王少鋒,仲濟(jì)祥,王建國(guó)
(內(nèi)蒙古科技大學(xué)機(jī)械工程學(xué)院,內(nèi)蒙古包頭 014010)
?
立體管網(wǎng)微泄漏實(shí)時(shí)監(jiān)測(cè)系統(tǒng)研究概述
王少鋒,仲濟(jì)祥,王建國(guó)
(內(nèi)蒙古科技大學(xué)機(jī)械工程學(xué)院,內(nèi)蒙古包頭014010)
摘要:針對(duì)立體管網(wǎng)微泄漏實(shí)時(shí)監(jiān)測(cè)系統(tǒng)搭建的關(guān)鍵技術(shù)問(wèn)題,對(duì)國(guó)內(nèi)外學(xué)者的相關(guān)研究進(jìn)行了梳理,歸納為3個(gè)方面:1)在提取故障頻率信號(hào)時(shí)如何避免回聲混疊的影響,提高相關(guān)性的延時(shí)估計(jì)精度;2)在管網(wǎng)分叉結(jié)構(gòu)下,如何辨別信號(hào)傳播路徑,如何定位泄漏源的位置;3)在信息數(shù)據(jù)收發(fā)延時(shí)不確定的情況下,如何保證立體管網(wǎng)泄漏實(shí)時(shí)監(jiān)測(cè)系統(tǒng)的時(shí)間同步精度。通過(guò)對(duì)國(guó)內(nèi)外管網(wǎng)泄漏監(jiān)測(cè)技術(shù)的比較發(fā)現(xiàn),基于聲發(fā)射傳感器網(wǎng)絡(luò)的立體管網(wǎng)泄漏實(shí)時(shí)監(jiān)測(cè),對(duì)于解決探測(cè)易燃、易爆氣/液體管道運(yùn)輸中的微弱泄漏問(wèn)題具有較大優(yōu)勢(shì)。
關(guān)鍵詞:自動(dòng)控制技術(shù);泄漏檢測(cè);管網(wǎng)定位;時(shí)間同步精度;回聲混疊
管道被廣泛用于遠(yuǎn)距離運(yùn)輸、調(diào)配世界各地的天然氣、石油、水及其他易于流動(dòng)的物質(zhì)。在其長(zhǎng)期連續(xù)使用的過(guò)程中,伴隨著管壁材料腐蝕與老化現(xiàn)象的出現(xiàn),將不可避免發(fā)生管道泄漏,特別嚴(yán)重的會(huì)直接造成對(duì)人類(lèi)居住環(huán)境與生命財(cái)產(chǎn)的嚴(yán)重破壞,如:大連中石油管道泄漏事故、青島中石化東黃輸油管道泄漏事故。
為了降低管道泄漏事故率,科學(xué)家們針對(duì)多種監(jiān)測(cè)信號(hào)源開(kāi)展了管道泄漏定期檢修系統(tǒng)與技術(shù)的研究,常用的監(jiān)測(cè)信號(hào)源包括壓力、流量與泄漏聲音等。圖1顯示了2種典型的管道泄漏定期檢修系統(tǒng):圖1 a)“Smartball”系統(tǒng)[1],由加拿大Pure Technologies公司發(fā)明,其融合利用了聲音/壓力/溫度傳感器信息,實(shí)現(xiàn)了對(duì)油氣管道微小泄漏的檢測(cè),克服了傳統(tǒng)利用壓力、流量、氣體追蹤等方法無(wú)法檢測(cè)微小泄漏的缺陷;圖1 b)“水下聽(tīng)聲器”監(jiān)測(cè)系統(tǒng)[2-4],利用管道機(jī)器人引導(dǎo)水下聽(tīng)聲器,實(shí)現(xiàn)了對(duì)管道泄漏聲學(xué)信號(hào)的檢測(cè)。由此可見(jiàn),上述檢測(cè)系統(tǒng)完全適用于管道泄漏的定期巡檢與維修,但無(wú)法實(shí)現(xiàn)對(duì)管道的泄漏事故進(jìn)行實(shí)時(shí)監(jiān)控。
