• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sampled-data extended state observer for uncertain nonlinear systems

    2016-05-14 06:51:49ChuanTIANPengYANZhenZHANG
    Control Theory and Technology 2016年3期

    Chuan TIAN ,Peng YAN ,2?,Zhen ZHANG

    1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;

    2.Key Laboratory of High-efficiency and Clean Mechanical Manufacturing,Ministry of Education,School of Mechanical Engineering,Shandong University,Jinan Shandong 250061,China

    3.Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China

    1 Introduction

    The existence of various disturbances and model uncertainties poses major challenges in the design of control systems,where the situation is further complicated in sophisticated control applications with demanding performance requirements such as aerospace industries and modern precision industries.There are abundantresearch results addressing challenging problems on antidisturbance control of systems with parametric variations,unmodeled dynamics and external disturbances.The readers can be referred to[1]and references therein for recent advances in control techniques for disturbance/uncertainty estimation and attenuation.

    One major category in anti-disturbance control is disturbance observer based control(DOBC)approach,where disturbance observers are introduced to estimate and compensate the uncertainties and disturbances.Based on the observation mechanism,disturbance observers in both frequency domain[2,3]and time domain[4,5]are proposed in the literature.Alternatively,the method of active disturbance rejection control(ADRC)([6,7])is also well discussed,where successful industry applications have been achieved such as MEMS gyroscopes[8],robotics[9]and high precision motion control[10].As a key part of the ADRC control structure,the extended state observer(ESO)is developed to estimate uncertainties and disturbances simultaneously by lumping them into an an extended state as the“total disturbance”for disturbance elimination purposes.

    In recent years,theoretical analysis on the linear ESO(LESO)and the nonlinear ESO(NLESO)has attracted more and more research efforts as well.In[8]and[11],the convergence of LESO is given analytically.Based on time-varying PD-eigenvalues assignmentand Kalman filter algorithms respectively,adaptive extended state observers(AESO)in the form of LESO are presented to improve the performance of ESO and cancel the peaking phenomenon[12,13].To have more design flexibility for complicated systems,[12],nonlinear extended state observer(NLESO)design and analysis are also discussed for both single-input-single-output(SISO)systems[14],and multiple-input-multiple-output(MIMO)cases[15],as well as uncertain lower triangular nonlinear systems[16].Furthermore,the NLESO method is improved by replacing constant observer gains with time-varying gains in[17].

    Although most of the results stated above,especially for NLESO,are based on continuous time,the ESO typically needs to be implemented in discrete-time in various computer-based controlapplications.The digitalimplementations of ESO have also received considerable attention,e.g.,different discrete approximation methods[18],the relationship between sampling periods and control bandwidth for LESO[19]and incremental algorithm design[20].In a similar fashion,the discrete form of NLESO is discussed in[7].Note that most of the existing works stated above are designed based on a direct discretization of the plant models.However,many complications in sampled-data systems can not be fully addressed by the design methods discussed above,e.g.,the existence ofperturbationsofsampling schedule[21],or control systems with multiple sampling rates[22].

    It is noticed that a continuous-discrete observer method was discussed in[21],where an inter-sample output predictor was used to predict the inter-sample dynamics in sampled-data nonlinear observer design.This design has a hybrid structure because the states are estimated in continuous time and the predictor is updated discontinuously only at the sampling time to correct the estimated state trajectory.Such sampleddata observer design has been widely investigated recently,e.g.,sampled-data high gain observers for networked control systems[23]where sampling periods are nonuniform,and sampled-data extended high gain observers with multi-rate control applications in electrohydraulic actuator systems[22].

    Inspired by this line of research on continuousdiscrete observer design,we propose a sampled-data extended state observerdesign with nonlineargain function,where the convergence of the proposed observer is analyzed by a Lyapunov function based method.Meanwhile,the relationship between the observer error bound and the observer gain parameters is also derived.The present work is an extension of[14],which is capable of generating continuous state estimation based on sampled-data system measurement.For applications requiring multiple sampling rates,the proposed design offers the opportunity to compensating high frequency disturbances using an up-sampling compensator,while using the original sampling rate for the rest of control system.For example,when the proposed ESO is employed in an multi-rate ADRC controlframework as illustrated in Fig.1,the inter-sample information(by prediction)can be used to handle high frequency disturbances by up-sampling the observer output,while the feedback controller is still running in the original sampling rate to handle low frequency disturbances.Multi-rate control systems have been successfully implemented in various industry applications such as Hard Disk Drive servo systems[24].

