王 鵬,張沙沙,張韶蕾,王德松,羅青枝
(河北科技大學(xué)理學(xué)院,河北石家莊 050018)
?
CDPVC/Ag3PO4復(fù)合光催化劑的制備及性能研究
王鵬,張沙沙,張韶蕾,王德松,羅青枝
(河北科技大學(xué)理學(xué)院,河北石家莊050018)
摘要:采用溶液浸漬法制備聚氯乙烯/磷酸銀(PVC/Ag3PO4)復(fù)合微粒,經(jīng)熱處理使PVC脫除HCl得到PVC共軛衍生物/Ag3PO4(CDPVC/Ag3PO4)復(fù)合微粒,采用XRD,SEM,UV-vis DRS,PL和XPS等手段對CDPVC/Ag3PO4進(jìn)行了分析表征。通過甲基橙在可見光下的降解反應(yīng),考察制備條件對CDPVC/Ag3PO4復(fù)合微??梢姽獯呋阅艿挠绊?。結(jié)果表明,CDPVC的復(fù)合有利于Ag3PO4微粒的分散,可以顯著提高復(fù)合微粒的可見光吸收及光生電子-空穴的分離效率,當(dāng)PVC占Ag3PO4的質(zhì)量分?jǐn)?shù)為0.03%、熱處理溫度為130 ℃、熱處理時間為2 h時,復(fù)合微粒表現(xiàn)出良好的可見光催化活性和穩(wěn)定性。
關(guān)鍵詞:催化劑工程;Ag3PO4;聚氯乙烯共軛衍生物;溶液浸漬法;可見光催化;有機(jī)污染物降解
近些年逐漸發(fā)展起來的光催化氧化技術(shù)具有許多獨(dú)特的優(yōu)點(diǎn),被認(rèn)為是最具有發(fā)展?jié)摿蛻?yīng)用前景的環(huán)境凈化技術(shù)[1]。光催化氧化技術(shù)的基礎(chǔ)和關(guān)鍵是納米半導(dǎo)體光催化材料,國內(nèi)外學(xué)者對氧化物[2-5]、硫化物[6-7]、氮氧化物[8-9]等多種類型的納米半導(dǎo)體材料進(jìn)行了深入而廣泛的研究,但結(jié)果仍不盡如人意。因此,研究開發(fā)新型、高活性、可見光響應(yīng)的光催化劑是光催化氧化技術(shù)中亟待解決的重要問題。
有學(xué)者發(fā)現(xiàn)磷酸銀(Ag3PO4)的可見光催化活性明顯高于典型的可見光催化劑TiO2-xNx和BiVO4,是一種高效的可見光催化劑[10]。但是磷酸銀在水中微量溶解,且其光生電子極易將磷酸銀中的Ag+還原成原子Ag0,造成磷酸銀的組成與結(jié)構(gòu)不穩(wěn)定,影響其光催化性能。納米銀粒子[11-12],碳量子點(diǎn)[13],AgX[14],TiO2[15-16],ZnO[17-18],SnO2[19],Ag2S[20]及石墨烯[21-22]等被用來與Ag3PO4進(jìn)行表面復(fù)合,利用不同組分之間的電子傳導(dǎo)提高光生電子-空穴的分離效率,通過表面組分的附著作用減小磷酸銀在水中的溶解度,使磷酸銀的可見光催化活性和催化穩(wěn)定性得到明顯改善。研究發(fā)現(xiàn),共軛聚合物不僅具有良好的成膜性,而且具有良好的電子輸運(yùn)性和一定的光敏性,已經(jīng)成功應(yīng)用于TiO2和ZnO等材料的改性,制備出性能良好的可見光催化劑[23-26]。本文采用溶液浸漬法在Ag3PO4微粒表面包覆一層聚氯乙烯(PVC),再經(jīng)熱處理使PVC脫除HCl,得到PVC共軛衍生物(CDPVC)修飾的CDPVC/Ag3PO4復(fù)合光催化劑,系統(tǒng)地考察了該復(fù)合光催化劑的組成、結(jié)構(gòu)和可見光催化活性,并探討其可見光催化活性的主要影響因素。
1實驗部分
1.1實驗原料
PVC(R1069),分析純,天津勃天化工有限公司提供;磷酸氫二鈉,分析純,國藥集團(tuán)化學(xué)試劑有限公司提供;硝酸銀,分析純,天津東聚隆化工技術(shù)開發(fā)有限公司提供;四氫呋喃(THF),分析純,天津市永大化學(xué)試劑有限公司提供;甲基橙,分析純,天津市科密歐化學(xué)試劑開發(fā)中心提供;實驗所用水均為去離子水。