為了及時(shí)發(fā)現(xiàn)泄漏事故并精確定位泄漏源,管道泄漏的實(shí)時(shí)監(jiān)測(cè)技術(shù)研究得到了廣泛開(kāi)展[2-5]。圖2顯示了3種典型的管道泄漏事故實(shí)時(shí)監(jiān)測(cè)系統(tǒng):圖2 a)“Smart Pipe”系統(tǒng)[6],其將光纖傳感器貼近管道埋設(shè),通過(guò)監(jiān)測(cè)管道外表面溫度的實(shí)時(shí)變化,實(shí)現(xiàn)管道泄漏源的識(shí)別與定位,但該系統(tǒng)對(duì)光纖質(zhì)量及其安裝要求非常高;圖2 b)“MEMS”加速度傳感器管網(wǎng)監(jiān)測(cè)系統(tǒng)[7]與圖2 c)聲發(fā)射傳感器管網(wǎng)監(jiān)測(cè)系統(tǒng)[8]分別利用加速度傳感器/聲發(fā)射傳感器監(jiān)測(cè)因泄漏所導(dǎo)致的管道微振現(xiàn)象,通過(guò)對(duì)相應(yīng)波形進(jìn)行頻譜分析,實(shí)現(xiàn)管道泄漏事故的報(bào)警和泄漏源的精確定位。
圖2 管道泄漏實(shí)時(shí)監(jiān)測(cè)系統(tǒng) Fig.2 Pipeline leak real-time monitoring system
國(guó)內(nèi)外的相關(guān)研究證明,基于聲發(fā)射技術(shù)的管網(wǎng)泄漏監(jiān)測(cè)系統(tǒng)相對(duì)于其他的管網(wǎng)泄漏監(jiān)測(cè)技術(shù)具備以下優(yōu)勢(shì):
1)相對(duì)負(fù)壓波檢測(cè)具有較高的靈敏度,能夠監(jiān)測(cè)和定位出微小的泄漏源;
2)泄漏源的檢測(cè)與定位時(shí)間短,相對(duì)于別的檢測(cè)方法定位精度高;
3)應(yīng)用于大多數(shù)壓力管道包括單相液體、單相氣體和多相流體管道;
4)可在各種工況下正確檢測(cè)泄漏,如開(kāi)關(guān)閥、啟停泵、增減流量、停輸狀態(tài)等。
為此,本文研究了國(guó)內(nèi)外基于聲發(fā)射技術(shù)的管網(wǎng)泄漏監(jiān)測(cè)系統(tǒng)中需要解決的關(guān)鍵技術(shù)問(wèn)題:
1)在提取故障頻率信號(hào)時(shí)避免回聲混疊的影響,提高相關(guān)性的延時(shí)估計(jì)精度;
2)在管網(wǎng)分叉結(jié)構(gòu)下,辨別信號(hào)傳播路徑,定位泄漏源的位置;
3)在信息數(shù)據(jù)收發(fā)延時(shí)不確定的情況下,保證立體管網(wǎng)泄漏實(shí)時(shí)監(jiān)測(cè)系統(tǒng)的時(shí)間同步精度。
1管道泄漏信號(hào)回波分離研究
針對(duì)回聲波形的分離問(wèn)題,中國(guó)西安交通大學(xué)的何正嘉等[9]早在1983年就發(fā)表了利用倒頻譜原理消除回聲影響(見(jiàn)圖3)的應(yīng)用案例,該案例采集了車(chē)床床頭箱的噪聲信號(hào)相對(duì)地面、側(cè)墻與天花板的回聲信號(hào),并依據(jù)回聲傳播路程差計(jì)算得到了回聲延時(shí),由此通過(guò)刪除倒頻譜上回聲延時(shí)所對(duì)應(yīng)的脈沖峰值,完美地消除了回聲的影響。但是,很明顯,該研究無(wú)形中對(duì)故障信號(hào)的回聲傳播路程差做了假設(shè),其直接簡(jiǎn)化了回聲延時(shí)的搜索,因此,并不適用于故障信號(hào)回聲里程差未知的情況,如:長(zhǎng)跨度一維管線未知泄漏源的典型案例。但這并不妨礙我們借鑒上述研究思想,圍繞管道微泄漏的聲發(fā)射應(yīng)力波回聲延時(shí),對(duì)管道微泄漏應(yīng)力波的回波傳輸機(jī)理及其分離與弱化算法進(jìn)行研究,旨在能以此抑制聲發(fā)射應(yīng)力波回聲部分對(duì)提取故障特征波形的干擾。