    The rest of the paper is organized as follows:In Section 2,some definitions and notations which will be used in this paper are given.The system and continuous time ESO formulation are described in Section 3.The sampled-data nonlinearextended state observerfornonlinear uncertain systems with sampled measurements is proposed in Section 4,where the exponential convergence of the observer is also given by using Lyapunov approach.In Section 5,simulation results are presented to show the effectiveness of the design,followed by conclusions in Section 6.

    Fig.1 The diagram of sampled-data control system with NLESO.

    2 Notations and de finitions

    In this section,some mathematical notations used in this paper are introduced.R=(-∞,+∞)is the set of real numbers and Rndenotes the set of real vectors of n-dimension.Cis the continuous function.?·?presents the euclidian norm on Rn.Some countable set

    3 Problem formulation

    Consider ann-dimensional SISO nonlinear system

    wherey∈R is the system output,f∈C(Rn,R)represents a possibly unknown nonlinear dynamics of the system,u∈C(R,R)is the input,bis a given constant,andd∈C(R,R)is the external disturbance.Then system(1)can be presented in the following form:

    wheref+d,the total disturbance,is set as an extended state of the system,and leth=f˙+d˙,x=[x1x2···xn]T∈ Rnis the state of the system,whose initial values can be set asxi(t0)fori=1,2,...,n.Inspired by the work of[14],a nonlinear extended state observer can be designed for system(2),

    The above observer is a special form of ESO proposed in[6],wherex=[x1···xn+1]∈Rn+1is the estimated state of ESO,the initial condition can be set asxi(t0),the gain ε describes a small positive constant,gi,i=1,2,...,n+1 denote chosen nonlinear functions.According to[14],the error dynamics of the ESO are expected to exponentially converge to 0,namelyx-x→0,as ε → 0 andt→ ∞.

    Although the above plant system,as well as the ESO design,can be discretized directly for computerbased digital implementations,some complications(e.g.,nonuniform sampling systems,or multi-rate sam-pling systems)cannot be well addressed.Recall the multi-rate ADRC control architecture depicted in Fig.1,we would like to investigate the sampled-date NLESO design based on discrete time system output and generate continuous observer output,such that the ESO output can be up-sampled to handle high frequency disturbances out of the control bandwidth using original sample rate.For such purposes,we would like to investigate the sampled-data case of NLESO(3)by applying the continuous-discrete observer design technique similar to[21].

    Fig.2 The diagram of sampled-data system with NLESO.

    4 Sampled-data NLESO design

    In this section,we consider the sampled-data NLESO design problem.As depicted in the block diagram in Fig.1,the sampled-data NLESO is composed of an intersample output predictor and a NLESO,where the measurement of the system output is only available at each sampling time.Besides the control inputu,the prediction of outputwis the other input of the NLESO instead of the real system outputy,and some information of state estimations is used in the inter-sample output predictor.The observer is designed in continuous time and the states of the observer can be potentially sampled digitally,even with a sampling time different from that of the output measurement when discretization,thus facilitates multi-rate control system design.

    First,we consider system(1)with the sampled-data output measurement as

    where the output data can be measured at each sampling time τk.Then a sampled-data NLESO with output predictor can be designed as

    wherexdenotes contious-time estimate state ofx.w(t)is the prediction of outputybetween two consecutive sampling instants,which is updated at the start of each sampling interval.Moreover,the outputpredictorforthe time interval between two consecutive measurements can be shown as

    Then,according to systems(4)and(5)we set

    In what follows,we will give the main results of this paper.First of all,some assumptions are made for the sampled-data NLESO.

    Assumption 1The unknown functionsf,dare continuously differentiable with respect to their variables,for some positive constantscj,j=0,1,...,nand posi-tive integerq,such that

    Assumption 2The solutionsxito system(2)and disturbancedsatisfy|d|+|xi(t)|?m1for some constantm1>0;i=1,2,...,nandt?0.

    Assumption 3For?η =[η1η2···ηn+1]T∈ Rn+1,there exist constants λi,fori=1,...,4 and positive definite radially unbounded and continuous differentiable functionsV1,W1:Rn+1→R such that

    Assumption 4Functionsgi(·)∈C(R,R)are globally Lipschitz on a compact set ζ ofz,namely for(z1,z2)∈R×R,there exists γ > 0 such that

    Theorem 1Consider the sampled-data system(4).If Assumptions 1–4 hold,then the states of the sampleddata NLESO(5)exponentially converge to the states and extended state of system(4),namely for σ>0,there exists a sufficiently small ε,a ε-dependentTand a positive boundedrmaxsuch that

    ProofUnder Assumptions 1 and 2 and the dynamic of extended state(9),there exists a constantM>0,such that|?(t)|?M.

