• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gravity Effect on the First Natural Frequency of Offshore Wind Turbine Structures

    2016-05-12 02:04:46MaHongwangChenLongzhuDepartmentofCivilEngineeringShanghaiJiaoTongUniversityShanghai200240ChinaReceived26October2015revisedDecember2015acceptedJanuary2016

    Ma Hongwang,Chen LongzhuDepartment of Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,P.R.China (Received 26 October 2015; revised 4 December 2015; accepted 5 January 2016)

    ?

    Gravity Effect on the First Natural Frequency of Offshore Wind Turbine Structures

    Ma Hongwang*,Chen Longzhu
    Department of Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,P.R.China (Received 26 October 2015; revised 4 December 2015; accepted 5 January 2016)

    Abstract:The fatigue limit state is critical for most offshore wind turbine.To minimize the development of fatigue damage,dynamic amplification of the response must be avoided.Thus,it is important to ensure that the first natural frequency of the offshore wind turbine does not coincide with the excitation frequencies related to wind turbine and wave loadings.For evaluating the self-gravity influence on the first natural frequency of wind turbine support structures,the offshore wind turbine system vibration is modeled using an Euler-Bernoulli beam with axial force and horizontal force.Real data from five wind turbines available in the market are considered.The sizes of wind turbines vary from 2.3 MW to 6 MW,and subsequently,the heights of tubular steel towers vary from 83 m to 100 m.Results indicate that the average influence of gravity on the first natural frequency is nearly 1.8%.The first natural frequency is considered ranging from 1P (rototor frequency) to 3P (blade passing frequency).The design procedure requires an accurate evaluation of the first natural frequency.From this perspective,the first natural frequency is reduced since gravity needs to be considered for the design of offshore wind turbine support structures,especially when the first natural frequency of the offshore wind turbine is close to the lower limit,rotor frequency 1P.

    Key words:offshore wind turbine; the first natural frequency; gravity; Euler-Bernoulli beam

    CLC number: TM614Document code: AArticle ID: 1005-1120(2016)01-0095-07

    * Corresponding author,E-mail address: hwma@ sjtu.edu.cn.

    How to cite this article: Ma Hongwang,Chen Longzhu.Gravity effect on the first natural frequency of offshore wind tur

    bine structures[J].Trans.Nanjing Univ.Aero.Astro.,2016,33(1) : 95-101.

    http: / /dx.doi.org/10.16356 /j.1005-1120.2016.01.095

    0 Introduction

    Offshore windturbines have the potential to be a significant contributor to global energy production,due to the vicinity of the high quality wind resource to coastal energy loads[1-2].Currently,most offshore wind turbines are installed in shallow water on bottom-mounted substructures.Monopiles are often adopted as foundations for offshore wind turbines[3].

    The offshore wind turbines are exposed to several types of external loadings,especially predominant wind and wave actions.Every offshore structure has to withstand almost 109load cycles during life time of 20 years[4].Due to the large number of load cycles in a short time,the fatigue limit state has been found to be critical for most offshore wind turbines.To minimize the development of fatigue damage,dynamic amplification of the response must be avoided[4-5].Therefore,the important point is that the first natural frequency of the wind turbine does not coincide with the excitation frequencies related to wind and wave loadings.

    For an offshore wind turbine including foundation,three classical design approaches have been defined for a three-bladed wind turbine[6]:

    (1) Soft-soft design,where the tower including foundation frequency is less than 1P (rotor frequency),as well as the frequencies related to the dominant wave action.

    (2) Soft-stiff design,where the tower frequency lies between the frequencies 1P and 3P (blade passing frequency) for three bladed turbines.

    (3) Stiff-stiff design,where the tower frequencyis higher than the blade passing frequencies 3P (for three bladed turbines).

    To capture the maximum power at every wind speed,variable speed turbines are gaining market share from constant speed turbines[7].The design approach can be redefined,as illustrated in Fig.1.

    Fig.1 Diagram of allowable frequency range and excitation frequencies

    It is evident that,stiff-stiff approaching requires a very stiff foundation leading to an expensive design.Although it is possible to design a soft-soft structure with the first natural frequency below the rotor frequency.In general,less steel is required for a soft-soft structure.However,for offshore wind turbines the lower bound of 1P range usually lies around the peak of the wave spectrum,where the energy in the waves is the largest.To design a soft-soft offshore wind turbine support structure,the first natural frequency must be well below the wave frequencies,and the soft-soft approach may be critical.Hence for conventional offshore wind turbines,resonance avoidance is often achieved by using the soft-stiff design approach[8-9].