1.2CDPVC/Ag3PO4復(fù)合微粒的制備
首先采用單注法制備純Ag3PO4。將5.13 g的Na2HPO4溶于250 g水中,配成Na2HPO4溶液,在攪拌下將7.30 g AgNO3溶于120 g水中得到的稀AgNO3溶液滴入Na2HPO4溶液中,控制滴加時間為200 min,滴加完畢后避光持續(xù)攪拌4 h,然后抽濾、水洗,在50~60 ℃下烘干后得到亮黃色的Ag3PO4微粒。將1.5 g的Ag3PO4微粒加入到10 mL的PVC/THF溶液中,先密封超聲分散0.5~1 h,再敞口攪拌至THF揮發(fā)完畢,然后經(jīng)熱處理得到CDPVC/Ag3PO4復(fù)合微粒。通過改變PVC在THF溶液中的濃度,得到PVC與Ag3PO4不同質(zhì)量分?jǐn)?shù)的CDPVC/Ag3PO4復(fù)合微粒,記為CDPVC/Ag3PO4-x%。
1.3樣品表征
采用D/max-2500型X射線衍射儀(XRD,Rigaku Co.,Japan)分析樣品晶型結(jié)構(gòu),樣品形貌采用Hitachi S-4800-I掃描電子顯微鏡觀察,用配有積分球的紫外-可見分光光度計(SHIMADZU-2550)測定樣品的紫外-可見漫反射光譜,在熒光光譜儀(F-4600 FL Spectrophotometer,Hitachi,Japan)上測定樣品的光致發(fā)光光譜,用配有單色光的Al-Ka的PHI 5000C ESCA型掃描能譜微探針儀器測定樣品的X射線光電子光譜(XPS)。
1.4樣品可見光催化活性測定
在可見光照射下,通過對甲基橙的降解實驗測定CDPVC/Ag3PO4復(fù)合微粒的光催化活性。采用300 W碘鎢燈(加蓋濾光片濾除400 nm以下光)作為可見光源,將0.100 g的光催化劑樣品加入到100 mL質(zhì)量濃度為10 mg/L的甲基橙溶液中。先在黑暗中攪拌懸浮液30 min,使復(fù)合微粒對甲基橙達(dá)到吸附平衡;然后開啟光源進(jìn)行光降解反應(yīng),每隔20 min取7 mL懸浮液放入離心管中,離心分離移除光催化劑顆粒后,取上清液,用分光光度計在甲基橙最大吸收波長464 nm處測定吸光度,由甲基橙標(biāo)準(zhǔn)工作曲線即可得到不同降解時間的甲基橙質(zhì)量濃度。
2結(jié)果與討論
2.1CDPVC/Ag3PO4復(fù)合微粒的X射線衍射圖譜表征分析
圖1 純Ag3PO4與CDPVC/Ag3PO4的XRD圖譜Fig.1 XRD patterns of Ag3PO4 and CDPVC/Ag3PO4
Ag3PO4和CDPVC/Ag3PO4復(fù)合微粒的X射線衍射圖譜如圖1所示。由圖1可以看出,在衍射角為20.90°,29.78°,33.38°,36.60°,47.83°,52.72°,55.05°及57.32°處出現(xiàn)了衍射峰,與Ag3PO4(PDF#01-084-0192)的特征衍射峰一致,對應(yīng)于Ag3PO4的(110)、(200)、(210)、(211)、(310)、(222)、(320)、(321)晶面的衍射峰,表明所制備的Ag3PO4為體心立方結(jié)構(gòu)。由圖1還可以看出,CDPVC/Ag3PO4復(fù)合微粒的X射線衍射圖譜與純Ag3PO4的圖譜基本相同,沒有出現(xiàn)新的衍射峰,表明CDPVC的復(fù)合過程未改變Ag3PO4晶型結(jié)構(gòu)。
2.2CDPVC/Ag3PO4復(fù)合微粒的掃描電鏡表征
圖2為Ag3PO4和CDPVC/Ag3PO4復(fù)合微粒的掃描電鏡圖片。從圖2 a)、圖2 c)可以看出:CDPVC/Ag3PO4復(fù)合微粒與Ag3PO4微粒的形貌和尺寸非常相似,均基本呈球形,粒徑分布較均勻,平均粒徑約為300 nm;由圖2 b)可以看出Ag3PO4微粒間有一定聚集黏連,這是由于其表面能高造成的;圖2 d)中CDPVC的復(fù)合則明顯減輕了Ag3PO4微粒間的聚集。