    Inspired by[23],we consider the following candidate Lyapunov function:

    where we introduce an additional termV2(t)with respect to the output predictor,θ is a positive constant which can be computed as follows and κ(t)is a positive and bounded function.This function satisfies the following conditions:

    First,under Assumptions 3 and 4,we consider the time derivative ofV1(η(t))along the solution η(t)to system(4),and obtain

    The following bound regarded to(15)can be derived by recalling the Young inequality:

    Combining(17)with(18),we can obtain

    By Assumption 3 again,integrating(24)on the interval[τk,t]yields

    Consider(12)–(14)and the fact that ?(τk)=0,η(τk)=η(τ-k)at the time instantt= τk,then we will have

    It means that the observer error is ultimately bounded and we can choose ε small enough to reduce the bound of error.Moreover,the right hand side of(30)converges exponentially to 0,as ε→ 0.In addition,we can compute the value ofrmaxas

    5 Numerical simulations

    In this section,a numerical example is given to illustrate the effectiveness of the proposed observer.Inspired by[14]and[17],consider the following nonlinear

    We take the system inputu(t),external disturbanced(t),and nonlinear functionf(t,x)in the above system respectively as

    By following the design procedure in the above section,We can design the following sampled-data nonlinear extended state observer

    where the nonlinear function ? :R → R is defined as

    In this case,the global Lipschitz nonlinear functionsgiin the ESO in(5)can be specified as

    Note that Assumptions 1–4 are all satisfied.Thus,(36)is a well-defined sampled-data NLESO for system(35)according to Theorem 1.Now we can define the Lyapunov function as

    The positive definite matrixPcan be chosen according to[14],and the convergence can be guaranteed by the method presented in Section 4.

    The initial states of the plant(30)and the ESO(31)are set as(1,1)Tand(0,0,0)T,respectively.The time step for calculation is 0.005 s,and the sampling time of the output measurement isr=0.01 s.

    Fig.3 Numerical simulations for system(32)by sampled-data NLESO y and w.

    Fig.4 Numerical simulations for system(32)by sampled-data y and w.

    6 Conclusions

    In this paper,a sampled-data nonlinear extended state observer for uncertain nonlinear systems subject to discrete time measurement was developed,where the inter-sample dynamics and sampling schedule were considered.The exponential convergence of the observer was analyzed by introducing a Lyapunov function chosen for hybrid systems.The relations between the observer error bound and the observer parameters were explicitly given.The numerical simulation results demonstrated the convergence ofthe proposed observer and inter-sample output predictor.Future works,along this line of research,include sampled-data ADRC or sampled-data output feedback control based on the proposed observer,as well as their industrial applications.

    [1]W.-H.Chen,J.Yang,L.Guo,et al.Disturbance observer-based control and related methods:An overview.IEEE Transactions on Industrial Electronics,2015,63(2):1083–1095.

    [2]K.Ohishi,M.Nakao,K.Ohnishi,et al.Microprocessor controlled DC motor for load-insensitive position servo system.IEEE Transactions on Industrial Electronics,1987,34(1):44–49.

    [3]E.Sariyildiz,K.Ohnishi.Stability and robustness of disturbanceobserver-based motion control systems.IEEE Transactions on Industrial Electronics,2015,62(1):414–422.

    [4]L.Guo,W.-H.Chen.Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach.International Journal of Robust and Nonlinear Control,2005,15(3):109–125.

    [5]J.Yang,S.Li,X.Yu.Sliding-mode control for systems with mismatched uncertainties via a disturbance observer.IEEE Transactions on Industrial Electronics,2013,60(1):160–169.

    [6]J.Han.A class of extended state observers for uncertain systems.Control and Decision,1995,10(1):85–88(in Chinese).

    [7]J.Han.From PID to active disturbance rejection control.IEEE Transactions on Industrial Electronics,2009,56(3):900–906.

    [8]Q.Zheng,L.Dong,D.H.Lee,et al.Active disturbance rejection control for MEMS gyroscopes.IEEE Transactions on Control Systems Technology,2009,17(6):1432–1438.

    [9]S.E.Talole,J.P.Kolhe,S.B.Phadke.Extended-stateobserver-based control of flexible-joint system with experimental validation.IEEE Transactions on Industrial Electronics,2010,57(4):1411–1419.

    [10]T.Leng,P.Liu,P.Yan,et al.Modeling and active disturbance rejection control for a piezoelectric-actuator driven nanopositioner.Proceedingsofthe33rdChineseControl Conference,Nanjing:IEEE,2014:5910–5915.