    The National Renewable Energy Laboratory (NRFL) 5 MW wind turbine is illustrated in Fig.1,with a minimum rotational speed at the cut-in wind speed of 6.9 r/min and the maximum rotational speed of 12.1 r/min,considering 10% engineering error.Its frequency interval is relatively narrow,ranging from 0.22 Hz to 0.31 Hz[10].

    It is necessary to accurately calculate the natural frequencies for wind turbine support structures in design phrase.Currently,there is few study related to offshore wind turbine frequencies considering selfgravity of turbine,tower and part pile foundation.In order to accurately calculate the natural frequencies of wind turbine support structures,this paper analyzes gravity influence on the first natural frequency of offshore wind turbines,and analyzes the variation of earthquake load and direct wind load on the tower due to natural frequency variation.

    1 Motion Equation and Boundary Conditions

    1.1Equation of motion for transverse vibrations

    Here,the offshore wind turbine system vibration is modeled using an Euler-Bernoulli beam[11],with axial and horizontal forces as shown in Fig.2.The bending stiffness of the beam is EI,which is fixed to the foundation.The beam has a top mass with rotary inertia J and mass M.This top mass is used to idealize the rotor and blade system.The mass per unit length of the beam is m.In this model the turbine tower is assumed to be fixed at the depth below the original mudline.The fixity depth is determined such that it produces a specified lateral displacement and rotation at the mudline that matches that of the pile embedded in the true soil profile[12].The force P1is a constant compressive axial load P = Mg,and the force q is the unit gravity load of the tower.The axial force distribution p(y) is

    where p(0) = P1+ mL,p(L) = P1,L is the length of the support structure.

    The equation of motion for transverse vibrations of an offshore wind turbine is given by

    where x(y,t) is the transverse deflection of the beam,E the Young's modulus,I the moment of inertia,m the mass per unit length,and p(y) the axial compressive force.

    Fig.2 Structural dynamics beam model for offshore wind support structure

    For any mode of vibration,the lateral deflection x(y,t) may be written in the form of

    where X(y) is the modal deflection,h(t) the harmonic function of time t.If w denotes the circular frequency of h(t),one has

    and the eigenvalue problem of Eq.(2) reduces to the differential equation

    The four boundary conditions are at y =0,and

    At y = L,and

    Without loss of generality,the following dimensionless quantities are introduced

    Then Eq.(5) simplifies in the dimensionless form as follows

    Then the boundary conditions Eqs.(6)—(9) are simplified in the dimensionless form as follows

    At Y =0 and

    At Y =1,and

    The dimensionless mode shape differential Eq.(10) is linear with variable coefficients and may be solved by the method of Naguleswaran[13].The power series solution sought is

    where the coefficients an +1(c) are the functions of the undermined exponent c.X(Y,c) is substituted into the mode shape differential equation and the coefficients are chosen from the recurrence relationship

    Y(X,c) will satisfy the mode shape differential Eq.(10) when provided that c is a root of the indicial equation

    The four power series solution functions are

    The coefficients of the solution functions are

    The general solution of the mode shape differential equation is

    where C1,C2,C3and C4are the constants of integration.

    1.2Frequency equations

    The boundary conditions of Eqs.(11),(12) may be utilized to eliminate two of the constants of Eq.(20) integration,C1= C2= 0.Substituting X (Y) = C3G(Y) + C4H(Y) in the boundary conditions Eqs.(13),(14),the frequency equation for this boundary condition is

    The natural frequencies can be obtained by solving Eq.(21) for α.Denoting the solution of Eq.(21) as αj,the actual natural frequencies of the system can be obtained

    2 Numerical Examples

    2.1Gravity influence on the first natural frequency

    In this paper,the real data from five wind turbines available in the market are considered.The size of wind turbines varies from 2.3 MW to 6 MW,and subsequently,the height of tubular steel tower varies from 83 m to 100 m.The properties of wind turbines are listed in Table 1.Finally,the first two frequencies are calculated using the proposed method and the results are provided in Figs.3,4,respectively.As expected,the natural frequency decreases when the gravity influence is considered.The maximum decrease rate of the first natural frequency is 1.87% for the 3.0 MW wind turbine,and the minimum decrease rate of the first natural frequency is 1.76% for the 2.3 MW wind turbine.It is indicated that the decrease rate of the first natural frequency for 2.3 MW to 6 MW wind turbines is nearly 1.8%.Considering the allowance value of the first natural frequency should be located in narrow ranges,the upper and lower limit values for 5 MW wind turbine,are 0.31 Hz and 0.22 Hz,respectively[9].The upper limit value is only 40.9% larger than the lower one.From this perspective,the first natural frequency is reduced due to the fact that the gravity needs to be considered for designing offshore wind turbine support structures,especially for the design of the first natural frequency of offshore wind turbine close to the lower limit 1P.Fig.4 shows that the gravity has few influences on the second frequency of the multi-MW offshore wind turbines.