由此可見(jiàn),在剔除回波與強(qiáng)背景噪聲的基礎(chǔ)上,可完全分離出待測(cè)一維管線兩端聲發(fā)射傳感器所接收到的泄漏聲發(fā)射信號(hào)特征波形;利用互相關(guān)分析,可精確辨識(shí)出兩傳感器捕捉到同一故障信號(hào)的時(shí)間差,進(jìn)而基于已知的傳感器間距與聲發(fā)射應(yīng)力波波速等參數(shù),實(shí)現(xiàn)泄漏源的精確定位。不難發(fā)現(xiàn):在上述一維管線泄漏源的定位過(guò)程中,作為預(yù)知的泄漏事故段監(jiān)測(cè)區(qū)間的距離參數(shù),其確保了泄漏源位置的可算性,然而,當(dāng)檢漏對(duì)象為立體管網(wǎng)時(shí),其泄漏事故段監(jiān)測(cè)區(qū)間預(yù)先未知,直接導(dǎo)致上述解算過(guò)程中的已知條件不復(fù)存在,將無(wú)法實(shí)現(xiàn)泄漏源位置的求解。因此,如何從立體管網(wǎng)中識(shí)別泄漏事故發(fā)生段監(jiān)測(cè)區(qū)間是該研究的關(guān)鍵。
圖3 管道中的回聲混疊的頻域表現(xiàn)Fig.3 Echo aliasing frequency domain performance of the pipeline
小波變換作為一種解析的時(shí)頻域分析方法在信噪分離過(guò)程中被廣泛采用。MOSTAFAPOUR等[10-13]、凌同華等[14]、RASHID等[15]、JIN等[8]和趙靜榮[16]均采用了傳統(tǒng)小波變換算法對(duì)氣/液管道泄漏的聲發(fā)射應(yīng)力波、負(fù)壓波信號(hào)進(jìn)行降噪處理;潘碧霞等[17]采用小波包分解理論消除管道泄漏的聲發(fā)射信號(hào)高頻噪聲,同時(shí)發(fā)現(xiàn)隨著故障信號(hào)反射與衰減現(xiàn)象的加劇,微弱故障特征受其回聲波形與強(qiáng)背景噪聲的干擾,易造成故障波形特征提取的誤判或丟失。正如前所述,何正嘉等[9]早在1983年就提出了基于倒頻譜原理的故障信號(hào)的回聲分離方法,其研究對(duì)回聲傳播路程差作出了假設(shè)。與其類(lèi)似的研究在1976年被HSSAB等[18]提出過(guò)。正是借鑒上述思路,HANSON等[19]提出了一種基于倒頻譜原理的時(shí)延估計(jì),通過(guò)將時(shí)延信息包含在階段交叉譜上,使得時(shí)延估計(jì)峰值更加尖銳明顯,同時(shí)也為弱化回聲延時(shí)影響提供了一種新的研究思路。類(lèi)似地,高偉等[20]基于航路船舶噪聲的實(shí)驗(yàn)分析,發(fā)現(xiàn)近距離測(cè)試條件下,單一自相關(guān)法或倒譜法難于連續(xù)檢測(cè)時(shí)延峰,為此提出了一種利用船舶噪聲的自相關(guān)和倒譜聯(lián)合估計(jì)多徑時(shí)延的方法。王燕等[21]對(duì)典型水聲信道的倒譜表達(dá)式進(jìn)行了研究,提出了利用倒譜提取多途時(shí)延差的策略。王衛(wèi)國(guó)等[22]發(fā)現(xiàn)廣義倒譜相關(guān)函數(shù)分析法在延遲估計(jì)中優(yōu)于倒譜法, 可以消除GPS信號(hào)多路徑模型中發(fā)射源、各路徑傳遞函數(shù)以及卷積干擾對(duì)延遲估計(jì)的影響。由此可見(jiàn),大多研究并未涉及管道泄漏聲發(fā)射應(yīng)力波的回聲分離,但上述研究也提示我們應(yīng)將研究重點(diǎn)置于管道微泄漏應(yīng)力波的回波傳輸機(jī)理,并進(jìn)一步分離與弱化其回聲波形影響。