    [11]Q.Zheng,L.Dong,Z.Gao.On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknow dynamics.Proceedings of the IEEE Conference on Decision and Control,New Orleans:IEEE,2007:3501–3506.

    [12]Z.Pu,R.Yuan,J.Yi,et al.A class of adaptive extended state observers for nonlinear disturbed systems.IEEE Transactions on Industrial Electronics,2015,62(9):5858–5869.

    [13]W.Xue,W.Bai,S.Yang,et al.ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines.IEEE Transactions on Industrial Electronics,2015,62(9):5847–5857.

    [14]B.Guo,Z.Zhao.On the convergence of an extended state observer for nonlinear systems with uncertainty.Systems&Control Letters,2011,60(6):420–430.

    [15]B.Guo,Z.Zhao.On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty.IET Control Theory&Applications,2012,6(15):2357–2386.

    [16]B.Guo,Z.Zhao.Extended state observer for uncertain lower triangular nonlinear systems.Systems&Control Letters,2015,85:100–108.

    [17]B.Guo,Z.Zhao.On active disturbance rejection control for nonlinear systems using time-varying gain.European Journal of Control,2015,23:62–70.

    [18]R.Miklosovic,A.Radke,Z.Gao.Discrete implementation and generalization of the extended state observer.Proceedings of the American control conference,Minneapolis:IEEE,2006:2209–2214.

    [19]S.Shi,J.Li,S.Zhao.On design analysis oflinearactive disturbance rejection control for uncertain system.International Journal of Control and Automation,2014,7(3):225–236.

    [20]G.Herbst.Practical active disturbance rejection control:Bumpless transfer,rate limitation and incrementalalgorithm.IEEE Transactions on Industrial Electronics,2016,63(3):1754–1762.

    [21]I.Karafyllis,C.Kravaris.From continuous-time design to sampled-data design ofobservers.IEEETransactionsonAutomatic Control,2009,54(9):2169–2174.

    [22]A.A.Sofiane.Sampled data observer based inter-sample output predictor for electro-hydraulic actuators.ISA transactions,2015,58:421–433.

    [23]T.Ahmed-Ali,F.Lamnabhi-Lagarrigue.High gain observer design for some networked control systems.IEEE Transactions on Automatic Control,2012,57(4):995–1000.

    [24]H.Fujimoto,Y.Hori.High-performance servo systems based on multirate sampling control.Control Engineering Practice,2002,10(7):773–781.