    Table 1 Structural properties of wind turbines model

    2.2Gravity influence on wind load nominal value on tower

    Based on the Load Code for the Design of Building Structures (GB 50009-2012 )[14],the horizontal wind load nominal value is calculated by

    where wkis the wind load nominal value,μsthewind load shape,μzthe wind pressure height coefficient,w0the basic wind speed at a height of 10 m,z the height of the offshore wind turbine tower,and βzthe wind-induced vibration factor.It does not need to consider the frequency for calculating w0,μsand μz,which means it only needs considering βzvariation to the frequency when considering gravity influence on the wind load nominal value.βzis calculated according to GB 50009-2012 standard,with and without considering gravity influence respectively.

    Fig.3 The first natural frequency with and without considering gravity influence

    Fig.4 The second frequency with and without considering gravity influence

    Table 2 shows the gravity influence on the windinduced vibration factor,indicating that the gravity has little influence on the wind-induced vibration factor,which also means the gravity has little influence on the wind load on the tower.

    Table 2 The wind-induced vibration factor

    2.3Gravity influence on horizontal seismic load

    The seismic load is calculated according to Anne C of IEC 61400-1[15],only considering the first tower bending mode,nacelle and 50% of the tower mass is concentrated at the tower head,the ground acceleration shall be evaluated for a 475-year recurrence period.

    According to the Seismic Design of Buildings Code (GB 50011-2010 )[16],the design response spectrum is expressed as

    where αmaxis the maximum design earthquake parameter,Tgthe character period of the site,and T the period of the offshore wind turbine structure.η1,η2and γ are calculate by Eqs.(25)—(27)

    where ξ is the damping ratio of offshore wind turbine.It was assumed that the seismic precautionary intensities of the offshore wind turbine sites are 7 and 8.Correspondingly,the maximum design earthquake parameters are αmax= 0.23,0.45,respectively.Tg= 0.9,ξ= 0.01.The seismic load of offshore wind turbines in Table 1 can be seen in Table 3.Table 3 shows that gravity influence on the horizontal seismic load is within 2.4% for the selected offshore wind turbines at the seismic precautionary intensities of 7 and 8.This is mainly because the gravity slightly influences the natural frequencies.The influences of gravity on the horizontal seismic load and wind load on tower can be ignored.Corresponding to the maximum design parameter αmax= 0.23,0.45,the maximum earthquake accelerations are 0.1 g and 0.2 g[16],respectively.The horizontal seismic load of offshore wind turbines with 8 degree seismic precautionary intensity are approximately twotimes that of 7 degree seismic precautionary intensity seismic load.

    Table 3 Horizontal seismic load of offshore wind turbines

    3 Conclusions

    A simple model of an offshore wind turbine on amonopile foundation has been considered with the aim to analyze the gravity influence on the first natural frequency.The offshore wind turbine system vibration is modeled using an Euler-Bernoulli beam with axial and horizontal force.Based on the research results,it is indicated that the average influence of gravity on the natural frequency is nearly 1.8%,and there is few influence of gravity on the second frequency.Considering that the first natural frequency should lies between 1P and 3P,which is a relatively narrow range,the design procedure requires an accurate evaluation of the first natural frequency.From this perspective,the first natural frequency is reduced due to gravity need to be considered for design of offshore wind turbine support structures,especially for the first natural frequency of the offshore wind turbine close to the lower limit 1P.

    The research results also indicate that the variations of horizontal seismic load and direct wind load are very small due to the first natural frequency vibration by the gravity.So in most cases,the gravity influence on the natural frequency could be ignored for calculating earthquake and wind force.

    Acknowledgement

    This work was supported by the National Basic Research Program of China (″973″Program) (No.2014CB046200).

    References:

    [1]SCHWARTZ M,HEIMILLER D,HAYMES S,et al.Assessment of offshore wind energy resources for the united states[R].Technical Report NREL/TP,2000.

    [2]LOZANO-MINGUEZ E,KOLIO A J,BRENNAN F P. Multi-criteria assessment of offshore wind turbine support structures[J].Renewable Energy,2011 (36) : 2831-2837.

    [3]ANDERSEN L V,VAHDATIRAD M J,SICHANI M T,et al.Natural frequencies of wind turbines on monopole foundations in clayey soils-A probabilistic approach[J].Computers and Geotechnics,2012(43) : 1-11.