此外,針對(duì)強(qiáng)背景噪聲的干擾問(wèn)題,王宏超等[23]用最小熵解卷積對(duì)強(qiáng)噪聲滾動(dòng)軸承微弱信號(hào)進(jìn)行降噪處理,王志武[24]設(shè)計(jì)了一種基于局部均值分解和奇異值分解差分譜理論的微弱信息提取方法,以此提取強(qiáng)背景噪聲下的微弱特征信息。JIANG等[25]和陳敬龍等[26]提出了基于冗余提升多小波包與滑動(dòng)窗奇異值分解相融合的信號(hào)降噪分離方法,旨在提取隱藏在原始振動(dòng)信號(hào)中的弱周期性沖擊信號(hào),后者又出色地將多小波分析方法應(yīng)用于行星齒輪箱的故障診斷中[27]。袁靜等[28-29]構(gòu)造了緊支、雙正交、對(duì)稱(chēng)和四階逼近階的多小波,其匹配了復(fù)合故障的各特征波形,使得解耦的特征信息清晰地呈現(xiàn)于不同通道中,實(shí)現(xiàn)了復(fù)合故障耦合特征的一次性分離與提取。何正嘉等[30]學(xué)者對(duì)故障動(dòng)態(tài)信號(hào)與基函數(shù)內(nèi)積變換原理進(jìn)行了深入研究,相繼提出了多種自適應(yīng)多小波基構(gòu)造方法,實(shí)現(xiàn)了旋轉(zhuǎn)軸系微弱故障動(dòng)態(tài)信號(hào)的特征增強(qiáng)。受此研究啟發(fā),凌同華等[14]于2013年提出了基于實(shí)際爆破振動(dòng)信號(hào)特征波形的模式自適應(yīng)小波構(gòu)造方法,該研究以工程信號(hào)特征波形為切入點(diǎn),對(duì)實(shí)測(cè)微差爆破振動(dòng)信號(hào)特征波形進(jìn)行了模式自適應(yīng)匹配,實(shí)現(xiàn)了專(zhuān)用于爆破振動(dòng)信號(hào)分析的小波基構(gòu)造。由此可見(jiàn),大多研究集中于旋轉(zhuǎn)機(jī)械的故障信號(hào)分析,對(duì)于微弱故障動(dòng)態(tài)信號(hào)特征增強(qiáng)和提取問(wèn)題,以典型故障信號(hào)特征波形為依據(jù),構(gòu)造與其相似度高、便于廣泛應(yīng)用到同類(lèi)故障信號(hào)分析的專(zhuān)用小波基是其最佳選擇。因此,如何構(gòu)造專(zhuān)用于管道微泄漏聲發(fā)射工程信號(hào)強(qiáng)背景噪聲分離的專(zhuān)用小波基,有待于進(jìn)一步研究。
2管網(wǎng)分叉結(jié)構(gòu)中泄漏源定位研究
時(shí)差定位法在管道泄漏的聲發(fā)射源識(shí)別與定位研究中應(yīng)用的最為廣泛,正如伊朗Tabriz大學(xué)相關(guān)研究成果的介紹[10-11,31],該方法需至少布置2個(gè)聲發(fā)射傳感器于待測(cè)一維管線的兩端,通過(guò)提取管道泄漏應(yīng)力波撞擊2個(gè)傳感器的時(shí)間差,并結(jié)合監(jiān)測(cè)區(qū)間距離與應(yīng)力波波速等參數(shù),對(duì)泄漏源位置進(jìn)行解算。其團(tuán)隊(duì)在2015年提出根據(jù)聲發(fā)射信號(hào)的頻散特性,利用聲發(fā)射信號(hào)中A0模態(tài)與S0速度差所造成的到達(dá)傳感器時(shí)間差進(jìn)行定位[12]。DAVOUDI等[31]和LI等[32]利用互相關(guān)函數(shù)法,通過(guò)提取管道泄漏聲發(fā)射應(yīng)力波信號(hào)互相關(guān)函數(shù)的最大峰值所對(duì)應(yīng)的時(shí)間,確定2個(gè)聲發(fā)射傳感器受撞擊的時(shí)間差,同時(shí),MOSTAFAPOUR等[33]繼續(xù)將該思想延伸至金屬平板的聲發(fā)射源定位過(guò)程。