    一级毛片高清免费大全| 淫妇啪啪啪对白视频| 岛国在线免费视频观看| 日韩三级视频一区二区三区| 一a级毛片在线观看| 亚洲精品在线观看二区| 国产精品久久久久久亚洲av鲁大| 老熟妇乱子伦视频在线观看| 亚洲欧美日韩东京热| 国产精品亚洲美女久久久| 人妻丰满熟妇av一区二区三区| 男女那种视频在线观看| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合久久99| 国产麻豆成人av免费视频| 又大又爽又粗| 制服丝袜大香蕉在线| 国产黄色小视频在线观看| 亚洲国产欧洲综合997久久,| 99精品欧美一区二区三区四区| 美女高潮喷水抽搐中文字幕| 亚洲av免费在线观看| 国产成年人精品一区二区| 日韩欧美三级三区| 午夜a级毛片| 亚洲精品色激情综合| 精品一区二区三区视频在线观看免费| 一个人看视频在线观看www免费 | 又粗又爽又猛毛片免费看| 看黄色毛片网站| 精品国内亚洲2022精品成人| 国产aⅴ精品一区二区三区波| www.精华液| 日本在线视频免费播放| 国产精品一区二区免费欧美| 久久久久国产一级毛片高清牌| 麻豆国产av国片精品| 男人的好看免费观看在线视频| 后天国语完整版免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲欧美精品综合久久99| 法律面前人人平等表现在哪些方面| 亚洲国产精品久久男人天堂| 成人18禁在线播放| 国产精品野战在线观看| 一区二区三区国产精品乱码| 天堂网av新在线| 亚洲午夜理论影院| 淫妇啪啪啪对白视频| 香蕉久久夜色| 老熟妇乱子伦视频在线观看| 色哟哟哟哟哟哟| 午夜福利高清视频| 一进一出抽搐gif免费好疼| 久久精品91蜜桃| 老汉色∧v一级毛片| 亚洲av成人不卡在线观看播放网| 国产三级中文精品| 不卡一级毛片| ponron亚洲| 国产一区在线观看成人免费| 99热只有精品国产| 国产精品精品国产色婷婷| 狠狠狠狠99中文字幕| 日本一二三区视频观看| 欧美激情在线99| 欧美色视频一区免费| 非洲黑人性xxxx精品又粗又长| 后天国语完整版免费观看| x7x7x7水蜜桃| 国产成人啪精品午夜网站| 怎么达到女性高潮| 最近最新中文字幕大全电影3| 亚洲av片天天在线观看| 99久久99久久久精品蜜桃| 国产免费男女视频| 亚洲黑人精品在线| 亚洲精品一区av在线观看| 99久久精品热视频| 国产一区二区在线av高清观看| 国产精品日韩av在线免费观看| 综合色av麻豆| 欧美zozozo另类| 香蕉国产在线看| 精品一区二区三区四区五区乱码| 国内精品久久久久久久电影| 成人亚洲精品av一区二区| 制服人妻中文乱码| 日日夜夜操网爽| 亚洲午夜精品一区,二区,三区| 日韩欧美 国产精品| 美女大奶头视频| 中文字幕人妻丝袜一区二区| 国产精品九九99| a级毛片在线看网站| 麻豆国产av国片精品| 又爽又黄无遮挡网站| 级片在线观看| 9191精品国产免费久久| 一个人看视频在线观看www免费 | 在线国产一区二区在线| 熟妇人妻久久中文字幕3abv| 久久久久国产精品人妻aⅴ院| 欧美一区二区精品小视频在线| 日韩成人在线观看一区二区三区| 久久中文看片网| 亚洲性夜色夜夜综合| 91久久精品国产一区二区成人 | 国产精品自产拍在线观看55亚洲| 夜夜爽天天搞| 亚洲五月婷婷丁香| 欧美成人免费av一区二区三区| 欧美最黄视频在线播放免费| 亚洲专区字幕在线| 欧美日韩黄片免| 欧美av亚洲av综合av国产av| 亚洲av免费在线观看| 国产精品女同一区二区软件 | 一区福利在线观看| 美女高潮喷水抽搐中文字幕| 国产精品精品国产色婷婷| 一本久久中文字幕| 国产成人av教育| 国产精品久久电影中文字幕| 国产 一区 欧美 日韩| 国产精品久久电影中文字幕| 看免费av毛片| 91在线观看av| 国产高潮美女av| 五月伊人婷婷丁香| 少妇裸体淫交视频免费看高清| 18禁裸乳无遮挡免费网站照片| 99久国产av精品| 啦啦啦观看免费观看视频高清| 搡老熟女国产l中国老女人| 欧美不卡视频在线免费观看| 999精品在线视频| www.