面进入的视频免费午夜| av在线播放精品| 赤兔流量卡办理| 国产精品1区2区在线观看.| 少妇裸体淫交视频免费看高清| 51国产日韩欧美| 女人久久www免费人成看片| 国产一区二区亚洲精品在线观看| 亚洲图色成人| 国产精品综合久久久久久久免费| 国产亚洲av嫩草精品影院| 白带黄色成豆腐渣| 国产黄色免费在线视频| 一个人观看的视频www高清免费观看| 日韩在线高清观看一区二区三区| 亚洲精品aⅴ在线观看| 麻豆久久精品国产亚洲av| 成人毛片60女人毛片免费| 少妇猛男粗大的猛烈进出视频 | 日本免费在线观看一区| 偷拍熟女少妇极品色| 免费少妇av软件| 国产一区二区亚洲精品在线观看| 国产 一区 欧美 日韩| 精品久久久久久久久av| 欧美一级a爱片免费观看看| 日韩强制内射视频| a级一级毛片免费在线观看| 深爱激情五月婷婷| 国产精品不卡视频一区二区| av在线播放精品| 丝瓜视频免费看黄片| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 26uuu在线亚洲综合色| 免费黄色在线免费观看| 亚洲精品日韩在线中文字幕| 国产成人aa在线观看| 久久国产乱子免费精品| 国产精品国产三级国产专区5o| 亚洲精品亚洲一区二区| 亚洲国产精品成人久久小说| 国产精品一区二区在线观看99 | 秋霞伦理黄片| 日韩欧美精品v在线| 久久久久久久久大av| 国产美女午夜福利| 国产永久视频网站| 亚洲精品影视一区二区三区av| 久久久久国产网址| 国产精品女同一区二区软件| 18+在线观看网站| 久久久亚洲精品成人影院| 成人无遮挡网站| 搞女人的毛片| 国产精品日韩av在线免费观看| 69人妻影院| 国产一区有黄有色的免费视频 | ponron亚洲| 成人午夜高清在线视频| videossex国产| 黄色配什么色好看| 亚洲av福利一区| av卡一久久| 色5月婷婷丁香| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久av不卡| www.av在线官网国产| 午夜激情久久久久久久| 亚洲三级黄色毛片| 寂寞人妻少妇视频99o| 日韩一区二区三区影片| 亚洲精品久久久久久婷婷小说| 亚洲av电影不卡..在线观看| 欧美精品国产亚洲| 国产精品99久久久久久久久| 免费大片18禁| 免费看不卡的av| 激情五月婷婷亚洲| 80岁老熟妇乱子伦牲交| 五月伊人婷婷丁香| 国产淫片久久久久久久久| 九草在线视频观看| 日日干狠狠操夜夜爽| 人妻一区二区av| 亚洲欧洲日产国产| 成年av动漫网址| kizo精华| 久久久午夜欧美精品| 午夜激情欧美在线| 三级经典国产精品| 国产又色又爽无遮挡免| 亚洲精品乱码久久久久久按摩| 国产不卡一卡二| 91精品伊人久久大香线蕉| 成人高潮视频无遮挡免费网站| 高清日韩中文字幕在线| 亚洲高清免费不卡视频| 久久久久久久久久人人人人人人| 六月丁香七月| 日韩欧美一区视频在线观看 | 啦啦啦中文免费视频观看日本| 国产免费又黄又爽又色| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻视频免费看| 99久国产av精品| 欧美日韩精品成人综合77777| 视频中文字幕在线观看| 中文字幕久久专区| 色综合站精品国产| 午夜爱爱视频在线播放| 国产永久视频网站| 97精品久久久久久久久久精品| 国产精品人妻久久久久久| 久久久亚洲精品成人影院| 国产片特级美女逼逼视频| 国产男女超爽视频在线观看| 熟妇人妻久久中文字幕3abv| 国产精品人妻久久久影院| 中文字幕制服av| 亚洲国产精品sss在线观看| 久久久久久久久久黄片| 国产精品久久久久久精品电影小说 | 日韩一本色道免费dvd| 国产老妇伦熟女老妇高清| 美女国产视频在线观看| 一级黄片播放器| 在线观看人妻少妇| 亚洲欧洲国产日韩| 亚洲av在线观看美女高潮| 我要看日韩黄色一级片| 嘟嘟电影网在线观看| 国产黄色小视频在线观看| 免费黄频网站在线观看国产| 又大又黄又爽视频免费| 最近最新中文字幕大全电影3| 欧美一区二区亚洲| 久久亚洲国产成人精品v| 99久国产av精品国产电影| ponron亚洲| 日日啪夜夜爽| 最近最新中文字幕免费大全7| 亚洲,欧美,日韩| 丝袜美腿在线中文| 精品国产露脸久久av麻豆 | 美女脱内裤让男人舔精品视频| 亚洲高清免费不卡视频| 日本免费在线观看一区| 日本一二三区视频观看| 男女啪啪激烈高潮av片| 国产乱人偷精品视频| xxx大片免费视频| 看十八女毛片水多多多| videossex国产| 欧美日韩在线观看h| 久久久久久久大尺度免费视频| 男女国产视频网站| 国产亚洲精品av在线| 日韩亚洲欧美综合| 不卡视频在线观看欧美| 成人午夜高清在线视频| .国产精品久久| 久久韩国三级中文字幕| 国产伦在线观看视频一区| 69人妻影院| 男人舔奶头视频| 欧美3d第一页| 精品久久国产蜜桃| kizo精华| 五月天丁香电影| 男女啪啪激烈高潮av片| 中文在线观看免费www的网站| eeuss影院久久|