    [4]SCHAUMANN P,LOCHTE S,STEPPELER S.Special fatigue aspects in support structures of offshore wind turbines[J].Materials Science&Engineering Technology,2011(12) : 1075-1081.

    [5]LEBLANC C.Design of offshore wind turbine support structures[D].Aalborg,Denmark:Aalborg University,2009.

    [6]POLLACK M L,PETERSEN B J,CONNELL B S H,et al.Resonance avoidance of offshore wind turbines[C]∥Proceedings of the ASME 2010 International Mechanical Engineering Congress&Exposition.[S.l.]: IMECE,2010.

    [7]KüHN M J.Dynamics and design optimization of offshore wind energy conversion systems[D].Delft,Netherland: Delft University,Wind Energy Research Institute,2003.

    [8]GUPTA A,JAIN D K,DAHIYA S.Some investigations on recent advances in wind energy conversion systems [C]∥IACSIT Coimbatore Conferences.[S.l.]:[s.n.],2012.

    [9]VRIES W D.Support structure concepts for deep water sites[R].Upwind WP4 D4.2.8,F(xiàn)inal Report,2011.

    [10]VAN DER TEMPER J.Design of support structures for offshore wind turbines[D].Delft: Delft University of Technology,2006.

    [11]CHOPRA A K.Dynamics of structures theory and applications to earthquake engineering[M]4th Ed.Prentice Hall,Prentice-Hall International,2001.

    [12]ZAAIJER M B.Foundation modeling to assess dynamic behaviour of offshore wind turbines[J].Applied Ocean Research,2006(28) : 45-57.

    [13]NAGULESWARAN S.The vibration of a complete Eul-er-Bernoulli beam of constant depth and breadth proportional to axial co-ordinate raised to a positive exponent [J].Journal of Sound and Vibration,1995(2) : 311-327.

    [14]Ministry of Housing and Urban-Rural Development of P.R.China.Load for the Design of Building Structures (GB 50009—2012)[S].Beijing: China Architecture &Building Press,2012.

    [15]International Electro Technical Commission.Wind Turbines—part 1: Design Requirements: IEC 61400-1 [S].Switzerland,2005.

    [16]Ministry of Housing and Urban-Rural Development of P.R.China.Code for Seismic Design of Buildings (GB 50011—2010)[S].Beijing: China Architecture&Building Press,2010.

    Dr.Ma Hongwang is an associate professor of Shanghai Jiao Tong University (SJTU).His research interests focus on offshore wind turbine foundation and structure seismic design.

    Dr.Chen Longzhu is a professor of SJTU.His research interests lie in soil and foundation,offshore wind turbine foundation,etc.

    (Executive Editor: Zhang Tong)