自偷自拍.com| 老熟妇仑乱视频hdxx| 男女下面进入的视频免费午夜| 亚洲国产欧美人成| 免费看十八禁软件| 国产69精品久久久久777片 | 丰满的人妻完整版| 黄色视频,在线免费观看| 久久九九热精品免费| 久久草成人影院| 免费在线观看日本一区| 亚洲专区字幕在线| 1000部很黄的大片| 热99在线观看视频| 极品教师在线免费播放| 亚洲国产欧美一区二区综合| 日韩有码中文字幕| 精品久久久久久久久久久久久| 搞女人的毛片| 日韩人妻高清精品专区| 91麻豆精品激情在线观看国产| 精品久久久久久久毛片微露脸| 亚洲七黄色美女视频| 99热6这里只有精品| 精品久久久久久久久久久久久| 国产精品亚洲美女久久久| 国内少妇人妻偷人精品xxx网站 | 国产精品亚洲av一区麻豆| 国产高清三级在线| netflix在线观看网站| 久久精品91蜜桃| 草草在线视频免费看| 亚洲精品中文字幕一二三四区| 国产美女午夜福利| 淫妇啪啪啪对白视频| 国产精品99久久99久久久不卡| 男女午夜视频在线观看| 一二三四社区在线视频社区8| 日本a在线网址| 国产视频内射| 午夜精品一区二区三区免费看| 网址你懂的国产日韩在线| 亚洲国产精品999在线| 波多野结衣高清作品| cao死你这个sao货| 欧美3d第一页| 亚洲av成人一区二区三| 熟女人妻精品中文字幕| 国产又黄又爽又无遮挡在线| 少妇熟女aⅴ在线视频| 午夜免费成人在线视频| 免费高清视频大片| 老鸭窝网址在线观看| 亚洲精品456在线播放app | 在线a可以看的网站| 巨乳人妻的诱惑在线观看| 免费看美女性在线毛片视频| 熟女人妻精品中文字幕| 男女那种视频在线观看| 三级男女做爰猛烈吃奶摸视频| 啦啦啦免费观看视频1| 久久中文字幕人妻熟女| 女警被强在线播放| 亚洲欧美日韩高清在线视频| 一级黄色大片毛片| 少妇人妻一区二区三区视频| 欧美日韩中文字幕国产精品一区二区三区| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 国产成+人综合+亚洲专区| 成年女人看的毛片在线观看| 欧美午夜高清在线| 天天躁日日操中文字幕| www国产在线视频色| 中文资源天堂在线| 每晚都被弄得嗷嗷叫到高潮| 黄色女人牲交| 国产成人精品无人区| 日本黄色片子视频| 国产亚洲精品综合一区在线观看| 国产黄片美女视频| 日本五十路高清| 中文字幕人妻丝袜一区二区| 亚洲欧美日韩卡通动漫| 国内精品久久久久久久电影| 怎么达到女性高潮| 成人国产综合亚洲| 伊人久久大香线蕉亚洲五| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区视频在线 | www.精华液| 亚洲色图av天堂| 亚洲激情在线av| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 可以在线观看毛片的网站| 成年女人看的毛片在线观看| 国产精品久久久人人做人人爽| 国产成人精品久久二区二区91| 成年免费大片在线观看| 丁香六月欧美| 国内精品美女久久久久久| 色综合亚洲欧美另类图片| 一个人观看的视频www高清免费观看 | netflix在线观看网站| 欧美又色又爽又黄视频| or卡值多少钱| 欧美黄色淫秽网站| 天堂av国产一区二区熟女人妻| 身体一侧抽搐| 男女床上黄色一级片免费看| 久久性视频一级片| 国产人伦9x9x在线观看| 亚洲成人免费电影在线观看| 久久99热这里只有精品18| 国产精品 国内视频| 亚洲国产中文字幕在线视频| 亚洲专区国产一区二区| 亚洲国产精品sss在线观看| 亚洲无线在线观看| 亚洲人成电影免费在线| 国产精品电影一区二区三区| 亚洲 国产 在线| 成在线人永久免费视频| 99久久精品国产亚洲精品| 91在线观看av| 欧美av亚洲av综合av国产av| 免费大片18禁| 成人鲁丝片一二三区免费| 日本熟妇午夜| 婷婷六月久久综合丁香| 免费看十八禁软件| 亚洲在线自拍视频| 老汉色∧v一级毛片| 国产黄a三级三级三级人| 国产真实乱freesex| 中文字幕高清在线视频| 亚洲真实伦在线观看| 国产精品自产拍在线观看55亚洲| 在线看三级毛片| 91在线观看av| 2021天堂中文幕一二区在线观| 国产黄色小视频在线观看| 精品久久蜜臀av无| 亚洲国产精品合色在线| 精品国产三级普通话版| 丝袜人妻中文字幕| 精品久久久久久久久久免费视频| 午夜两性在线视频| 久久天堂一区二区三区四区| 欧美乱妇无乱码| 窝窝影院91人妻| 欧美又色又爽又黄视频| 免费看美女性在线毛片视频| 精品久久久久久成人av| 在线观看免费视频日本深夜| 色吧在线观看| 欧美日韩一级在线毛片| 人人妻人人看人人澡| 亚洲自拍偷在线| 国产成人精品久久二区二区91| 在线播放国产精品三级| 午夜两性在线视频| АⅤ资源中文在线天堂| 久久这里只有精品19| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 免费搜索国产男女视频| 成人18禁在线播放| 久久精品91蜜桃| 亚洲国产欧美人成| 