圖2 Ag3PO4及CDPVC/Ag3PO4的掃描電鏡圖片F(xiàn)ig.2 SEM images of Ag3PO4 and CDPVC/Ag3PO4
2.3CDPVC/Ag3PO4復(fù)合微粒的X射線光電子能譜分析
圖3 CDPVC/Ag3PO4復(fù)合微粒及C 1s,Ag 3d,P 2p XPS圖譜Fig.3 XPS spectra of CDPVC/Ag3PO4, C 1s, Ag 3d and P 2p
2.4CDPVC/Ag3PO4復(fù)合微粒的紫外可見漫反射吸收光譜分析
圖4為Ag3PO4及不同條件制備的CDPVC/Ag3PO4復(fù)合微粒的紫外可見漫反射吸收譜圖(DRS)。由圖4 a)可以看出,Ag3PO4對500 nm以下的可見光具有良好的吸收,而CDPVC的復(fù)合可使復(fù)合微粒在可見光區(qū)的吸收進(jìn)一步顯著提高。隨著CDPVC含量的增加,復(fù)合微粒在可見光區(qū)的吸收逐漸增加,表明CDPVC有利于提高復(fù)合材料對可見光的吸收;隨著熱處理溫度的提高及時間的延長,CDPVC/Ag3PO4在可見光區(qū)的吸收逐漸增強(qiáng)(見圖4 b)和圖4 c))。其原因可能是PVC經(jīng)低溫?zé)崽幚砗竺撊Cl形成共軛分子鏈,使得復(fù)合微粒對可見光的吸收增強(qiáng)。在PVC含量過少、熱處理溫度較低或時間較短時,CDPVC共軛結(jié)構(gòu)不夠完善;隨著PVC含量增加、熱處理溫度升高或時間的延長,生成的共軛雙鍵增多,共軛程度增加,因此光吸收增強(qiáng)。但熱處理溫度過高或時間過長時,也會造成共軛結(jié)構(gòu)的氧化、斷裂、分解等破壞,對可見光的吸收減弱。
圖4 不同PVC含量、不同熱處理溫度及熱處理時間下制備的 CDPVC/Ag3PO4的紫外-可見漫反射吸收譜圖Fig.4 UV-vis diffuse reflectance spectra of CDPVC/Ag3PO4 composites with different contents of PVC and heated under different temperatures for different time
2.5CDPVC/Ag3PO4復(fù)合微粒熒光光譜分析
圖5 Ag3PO4與不同比例的CDPVC/Ag3PO4 樣品的熒光光譜圖Fig.5 PL spectra of Ag3PO4 and CDPVC/Ag3PO4 with different contents of PVC
不同比例的CDPVC/Ag3PO4復(fù)合微粒的熒光光譜圖見圖5。由圖5可以看出,純Ag3PO4熒光強(qiáng)度很大,說明純Ag3PO4對光的吸收效率很高,但光生電子-空穴復(fù)合幾率也很大。而不同比例的CDPVC/Ag3PO4復(fù)合微粒的熒光強(qiáng)度比純Ag3PO4要低,并且隨著PVC含量的增大,CDPVC/Ag3PO4納米復(fù)合微粒的熒光發(fā)射強(qiáng)度逐漸降低。這可能是因為隨著PVC含量的增大,熱處理后CDPVC共軛雙鍵增多,對光生電子的轉(zhuǎn)移能力增大,使得CDPVC/Ag3PO4復(fù)合微粒產(chǎn)生的光生電子-空穴的復(fù)合幾率顯著減小,因此熒光強(qiáng)度降低。
2.6CDPVC/Ag3PO4復(fù)合微粒的可見光催化活性