    18禁裸乳无遮挡动漫免费视频| 97在线人人人人妻| 日本欧美视频一区| 久久国产亚洲av麻豆专区| av一本久久久久| 麻豆国产97在线/欧美| 99久久中文字幕三级久久日本| 中国美白少妇内射xxxbb| 精品亚洲成a人片在线观看 | 人人妻人人看人人澡| 午夜视频国产福利| 亚洲丝袜综合中文字幕| 久久久久久久亚洲中文字幕| 99热这里只有是精品50| 免费少妇av软件| 精品亚洲成a人片在线观看 | 搡女人真爽免费视频火全软件| 婷婷色麻豆天堂久久| 免费观看在线日韩| 国产免费一级a男人的天堂| 国产黄片美女视频| 免费看光身美女| 国产色婷婷99| 91精品国产九色| 久久99热6这里只有精品| 精品一区二区三区视频在线| 黄色怎么调成土黄色| 成年美女黄网站色视频大全免费 | 亚洲,欧美,日韩| 久久久色成人| 又大又黄又爽视频免费| 中文字幕制服av| 99热网站在线观看| 国产精品不卡视频一区二区| 亚洲一级一片aⅴ在线观看| 日韩欧美精品免费久久| .国产精品久久| 国产亚洲一区二区精品| 亚洲自偷自拍三级| 久久久久久久久久人人人人人人| 99热6这里只有精品| 99久久中文字幕三级久久日本| 大陆偷拍与自拍| 亚洲精品国产av蜜桃| 蜜桃亚洲精品一区二区三区| 日韩国内少妇激情av| 久久热精品热| 一级毛片电影观看| 一级黄片播放器| 联通29元200g的流量卡| 国内少妇人妻偷人精品xxx网站| 色吧在线观看| 男人和女人高潮做爰伦理| 老熟女久久久| 高清午夜精品一区二区三区| 日韩成人av中文字幕在线观看| 制服丝袜香蕉在线| 色吧在线观看| 国产亚洲精品久久久com| 91精品国产九色| 免费看不卡的av| 永久网站在线| 国产亚洲91精品色在线| 女性被躁到高潮视频| 又爽又黄a免费视频| 免费看光身美女| 免费人妻精品一区二区三区视频| 欧美性感艳星| 免费看av在线观看网站| 99国产精品免费福利视频| 久久热精品热| 成人影院久久| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 国产精品偷伦视频观看了| 一级a做视频免费观看| 午夜老司机福利剧场| 亚洲精品国产av蜜桃| 欧美变态另类bdsm刘玥| 亚洲真实伦在线观看| 亚洲精品国产成人久久av| 人妻少妇偷人精品九色| 亚洲精华国产精华液的使用体验| 国产精品福利在线免费观看| 亚洲国产精品一区三区| 男人狂女人下面高潮的视频| 成人高潮视频无遮挡免费网站| 在线观看免费日韩欧美大片 | 久久久久久九九精品二区国产| 亚洲自偷自拍三级| 最近2019中文字幕mv第一页| 熟女av电影| freevideosex欧美| 啦啦啦中文免费视频观看日本| 超碰97精品在线观看| 国产精品99久久久久久久久| 国产一区二区在线观看日韩| 能在线免费看毛片的网站| 日日啪夜夜爽| 高清黄色对白视频在线免费看 | 成人无遮挡网站| 亚洲av在线观看美女高潮| 亚洲av二区三区四区| 亚洲欧美成人综合另类久久久| 亚洲,一卡二卡三卡| 中文字幕亚洲精品专区| 精品国产一区二区三区久久久樱花 | 黄片wwwwww| av国产精品久久久久影院| 国产精品久久久久久久久免| 亚洲av二区三区四区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲婷婷狠狠爱综合网| 精品亚洲成a人片在线观看 | 久久久久久久大尺度免费视频| 麻豆成人av视频| 国产午夜精品久久久久久一区二区三区| 国产综合精华液| 男人狂女人下面高潮的视频| 大陆偷拍与自拍| 日韩大片免费观看网站| 欧美xxxx性猛交bbbb| 成人午夜精彩视频在线观看| 欧美精品一区二区免费开放| 毛片一级片免费看久久久久| 国产成人精品一,二区| 寂寞人妻少妇视频99o| 国产成人精品婷婷| 国产69精品久久久久777片| 亚洲,欧美,日韩| 免费观看a级毛片全部| 91在线精品国自产拍蜜月| 特大巨黑吊av在线直播| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 97精品久久久久久久久久精品| 午夜免费男女啪啪视频观看| 精品国产乱码久久久久久小说| 美女福利国产在线 | 亚洲精品日韩av片在线观看| 一区二区三区免费毛片| 男人添女人高潮全过程视频| 91aial.com中文字幕在线观看| 亚洲精品久久午夜乱码| 老女人水多毛片| 永久网站在线| 国产综合精华液| 狠狠精品人妻久久久久久综合| 网址你懂的国产日韩在线| 亚洲怡红院男人天堂| 午夜福利影视在线免费观看| 