RASHID等[34]也將該方法應(yīng)用于基于負(fù)壓波互相關(guān)分析的水管爆裂源定位,并發(fā)現(xiàn):聲發(fā)射信號(hào)在材料界面、耦合劑和傳感器的接觸處會(huì)發(fā)生波形轉(zhuǎn)換現(xiàn)象,將直接弱化相關(guān)函數(shù)的最大峰值,有時(shí)還會(huì)出現(xiàn)多個(gè)峰值,為確定時(shí)差帶來(lái)了困難。為此,金中薇等[35]引入了信號(hào)波動(dòng)少、噪聲抑制能力高的PHAT加權(quán)函數(shù),提出了基于PHAT加權(quán)函數(shù)的互相關(guān)聲發(fā)射定位方法,實(shí)驗(yàn)結(jié)果表明PHAT 加權(quán)函數(shù)能夠有效提高估算時(shí)差精度。由此可見(jiàn),目前多數(shù)研究聚焦于一維管線的聲發(fā)射定位,定位誤差已優(yōu)于5%,若完全依據(jù)上述研究將2個(gè)聲發(fā)射傳感器置于立體管網(wǎng)中,受管網(wǎng)分叉結(jié)構(gòu)的影響,則聲發(fā)射傳感器很難辨識(shí)對(duì)應(yīng)接收信號(hào)的傳輸路徑。因此,有必要對(duì)立體管網(wǎng)微泄漏事故段的多傳感器識(shí)別算法進(jìn)行深入研究。東北大學(xué)[36]與中國(guó)石油大學(xué)[37]的研究團(tuán)隊(duì)或利用神經(jīng)網(wǎng)絡(luò)、或利用支持向量機(jī),成功實(shí)現(xiàn)了管道泄露的模式識(shí)別,并借助GPS定位技術(shù)完成了管網(wǎng)泄漏故障段的識(shí)別,為利用時(shí)差定位法求解泄漏源位置奠定了堅(jiān)實(shí)的基礎(chǔ)。但是,該研究中特征值敏感度對(duì)故障辨識(shí)影響特別大,同時(shí),為了徹底擺脫對(duì)GPS定位技術(shù)的依賴(lài),美國(guó)Illinois大學(xué)學(xué)者OZEVIN等[38]依據(jù)聲發(fā)射信號(hào)在高阻尼材料傳播中的強(qiáng)衰減特性,提出了基于聲發(fā)射應(yīng)力波能量的管網(wǎng)泄漏事故段識(shí)別方法——將能量最大的2個(gè)聲發(fā)射傳感器間的管道視為泄漏事故段,實(shí)現(xiàn)了聚氯乙烯二維平面管網(wǎng)泄漏事故段的識(shí)別,但其并不適用于低阻尼材料的管網(wǎng),究其根本原因在于聲發(fā)射信號(hào)在低阻尼材料中并不具備強(qiáng)衰減特性,且法蘭、閥門(mén)與管道彎頭對(duì)信號(hào)能量的影響嚴(yán)重。受此啟示,筆者認(rèn)為:將上述以信號(hào)能量衰減的識(shí)別指標(biāo)替換為與距離成正比的波形傳播時(shí)間,同時(shí)考慮法蘭、閥門(mén)與管道彎頭對(duì)聲發(fā)射應(yīng)力波波速和波形的影響[18],并以多聲發(fā)射傳感器監(jiān)測(cè)為突破口,探索多分叉路徑下的管道微泄漏聲發(fā)射應(yīng)力波傳播規(guī)律,將會(huì)為立體管網(wǎng)微泄漏事故段的一維蛻化和定位準(zhǔn)確率的提高帶來(lái)新的思路。
考慮到李雄等[39]提出夾角對(duì)管道的影響同時(shí)借鑒多傳感器實(shí)時(shí)監(jiān)測(cè)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的研究成果,構(gòu)建立體管網(wǎng)微泄漏實(shí)時(shí)監(jiān)測(cè)的聲發(fā)射傳感器空間布局(見(jiàn)圖4):將立體管網(wǎng)的管道交匯點(diǎn)(如圖4中的J1,J2,…)之間布置聲發(fā)射傳感器(如圖4中的S1,S2,…),以分割成多個(gè)一維管線(如圖4中的L1,L2,…),對(duì)聲發(fā)射應(yīng)力波撞擊各聲發(fā)射傳感器的時(shí)間序列及其傳播路徑的辨識(shí),以此提取立體管網(wǎng)微泄漏事故段,將多分叉路徑下的管網(wǎng)蛻化成一維管道泄漏源定位的問(wèn)題,再利用交匯點(diǎn)矩陣J、傳感器矩陣S、途徑矩陣L將泄漏源還原至立體中的位置。