圖6 CDPVC/Ag3PO4復(fù)合微粒對甲基橙的吸附率及不同CDPVC含量、不同熱處理溫度、時間制備的CDPVC/Ag3PO4復(fù)合微粒光催化下甲基橙濃度c/c0隨光降解時間變化圖Fig.6 Adsorption rate of CDPVC/Ag3PO4 composites for MO and the relationship between c/c0of MO and photodegradation time in the presence of neat Ag3PO4 and CDPVC/Ag3PO4 composites with different contents of PVC and heated under different temperatures for different time under visible light irradiation
圖6為Ag3PO4及不同條件下制備的CDPVC/Ag3PO4復(fù)合微粒對甲基橙的吸附及在可見光照射下對甲基橙的光催化降解結(jié)果。由圖6 a)可以看出,CDPVC的復(fù)合使得復(fù)合微粒對甲基橙的吸附較純Ag3PO4提高,這更有利于復(fù)合微粒對甲基橙的光催化降解[27]。由圖6可知,CDPVC/Ag3PO4復(fù)合微粒對甲基橙的降解率均明顯高于純Ag3PO4,表明CDPVC的共軛結(jié)構(gòu)可以有效提高Ag3PO4的可見光催化活性。由圖6還可以看出,隨著復(fù)合微粒中CDPVC含量的增加、熱處理溫度的提高及時間的延長,復(fù)合微粒的光催化活性呈現(xiàn)先增大而后又降低的趨勢,當(dāng)PVC含量為0.03%(質(zhì)量分?jǐn)?shù))、130 ℃下熱處理 2 h時,CDPVC/Ag3PO4復(fù)合微粒的光催化效果最好。這是因為隨著復(fù)合微粒中CDPVC含量的增加,CDPVC共軛雙鍵增多,而熱處理溫度的提高及時間的延長,又有利于CDPVC共軛程度的提高,因而復(fù)合微粒的光催化活性提高。但CDPVC含量過多時,Ag3PO4表面附著的CDPVC過厚,反而會影響光生電子-空穴在CDPVC與Ag3PO4之間的遷移;熱處理溫度過高及時間過長時,會引起共軛結(jié)構(gòu)的氧化、斷裂、分解等,造成復(fù)合微粒的光催化活性降低。
2.7CDPVC/Ag3PO4復(fù)合微粒的光催化穩(wěn)定性
將130 ℃熱處理2 h的CDPVC/Ag3PO4-0.03%復(fù)合微粒在可見光下對甲基橙溶液進(jìn)行光催化降解循環(huán)實驗,考察其光催化穩(wěn)定性,結(jié)果如圖7所示。由圖7 a)可以看出,隨著光催化降解循環(huán)次數(shù)的增加,純Ag3PO4的光催化活性衰減比較快,而CDPVC/Ag3PO4復(fù)合微粒的可見光催化活性衰減較小。將CDPVC/Ag3PO4-0.03%復(fù)合微粒及純Ag3PO4循環(huán)降解4次甲基橙后的XRD圖譜與磷酸銀及單質(zhì)銀的標(biāo)準(zhǔn)卡片對比可以發(fā)現(xiàn),兩者在光照下催化降解甲基橙時都有微量的單質(zhì)銀生成,其中純Ag3PO4樣品中單質(zhì)銀含量為3.6%(質(zhì)量分?jǐn)?shù),下同),復(fù)合微粒樣品中單質(zhì)銀含量為2.9%,說明CDPVC的復(fù)合有利于提高Ag3PO4的光催化穩(wěn)定性。這是因為CDPVC的共軛結(jié)構(gòu)具有良好的電子輸運(yùn)性,其對光生電子的遷移提高了光生電子-空穴分離效果,從而提高光催化活性,同時使磷酸銀表面光生電子密度減小,降低了電子還原銀離子為單質(zhì)銀的幾率,使得復(fù)合微粒光催化的穩(wěn)定性提高。
圖7 Ag3PO4和CDPVC/Ag3PO4復(fù)合微粒光催化降解甲基橙循環(huán)實驗結(jié)果及循環(huán)降解4次甲基橙后的XRD圖譜Fig.7 Cycling runs in photocatalytic degradation of MO in the presence of Ag3PO4 and CDPVC/Ag3PO4 composites and XRD patterns of Ag3PO4 and CDPVC/ Ag3PO4 after the 4th cycling in MO solution