亚洲一区高清亚洲精品| 精品福利观看| xxxwww97欧美| 成人精品一区二区免费| 国产真人三级小视频在线观看| 日韩高清综合在线| 中文字幕久久专区| 亚洲精品一区av在线观看| 欧美zozozo另类| 国产欧美日韩精品一区二区| 99re在线观看精品视频| 亚洲人与动物交配视频| 国产精品一区二区精品视频观看| a级毛片a级免费在线| 国产精品精品国产色婷婷| 最近视频中文字幕2019在线8| 欧美日韩亚洲国产一区二区在线观看| 国产精品影院久久| 1024手机看黄色片| 真人做人爱边吃奶动态| 99久久精品热视频| 成年女人毛片免费观看观看9| 亚洲人成网站在线播放欧美日韩| 亚洲性夜色夜夜综合| 成人鲁丝片一二三区免费| 麻豆久久精品国产亚洲av| 久久精品综合一区二区三区| 国产在线精品亚洲第一网站| av中文乱码字幕在线| 男人和女人高潮做爰伦理| 欧美日韩精品网址| 欧美性猛交╳xxx乱大交人| 国产aⅴ精品一区二区三区波| 午夜a级毛片| 欧美中文日本在线观看视频| 日韩免费av在线播放| 青草久久国产| www日本在线高清视频| 久久人人精品亚洲av| 国产亚洲av嫩草精品影院| h日本视频在线播放| 亚洲av第一区精品v没综合| 日韩欧美在线乱码| 天堂√8在线中文| xxx96com| 欧美午夜高清在线| 熟女少妇亚洲综合色aaa.| 欧美乱码精品一区二区三区| 十八禁网站免费在线| 亚洲国产精品久久男人天堂| 人人妻人人澡欧美一区二区| 99精品久久久久人妻精品| 婷婷亚洲欧美| 俄罗斯特黄特色一大片| 国产av麻豆久久久久久久| 88av欧美| 精品午夜福利视频在线观看一区| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 久久精品亚洲精品国产色婷小说| 久久久久久大精品| 中文字幕久久专区| 国产精品,欧美在线| 国产麻豆成人av免费视频| 一级黄色大片毛片| a级毛片a级免费在线| 欧美成人免费av一区二区三区| 大型黄色视频在线免费观看| 给我免费播放毛片高清在线观看| 国产伦一二天堂av在线观看| 一个人免费在线观看的高清视频| 99热这里只有是精品50| 国产精品av视频在线免费观看| 欧美黄色淫秽网站| 97碰自拍视频| 两性夫妻黄色片| 国产精品1区2区在线观看.| 十八禁网站免费在线| 一卡2卡三卡四卡精品乱码亚洲| 日韩人妻高清精品专区| 亚洲七黄色美女视频| 日日夜夜操网爽| 免费电影在线观看免费观看| 成人鲁丝片一二三区免费| 99国产精品一区二区三区| 在线观看一区二区三区| 99国产综合亚洲精品| bbb黄色大片| 国产综合懂色| 精华霜和精华液先用哪个| 亚洲性夜色夜夜综合| 禁无遮挡网站| 两性夫妻黄色片| 男女那种视频在线观看| 成人国产一区最新在线观看| 久久精品91无色码中文字幕| 亚洲自偷自拍图片 自拍| 精品久久久久久久毛片微露脸| 中文在线观看免费www的网站| 亚洲美女黄片视频| 亚洲人成电影免费在线| 手机成人av网站| 亚洲九九香蕉| 日韩欧美在线乱码| 国产午夜精品久久久久久| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 中文字幕精品亚洲无线码一区| 99视频精品全部免费 在线 | 亚洲成人久久爱视频| 国产精品国产高清国产av| 1024香蕉在线观看| a级毛片在线看网站| 最近在线观看免费完整版| 99久久国产精品久久久| 免费看日本二区| 亚洲中文字幕一区二区三区有码在线看 | 1024香蕉在线观看| 亚洲第一欧美日韩一区二区三区| 成人特级黄色片久久久久久久| 亚洲精品美女久久久久99蜜臀| 黄色丝袜av网址大全| 国产精品久久久av美女十八| 国产亚洲欧美98| 村上凉子中文字幕在线| 欧美色欧美亚洲另类二区| 亚洲成人久久性| 免费看十八禁软件| 一级黄色大片毛片| 国产一区二区在线av高清观看| 天堂影院成人在线观看| 亚洲国产精品999在线| 99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| 亚洲狠狠婷婷综合久久图片| 啦啦啦观看免费观看视频高清| 国产伦精品一区二区三区视频9 | 中文字幕人妻丝袜一区二区| 老司机午夜福利在线观看视频| 精品一区二区三区视频在线观看免费| 高潮久久久久久久久久久不卡| 欧美乱色亚洲激情| 国产一区在线观看成人免费| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼| www.