該監(jiān)測(cè)方法中所采用的均為壓電式聲發(fā)射傳感器,如果采用多種傳感器裝置并存,則在信號(hào)處理階段則需要對(duì)多種傳感器裝置的幅相一致性校正處理,增加信號(hào)處理的負(fù)擔(dān),必然無(wú)法保證對(duì)應(yīng)數(shù)據(jù)的實(shí)時(shí)處理,同時(shí)也會(huì)造成檢測(cè)成本的急劇增加,與工業(yè)界所期望的低成本、快響應(yīng)、高精度要求存在著巨大差距。
圖4 立體管網(wǎng)微泄漏全局監(jiān)測(cè)的傳感器布局Fig.4 Global monitoring sensor layout for three-dimensional pipeline network micro leakage
3管網(wǎng)監(jiān)測(cè)系統(tǒng)實(shí)時(shí)監(jiān)測(cè)研究
3.1監(jiān)測(cè)網(wǎng)絡(luò)的數(shù)據(jù)處理機(jī)制的研究
國(guó)內(nèi)外學(xué)者針對(duì)管道泄漏實(shí)時(shí)監(jiān)測(cè)的無(wú)線傳感網(wǎng)絡(luò)進(jìn)行了深入研究。ABDELGAWAD等[40]構(gòu)建了無(wú)線聲發(fā)射傳感器星型拓?fù)渚W(wǎng)絡(luò),實(shí)現(xiàn)了各節(jié)點(diǎn)的數(shù)據(jù)融合,但其集中式數(shù)據(jù)處理模式往往會(huì)造成節(jié)點(diǎn)到中心基站的巨大數(shù)據(jù)流,為此,該研究進(jìn)一步提出了基于分層式數(shù)據(jù)處理機(jī)制的無(wú)線聲發(fā)射傳感器樹(shù)狀拓?fù)渚W(wǎng)絡(luò),提高了數(shù)據(jù)傳輸與計(jì)算效率[41],但其缺陷在于一旦根節(jié)點(diǎn)損壞,整個(gè)網(wǎng)絡(luò)將失效。針對(duì)該問(wèn)題,NASIM等[42]與RASHID等[34]構(gòu)建了無(wú)線聲發(fā)射傳感器簇頭型拓?fù)渚W(wǎng)絡(luò)(見(jiàn)圖5),其節(jié)點(diǎn)被劃分為可逐級(jí)通信的數(shù)據(jù)感知節(jié)點(diǎn)、數(shù)據(jù)采集簇頭和路徑簇頭,數(shù)據(jù)最終到達(dá)基站。此外,SADEGHIOON等[43]也進(jìn)行了類(lèi)似的研究,區(qū)別在于路徑簇頭最終將數(shù)據(jù)上傳至云,其方便了各種客戶(hù)端設(shè)備隨時(shí)隨地獲取信息。由以上研究可發(fā)現(xiàn):具有分層式數(shù)據(jù)處理機(jī)制的簇頭型無(wú)線傳感器網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)相比其他,其數(shù)據(jù)處理與傳輸更高效可靠,且其數(shù)據(jù)采集簇頭與感知節(jié)點(diǎn)連接的冗余性設(shè)計(jì)可作為抑制節(jié)點(diǎn)失效影響的新構(gòu)想。此外,鑒于管道泄漏源實(shí)時(shí)無(wú)線監(jiān)測(cè)與定位需各傳感器并行協(xié)作完成的特點(diǎn),各無(wú)線傳感器的數(shù)據(jù)采集時(shí)間同步性是該研究的基礎(chǔ)與前提。