2.8復(fù)合微粒光催化活性中心的確定
圖8 捕捉劑對CDPVC/Ag3PO4復(fù)合微?! 】梢姽獯呋到饧谆鹊挠绊慒ig.8 Effects of scavengers on MO photodegradation catalyzed by CDPVC/Ag3PO4 composites under visible-light irradiation
通過測試乙二胺四乙酸二鈉(EDTA,空穴捕捉劑)、二甲基亞砜(DMSO,電子捕捉劑)、叔丁醇(TBA,羥基自由基捕捉劑)對甲基橙可見光催化降解反應(yīng)的影響,考察了CDPVC/Ag3PO4復(fù)合微粒的光催化活性中心,結(jié)果如圖8所示。由圖8可以看出,加入DMSO和TBA后甲基橙的降解速率幾乎不變,而加入EDTA后甲基橙的降解速率大幅度減小,說明光生空穴為CDPVC/Ag3PO4復(fù)合微粒可見光催化降解甲基橙的主要活性中心。
3結(jié)語
以磷酸氫二鈉及硝酸銀為主要原料,采用離子交換法制備Ag3PO4微粒,將溶液浸漬法與PVC進(jìn)行復(fù)合,再經(jīng)熱處理得到CDPVC/Ag3PO4復(fù)合微粒。XRD及SEM結(jié)果表明,Ag3PO4為體心立方結(jié)構(gòu), CDPVC的復(fù)合過程未改變Ag3PO4晶型結(jié)構(gòu),但減輕了Ag3PO4微粒間的聚集。DRS及PL結(jié)果表明,CDPVC的復(fù)合使CDPVC/Ag3PO4復(fù)合微粒在可見光區(qū)的吸收進(jìn)一步顯著提高,且大幅度降低了光生電子-空穴的復(fù)合幾率。光催化降解甲基橙的結(jié)果表明,CDPVC/Ag3PO4復(fù)合微粒具有良好的可見光催化活性和穩(wěn)定性,其較適宜的制備條件為PVC占Ag3PO4的質(zhì)量分?jǐn)?shù)為0.03%、熱處理溫度為130 ℃、熱處理時間為2 h。
參考文獻(xiàn)/References:
[1]ELAHIFARD M R, RAHIMNEJAD S, HAQHIQHI S, et al. Apatite-coated Ag/AgBr/TiO2visible-light photocatalyst for destruction of bacterial[J]. Journal of the American Chemical Society, 2007, 129(31): 9552-9553.
[2] 徐莉,羅青枝,王德松,等. 以梳型聚合物為模板制備介孔Ag/AgBr/TiO2納米復(fù)合材料[J]. 河北科技大學(xué)學(xué)報,2015, 36(1):23-29.
XU Li, LUO Qingzhi, WANG Desong, et al. Preparation of mesoporous Ag/AgBr/TiO2nanocomposites with comb-type polymer as templat[J]. Journal of Hebei University of Science and Technology, 2015, 36(1): 23-29.
[3] 曹根華,李二杰,王素紅. 光催化降解與直接光解玫瑰紅廢水的機(jī)理研究[J]. 河北科技大學(xué)學(xué)報,2004, 25(4):68-71.
CAO Genhua, LI Erjie, WANG Suhong. Degradation patterns of rose red upon TiO2/UV or UV[J]. Journal of Hebei University of Science and Technology, 2004,25(4):68-71.
[4] 井立強(qiáng),徐自力,孫曉君,等. ZnO和TiO2粒子的光催化活性及其失活與再生[J]. 催化學(xué)報,2003,24(3):175-180.