人人妻人人看人人澡| 深夜a级毛片| 91久久精品国产一区二区成人| av在线app专区| 22中文网久久字幕| 久久 成人 亚洲| 免费黄频网站在线观看国产| 国产 一区精品| 好男人视频免费观看在线| 成人美女网站在线观看视频| 亚洲天堂av无毛| 午夜老司机福利剧场| 久久久精品免费免费高清| 国产黄色免费在线视频| 一区二区三区乱码不卡18| 国产伦精品一区二区三区四那| 亚洲精品日韩av片在线观看| 简卡轻食公司| 波野结衣二区三区在线| xxx大片免费视频| 韩国av在线不卡| 成人亚洲精品一区在线观看 | 日日啪夜夜爽| 国产黄色免费在线视频| av卡一久久| 久久国产精品男人的天堂亚洲 | 亚洲国产精品999| 日本午夜av视频| 一区二区三区乱码不卡18| 成年女人在线观看亚洲视频| 男女下面进入的视频免费午夜| 国产精品久久久久成人av| 少妇的逼水好多| 最黄视频免费看| 亚洲四区av| 久久av网站| 我的女老师完整版在线观看| 国产一级毛片在线| 亚洲欧美一区二区三区黑人 | 久久精品久久久久久久性| 大陆偷拍与自拍| 亚洲精品国产成人久久av| 欧美成人午夜免费资源| 日产精品乱码卡一卡2卡三| 国产精品久久久久久av不卡| 欧美老熟妇乱子伦牲交| 一级片'在线观看视频| 男人狂女人下面高潮的视频| 午夜福利高清视频| 亚洲国产最新在线播放| 成人高潮视频无遮挡免费网站| 自拍欧美九色日韩亚洲蝌蚪91 | 女人久久www免费人成看片| 午夜激情久久久久久久| 亚洲av在线观看美女高潮| 亚洲精品乱码久久久久久按摩| 美女福利国产在线 | 亚洲自偷自拍三级| 国产91av在线免费观看| 汤姆久久久久久久影院中文字幕| 性色avwww在线观看| 97超碰精品成人国产| 亚洲怡红院男人天堂| 99热6这里只有精品| 国产高清不卡午夜福利| 天堂8中文在线网| 最近最新中文字幕大全电影3| 日本与韩国留学比较| 我要看黄色一级片免费的| 麻豆成人av视频| 日韩中文字幕视频在线看片 | 黑人高潮一二区| 干丝袜人妻中文字幕| 国产免费福利视频在线观看| 好男人视频免费观看在线| 国产成人午夜福利电影在线观看| 亚洲av福利一区| 美女视频免费永久观看网站| 中文字幕av成人在线电影| av卡一久久| kizo精华| 久久久久视频综合| av线在线观看网站| 日韩中字成人| 久久久久精品性色| 国产精品一区二区在线观看99| 丰满乱子伦码专区| 黄色欧美视频在线观看| 精品久久久久久久久亚洲| 国产 精品1| 亚洲成色77777| 成人影院久久| 99久久精品一区二区三区| 久久久成人免费电影| 免费在线观看成人毛片| 国产免费福利视频在线观看| 18禁裸乳无遮挡免费网站照片| 久久av网站| 久久人人爽人人爽人人片va| 久久久a久久爽久久v久久| 一区在线观看完整版| 国产淫片久久久久久久久| 少妇高潮的动态图| 少妇裸体淫交视频免费看高清| 国产日韩欧美在线精品| 七月丁香在线播放| 亚洲精品乱码久久久v下载方式| 亚洲精品自拍成人| 亚洲国产精品成人久久小说| 亚洲电影在线观看av| 视频中文字幕在线观看| 国产精品不卡视频一区二区| 欧美少妇被猛烈插入视频| av在线app专区| 国产 一区精品| 狂野欧美白嫩少妇大欣赏| 欧美日韩综合久久久久久| 午夜免费鲁丝| 91狼人影院| 又粗又硬又长又爽又黄的视频| 精品99又大又爽又粗少妇毛片| 这个男人来自地球电影免费观看 | 大片免费播放器 马上看| 日日摸夜夜添夜夜添av毛片| 欧美另类一区| h视频一区二区三区| 精品久久久久久电影网| 在线亚洲精品国产二区图片欧美 | 日韩欧美 国产精品| 久久午夜福利片| 日韩国内少妇激情av| 丰满乱子伦码专区| 国产伦精品一区二区三区四那| 99久久中文字幕三级久久日本| 欧美成人精品欧美一级黄| 这个男人来自地球电影免费观看 | 秋霞伦理黄片| 一本一本综合久久| 国产成人精品一,二区| 亚洲激情五月婷婷啪啪| 欧美性感艳星| 国产深夜福利视频在线观看| 九九在线视频观看精品| 麻豆国产97在线/欧美| 欧美成人午夜免费资源| av网站免费在线观看视频| 国产男人的电影天堂91| 嫩草影院入口| 黄色欧美视频在线观看| 国内少妇人妻偷人精品xxx网站| 噜噜噜噜噜久久久久久91| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 在线观看三级黄色| 免费看日本二区| 久久久久久久久久久免费av| 久久久久视频综合| 午夜激情福利司机影院| 免费看不卡的av| 久久热精品热| 亚洲av电影在线观看一区二区三区| 