熟女人妻精品国产| 无遮挡黄片免费观看| 99热6这里只有精品| 午夜福利高清视频| 青草久久国产| 熟女电影av网| 国产精品久久视频播放| 欧美不卡视频在线免费观看| 成人午夜高清在线视频| 少妇熟女aⅴ在线视频| 制服丝袜大香蕉在线| 又黄又爽又免费观看的视频| 香蕉国产在线看| 欧美又色又爽又黄视频| 亚洲国产中文字幕在线视频| 老汉色av国产亚洲站长工具| 亚洲专区字幕在线| 十八禁人妻一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产97色在线日韩免费| 香蕉av资源在线| 国产精品电影一区二区三区| 精品免费久久久久久久清纯| 九九在线视频观看精品| 午夜激情欧美在线| 一a级毛片在线观看| 亚洲人成网站高清观看| 国产精品av久久久久免费| 无限看片的www在线观看| 嫩草影院入口| 99久久久亚洲精品蜜臀av| 亚洲欧美激情综合另类| 午夜a级毛片| 午夜精品一区二区三区免费看| 听说在线观看完整版免费高清| 国产乱人伦免费视频| 亚洲五月天丁香| 国产高清视频在线播放一区| 在线观看日韩欧美| 午夜福利欧美成人| 99热精品在线国产| 两个人视频免费观看高清| 九九在线视频观看精品| 日本撒尿小便嘘嘘汇集6| 巨乳人妻的诱惑在线观看| 久久热在线av| 国产一区二区三区在线臀色熟女| av福利片在线观看| 久9热在线精品视频| 婷婷精品国产亚洲av在线| 精品久久久久久成人av| 亚洲精品国产精品久久久不卡| 韩国av一区二区三区四区| 欧美xxxx黑人xx丫x性爽| 好男人电影高清在线观看| 亚洲avbb在线观看| 日韩三级视频一区二区三区| 国产熟女xx| 日本 欧美在线| 日韩人妻高清精品专区| 99久国产av精品| 宅男免费午夜| 国产探花在线观看一区二区| 欧美性猛交╳xxx乱大交人| 久久国产精品影院| 可以在线观看的亚洲视频| 日韩欧美精品v在线| 精品日产1卡2卡| 欧美在线黄色| 精品久久久久久久久久久久久| 亚洲无线在线观看| 不卡av一区二区三区| 免费大片18禁| 亚洲午夜精品一区,二区,三区| 1024手机看黄色片| 日韩 欧美 亚洲 中文字幕| 免费在线观看日本一区| 99国产精品一区二区蜜桃av| 悠悠久久av| 成人亚洲精品av一区二区| 哪里可以看免费的av片| 手机成人av网站| 在线观看免费午夜福利视频| 日本 av在线| 一区二区三区国产精品乱码| 夜夜爽天天搞| 神马国产精品三级电影在线观看| 久久久久精品国产欧美久久久| 中文字幕熟女人妻在线| 欧美日韩综合久久久久久 | 国产精品亚洲美女久久久| 日本一二三区视频观看| 亚洲国产精品999在线| 天堂网av新在线| 国产高清有码在线观看视频| 色哟哟哟哟哟哟| 色av中文字幕| 天堂√8在线中文| 亚洲午夜精品一区,二区,三区| 操出白浆在线播放| 国产精品久久久人人做人人爽| 99久久99久久久精品蜜桃| 18美女黄网站色大片免费观看| 成人国产一区最新在线观看| 国产人伦9x9x在线观看| 免费观看人在逋| av在线蜜桃| 特大巨黑吊av在线直播| 欧美一区二区国产精品久久精品| 又紧又爽又黄一区二区| 欧美丝袜亚洲另类 | 九色国产91popny在线| 久久中文字幕一级| 国产99白浆流出| 又爽又黄无遮挡网站| 免费高清视频大片| 熟妇人妻久久中文字幕3abv| 99在线视频只有这里精品首页| 男人舔女人下体高潮全视频| 日韩大尺度精品在线看网址| 狠狠狠狠99中文字幕| 两个人的视频大全免费| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区国产精品久久精品| 久久国产精品影院| 国产97色在线日韩免费| www.999成人在线观看| 激情在线观看视频在线高清| 国产成人一区二区三区免费视频网站| 久久久成人免费电影| 亚洲一区二区三区不卡视频| 美女cb高潮喷水在线观看 | 国产在线精品亚洲第一网站| 两个人视频免费观看高清| 国产乱人视频| 久久午夜综合久久蜜桃| 在线观看美女被高潮喷水网站 | 色尼玛亚洲综合影院| 叶爱在线成人免费视频播放| 三级国产精品欧美在线观看 | 美女高潮喷水抽搐中文字幕| 超碰成人久久| 亚洲人与动物交配视频| 免费电影在线观看免费观看| 免费看光身美女| 国产成人一区二区三区免费视频网站| 亚洲,欧美精品.| 国产精品一区二区三区四区免费观看 | 日本撒尿小便嘘嘘汇集6| 日本精品一区二区三区蜜桃| 精品福利观看| 日本黄色片子视频| 变态另类丝袜制服| 在线观看免费视频日本深夜| 99久久综合精品五月天人人| 久久久久久大精品| 欧美日韩黄片免| 欧美国产日韩亚洲一区| 日本免费a在线| www.自偷自拍.com| 欧美一级a爱片免费观看看| 亚洲五月天丁香|