JING Liqiang, XU Zili, SUN Xiaojun, et al. Photocatalytic activity of ZnO and TiO2particles and their deactivation and regeneration [J]. Chinese Journal of Catalysis, 2003,24(3): 175-180.
[5] 韓忠霄,殷蓉,郭立達(dá),等. 聚苯胺改性納米TiO2的制備及其對含氰廢水的降解研究[J]. 河北科技大學(xué)學(xué)報,2009, 30(2):171-174.
HAN Zhongxiao, YIN Rong, GUO Lida, et al. Preparation of polyaniline modified nanosized TiO2photocatalyst and degradation of CN- in wastewater[J]. Journal of Hebei University of Science and Technology, 2009, 30(2): 171-174.
[6]NEETESH K, VAMSI K K, VIRESH D. In-situ synthesis of Au-CdS plasmonic photocatalyst by continuous spray pyrolysis and its visible light photocatalysis[J]. Chemical Engineering Journal, 2014, 236: 66-74.
[7]YANG X Y, YAN Z Y, JIANG L, et al. Synthesis and photocatalysis of Al doped CdS templated by non-surfactant hypocrellins [J]. Procedia Environmental Sciences, 2013, 18: 572-578.
[8]KANADE K G, BAEG J O, KALE B B, et al. Rose-red color oxynitride Nb2Zr6O17-xNx:A visible light photocatalyst to hydrogen production [J]. International Journal of Hydrogen Energy, 2007, 32: 4678-4684.
[9]SASAKI R, MAEDA K, KAKO Y, et al. Preparation of calcium tantalum oxynitride from layered oxide precursors to improve photocatalytic activity for hydrogen evolution under visible light[J]. Applied Catalysis B: Environmental, 2012, 128: 72-76.
[10]YI Z,YE J,KIKUGAWA N,et al.An orthophosphate semiconducter with photooxidation properties under visible-light irradation[J].Nature Materials,2010, 9: 559-564.
[11] 徐秀泉,于小鳳,戴楊葉,等. Ag/Ag3PO4的制備及其光催化性能[J]. 石油化工,2012, 41(10):1191-1195.
XU Xiuquan, YU Xiaofeng, DAI Yangye, et al. Preparation of Ag/Ag3PO4and its photocatalytic activity[J]. Petrochemical Technology, 2012, 41(10): 1191-1195.
[12]LIU Y P, FANG L, LU H D, et al. Highly efficient and stable Ag/Ag3PO4plasmonic photocatalyst in visible light[J]. Catal Commun, 2012, 17: 200-204.
[13]ZHANG H C,HUANG H, MING H, et al. Carbon quantum dots/Ag3PO4complex photocatalysts with enhanced photocatalytic activity and stability under visible light[J]. Journal of Materials Chemistry, 2012, 22:10501-10506.
[14]AMORNPITOKSUK P, SUWANBOON S. Photocatalytic decolorization of methylene blue dye by Ag3PO4-AgX(X=Cl-, Br-and I-) under visible light[J]. Advanced Power Technology, 2014, 25: 1026-1030.
[15]LI Y J, YU L M, LI N, et al. Heterostructures of Ag3PO4/TiO2mesoporous spheres with highly efficient visible light photocatalytic activity[J]. Journal of Colloid and Interface Science, 2015, 450: 246-253.
[16]CAI L, LONG Q Y, YIN C. Synthesis and characterization of high photocatalytic activity and stable Ag3PO4/TiO2fibers for photocatalytic degradation of black liquor[J]. Applied Surface Science, 2014, 319: 60-67.
[17]ZUO Y H, ZHU L G, YANG X, et al. ZnO nanorod arrays on cubic Ag3PO4microcrystals with enhanced photocatalytic property[J]. Materials Letters, 2015, 159: 325-328.
[18]DONG C, WU K L, LI M R, et al. Synthesis of Ag3PO4-ZnO nanorod composites with high visible-light photocatalytic activity[J]. Catal Commun, 2014, 46: 32-35.
[19]ZHANG L L, ZHANG H C, HUANG H, et al. Ag3PO4/SnO2semiconductor nanocomposites with enhanced photocatalytic activity and stability[J]. New Journal of Chemistry,2012, 36:1541-1544.