国产v大片淫在线免费观看| 亚洲经典国产精华液单| 国产亚洲欧美精品永久| 最近2019中文字幕mv第一页| 岛国毛片在线播放| 亚洲精品色激情综合| 免费在线观看成人毛片| 日韩在线高清观看一区二区三区| 中文天堂在线官网| 人人妻人人添人人爽欧美一区卜 | 美女中出高潮动态图| av天堂中文字幕网| 成人国产av品久久久| 日韩大片免费观看网站| 久久久久网色| 久热这里只有精品99| 肉色欧美久久久久久久蜜桃| 一级片'在线观看视频| 最近2019中文字幕mv第一页| 十八禁网站网址无遮挡 | 99热网站在线观看| 国产精品久久久久久精品电影小说 | 日韩欧美 国产精品| 久久久久久久精品精品| 尤物成人国产欧美一区二区三区| 精品熟女少妇av免费看| 日韩成人av中文字幕在线观看| 日韩在线高清观看一区二区三区| 成人影院久久| 亚洲无线观看免费| 亚洲国产精品一区三区| 日韩成人伦理影院| 欧美一区二区亚洲| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 大又大粗又爽又黄少妇毛片口| 日韩大片免费观看网站| 一级爰片在线观看| 国产精品人妻久久久影院| 观看免费一级毛片| 国产欧美另类精品又又久久亚洲欧美| 黄色欧美视频在线观看| 有码 亚洲区| 国产色婷婷99| 夫妻午夜视频| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 国产av一区二区精品久久 | 免费黄频网站在线观看国产| 大码成人一级视频| 久久国产精品男人的天堂亚洲 | 色5月婷婷丁香| 成人18禁高潮啪啪吃奶动态图 | 一级av片app| 久久99蜜桃精品久久| 免费在线观看成人毛片| 国产真实伦视频高清在线观看| 三级国产精品片| 只有这里有精品99| 干丝袜人妻中文字幕| 国产午夜精品久久久久久一区二区三区| a级毛色黄片| 只有这里有精品99| 国产v大片淫在线免费观看| 免费观看a级毛片全部| 晚上一个人看的免费电影| av免费观看日本| 亚洲av不卡在线观看| 成人黄色视频免费在线看| 蜜桃亚洲精品一区二区三区| 日韩不卡一区二区三区视频在线| 精品亚洲成a人片在线观看 | 99国产精品免费福利视频| 黄色怎么调成土黄色| tube8黄色片| 精华霜和精华液先用哪个| 国产中年淑女户外野战色| 欧美精品一区二区大全| 亚洲国产精品成人久久小说| 亚洲精品视频女| 少妇 在线观看| 国产黄色免费在线视频| 色视频www国产| 精品人妻视频免费看| 国产乱来视频区| freevideosex欧美| 国产v大片淫在线免费观看| 欧美bdsm另类| 老师上课跳d突然被开到最大视频| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 国产高清国产精品国产三级 | 亚洲精品色激情综合| 男人添女人高潮全过程视频| 我要看日韩黄色一级片| 九草在线视频观看| 亚洲国产最新在线播放| 成人毛片60女人毛片免费| 亚洲欧美中文字幕日韩二区| 亚洲精品,欧美精品| 成人二区视频| 久久久成人免费电影| 少妇精品久久久久久久| 麻豆国产97在线/欧美| 国产精品人妻久久久久久| 舔av片在线| 国产成人freesex在线| 91精品伊人久久大香线蕉| 最近中文字幕2019免费版| 男人和女人高潮做爰伦理| 久久久久久九九精品二区国产| 99热全是精品| 最新中文字幕久久久久| 在线观看人妻少妇| 九色成人免费人妻av| 国产精品国产av在线观看| 亚洲av电影在线观看一区二区三区| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| 精品国产一区二区三区久久久樱花 | 亚洲不卡免费看| 一级毛片 在线播放| 国产色婷婷99| 99九九线精品视频在线观看视频| 五月开心婷婷网| 精品久久久精品久久久| 欧美精品人与动牲交sv欧美| 亚洲av国产av综合av卡| 精品一区二区三区视频在线| 免费人妻精品一区二区三区视频| 熟妇人妻不卡中文字幕| 亚洲精品色激情综合| 久久婷婷青草| 久久久久久久久大av| 人妻系列 视频| 国产女主播在线喷水免费视频网站| 国产综合精华液| 联通29元200g的流量卡| 成人国产av品久久久| 美女视频免费永久观看网站| 亚洲精品视频女| 亚洲欧美中文字幕日韩二区| 熟女电影av网| 毛片一级片免费看久久久久| 日韩国内少妇激情av| 中国国产av一级| 午夜视频国产福利| 九色成人免费人妻av| 国产精品麻豆人妻色哟哟久久| 亚洲美女视频黄频| 