[20]TANG J T, GONG W, CAI T J, et al. Novel visible light responsive Ag/(Ag2S/Ag3PO4) photocatalysts: Synergistic effect between Ag and Ag2S for their enhanced photocatalytic activity[J]. RSC Advances, 2013, 3(8): 2543-2547.
[21]LIANG Q H, YAO S, MA W J, et al. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4nanosoheres with grapheme oxide sheets[J]. Physical Chemistry Chemical Physics, 2012, 14: 15657-15665.
[22]WANG C, CAO M H, WANG P F, et al. Preparation of a magnetic graphene oxide-Ag3PO4composite photocatalyst with enhanced photocatalytic activity under visible light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45: 1080-1086.
[23]LUO Q, WANG X, WANG D, et al.TiO2/cyclized polyacrylonitrile hybridized nanocomposite: An efficient visible-light photocatalyst prepared by a facile “in situ” approach [J]. Materials Science and Engineering: B, 2015, 199: 96-104.
[24]LI X C, JIANG G G, HE G H, et al. Preparation of porous PPy-TiO2composites: Improved visible light photoactivity and the mechanism[J]. Chemical Engineering Journal, 2014, 236: 480-489.
[25]ESKIZEYBEK V, SAR F, GULCE H, et al. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations[J]. Applied Catalysis B: Environmental, 2012, 199/200:197-206.
[26]AHMED F, KUMAR S, ARSHI N, et al. Preparation and characterizations of polyaniline(PANI)/ZnO nanocomposites film using solution casting method [J]. Thin Solid Films, 2011, 519: 8375-8378.
[27]XU T, CAI Y, O′SHEA K E. Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2suspensions[J]. Environmental Science and Technology, 2007, 41: 5471-5477.
Study on preparation and performances of CDPVC/Ag3PO4composite photocatalyst
WANG Peng, ZHANG Shasha, ZHANG Shaolei, WANG Desong, LUO Qingzhi
(School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China)
Abstract:PVC/Ag3PO4 composites are prepared by solution-dipping method, and the as-prepared composites are heat-treated to release HCl from PVC molecules to obtain conjugated derivative of PVC/Ag3PO4(CDPVC/Ag3PO4) composites. The CDPVC/Ag3PO4 composites are characterized by XRD, SEM, UV-vis DRS, PL and XPS. The effects of preparation conditions on the visible-light photocatalytic performances of CDPVC/Ag3PO4 composites are investigated by evaluating the decomposition of methyl orange under visible light irradiation. The results reveal that the modification of CDPVC is beneficial to the dispersion of Ag3PO4 particles, and it can obviously improve the absorbance of the CDPVC/Ag3PO4 composites in the range of visible light and the charge separation efficiency. The CDPVC/Ag3PO4 composites exhibit excellent visible-light photocatalytic acitivity and stability when the mass percentage of PVC to Ag3PO4, heat-treatment temperature and time are 0.03%, 130 ℃, and 2 h, respectively.
Keywords:catalyst engineering; Ag3PO4; conjugated derivative of PVC; solution-dipping method; visible-light photocatalysis; degradation of organic pollutants
中圖分類號:O649.4
文獻(xiàn)標(biāo)志碼:A
通訊作者:羅青枝教授。E-mail:luoqingzhi@hebust.edu.cn
作者簡介:王鵬(1990—),男,河北靈壽人,碩士研究生,主要從事可見光催化材料方面的研究。
基金項目:國家自然科學(xué)基金(21271061);河北省自然科學(xué)基金(B2014208103)
收稿日期:2015-07-24;修回日期:2015-09-05;責(zé)任編輯:張士瑩
doi:10.7535/hbkd.2016yx02010
文章編號:1008-1542(2016)02-0173-07
王鵬,張沙沙,張韶蕾,等.CDPVC/Ag3PO4復(fù)合光催化劑的制備及性能研究[J].河北科技大學(xué)學(xué)報,2016,37(2):173-179.
WANG Peng,ZHANG Shasha,ZHANG Shaolei,et al.Study on preparation and performances of CDPVC/Ag3PO4composite photocatalyst[J].Journal of Hebei University of Science and Technology,2016,37(2):173-179.