亚洲精品乱码久久久v下载方式| 人人妻人人爽人人添夜夜欢视频 | 国语对白做爰xxxⅹ性视频网站| 三级国产精品欧美在线观看| 国产乱来视频区| 日韩伦理黄色片| 少妇精品久久久久久久| 久久久久人妻精品一区果冻| 五月开心婷婷网| 2021少妇久久久久久久久久久| 男人舔奶头视频| 欧美日韩亚洲高清精品| 亚洲自偷自拍三级| 91狼人影院| 一区二区三区免费毛片| 国产永久视频网站| 妹子高潮喷水视频| 99热网站在线观看| 久久久欧美国产精品| 一区二区三区四区激情视频| 久久久久久久久久久免费av| 91在线精品国自产拍蜜月| 亚洲在久久综合| 免费观看性生交大片5| 欧美激情极品国产一区二区三区 | 国内少妇人妻偷人精品xxx网站| 干丝袜人妻中文字幕| 日本vs欧美在线观看视频 | 午夜日本视频在线| 国产欧美日韩一区二区三区在线 | 国产精品秋霞免费鲁丝片| 乱码一卡2卡4卡精品| 精品一区在线观看国产| 性高湖久久久久久久久免费观看| 最近手机中文字幕大全| 这个男人来自地球电影免费观看 | 久热久热在线精品观看| 最近最新中文字幕免费大全7| av视频免费观看在线观看| 久久97久久精品| 成年美女黄网站色视频大全免费 | 精品一区二区三区视频在线| 国内少妇人妻偷人精品xxx网站| 狂野欧美白嫩少妇大欣赏| 国产乱人视频| 成年人午夜在线观看视频| 亚洲欧美精品自产自拍| 美女cb高潮喷水在线观看| 欧美区成人在线视频| 婷婷色av中文字幕| 国产真实伦视频高清在线观看| 免费看av在线观看网站| 亚洲天堂av无毛| 中文字幕亚洲精品专区| 少妇被粗大猛烈的视频| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 视频区图区小说| 中文字幕免费在线视频6| 观看av在线不卡| 18禁动态无遮挡网站| 99热国产这里只有精品6| 熟妇人妻不卡中文字幕| 少妇人妻久久综合中文| 秋霞伦理黄片| 毛片一级片免费看久久久久| 男女边摸边吃奶| 亚洲人成网站在线播| 亚洲内射少妇av| 国产精品一区二区三区四区免费观看| 国产片特级美女逼逼视频| 亚洲熟女精品中文字幕| 日本欧美视频一区| 国产高清有码在线观看视频| 两个人的视频大全免费| 狠狠精品人妻久久久久久综合| 午夜激情久久久久久久| 国产成人精品福利久久| 麻豆成人午夜福利视频| 在线观看一区二区三区| 99久久精品一区二区三区| 欧美zozozo另类| 久久热精品热| 伊人久久国产一区二区| 中国国产av一级| 一级毛片黄色毛片免费观看视频| 免费看av在线观看网站| 国产成人精品婷婷| 亚洲中文av在线| 狂野欧美激情性bbbbbb| 99热网站在线观看| 亚洲性久久影院| 国产精品熟女久久久久浪| 日本午夜av视频| 欧美97在线视频| 丰满乱子伦码专区| 亚洲性久久影院| 91精品国产国语对白视频| 午夜福利在线观看免费完整高清在| 亚洲成人一二三区av| 国产精品人妻久久久影院| 久久鲁丝午夜福利片| 中文乱码字字幕精品一区二区三区| 久久精品国产自在天天线| 在线观看免费视频网站a站| 毛片一级片免费看久久久久| 日日啪夜夜撸| 免费黄频网站在线观看国产| 最近中文字幕高清免费大全6| 欧美精品一区二区大全| 亚洲av在线观看美女高潮| 亚洲国产精品一区三区| 制服丝袜香蕉在线| 久久久久久久大尺度免费视频| 亚洲国产欧美人成| 欧美最新免费一区二区三区| 色视频www国产| 午夜激情久久久久久久| 亚洲av二区三区四区| 麻豆精品久久久久久蜜桃| 国产欧美另类精品又又久久亚洲欧美| 免费大片黄手机在线观看| 亚洲欧美一区二区三区国产| 亚洲怡红院男人天堂| 久久av网站| 男人爽女人下面视频在线观看| 亚洲av成人精品一二三区| 欧美老熟妇乱子伦牲交| 久久久色成人| 国产伦精品一区二区三区视频9| 国产伦理片在线播放av一区| 一本一本综合久久| 精品国产乱码久久久久久小说| 国产午夜精品一二区理论片| 午夜老司机福利剧场| 少妇人妻一区二区三区视频| 联通29元200g的流量卡| 一区二区三区免费毛片| 国产真实伦视频高清在线观看| 秋霞伦理黄片| 一本久久精品| 欧美日韩精品成人综合77777| 国产午夜精品一二区理论片| 大香蕉97超碰在线| 精品国产三级普通话版| 尾随美女入室| 男人爽女人下面视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 99re6热这里在线精品视频| 国产精品99久久99久久久不卡 | 免费播放大片免费观看视频在线观看| 另类亚洲欧美激情|