圖5 RASHID無(wú)線聲發(fā)射傳感器簇頭型拓?fù)渚W(wǎng)絡(luò)Fig.5 RASHID’s wireless acoustic emission sensor type cluster topology network
3.2監(jiān)測(cè)網(wǎng)絡(luò)的時(shí)鐘同步研究
目前傳統(tǒng)的時(shí)間同步機(jī)制——GPS,NTP和SCSDRT等受能量和帶寬限制,無(wú)法適用于只能使用輕量協(xié)議的無(wú)線傳感網(wǎng)絡(luò)[44]。為此,美國(guó)加州大學(xué)學(xué)者ELSON等[45]首次提出了“RBS同步協(xié)議”,屬于接收結(jié)點(diǎn)間的同步,雖然其同時(shí)考慮了時(shí)鐘偏移與漂移的影響,但頻繁的再同步增加了帶寬流量和耗能。GANERIWAL等[46]提出了“TPSN同步協(xié)議”,是發(fā)送與接收結(jié)點(diǎn)的雙向成對(duì)同步,其在MAC層引入時(shí)間戳進(jìn)行傳輸延時(shí)和時(shí)鐘偏移的估算,但其缺陷在于根節(jié)點(diǎn)失效后的再同步需大量的計(jì)算和能量開(kāi)銷(xiāo),且未考慮時(shí)鐘漂移的影響。此類(lèi)協(xié)議還包括TS/MS[47],HRTS[48],LTS[49]和AD[50]同步協(xié)議,但LTS和AD同步協(xié)議的目的是減小時(shí)間同步計(jì)算的復(fù)雜度,并不是提高精確度,HRTS同步協(xié)議相較于LTS協(xié)議,其犧牲一定的精度來(lái)降低整個(gè)網(wǎng)絡(luò)的功耗。MARTI等[51]借鑒“TS/MS同步協(xié)議”中對(duì)節(jié)點(diǎn)時(shí)鐘漂移規(guī)律的探索經(jīng)驗(yàn),提出了發(fā)送與接收結(jié)點(diǎn)單向同步的“FTSP同步協(xié)議”,揭示了節(jié)點(diǎn)時(shí)鐘偏移與漂移對(duì)同步精度的影響規(guī)律;與其類(lèi)似的DMTS同步協(xié)議[52]則是以犧牲同步精度換取較低的計(jì)算復(fù)雜度和能耗,發(fā)送節(jié)點(diǎn)到接收節(jié)點(diǎn)的單向時(shí)間延遲直接測(cè)量得到,楊朔等[53]也在協(xié)議中添加異常漂移率檢測(cè)器估計(jì)同步時(shí)間誤差。由此可見(jiàn),常見(jiàn)的同步協(xié)議很難協(xié)調(diào)精度與能量的開(kāi)銷(xiāo);而且,常用的一體化無(wú)線通信模塊將整個(gè)網(wǎng)絡(luò)層到物理層協(xié)議封裝,開(kāi)發(fā)過(guò)程中需通過(guò)串口等與微控制器進(jìn)行通信,如此雖說(shuō)便于開(kāi)發(fā),但導(dǎo)致僅能通過(guò)軟件實(shí)現(xiàn)同步協(xié)議的添加,軟件延時(shí)進(jìn)一步影響著同步精度的提高。為了實(shí)現(xiàn)在工業(yè)中的應(yīng)用,北京聲華興業(yè)科技有限公司[54]與美國(guó)物理聲學(xué)公司[55]均采用了傳統(tǒng)的GPS時(shí)鐘校準(zhǔn)技術(shù),盡管數(shù)據(jù)同步采集的時(shí)間精度達(dá)到了30 μs,但遠(yuǎn)遠(yuǎn)未達(dá)到基于管道泄漏聲發(fā)射應(yīng)力波互相關(guān)分析的泄漏源定位要求,同時(shí),GPS設(shè)備常常受到環(huán)境障礙物與強(qiáng)電磁干擾的影響。針對(duì)這些問(wèn)題,芬蘭Aalto大學(xué)學(xué)者GANERIWAL等[56]在2011年提出了數(shù)據(jù)采集時(shí)間的μ-Synch同步協(xié)議,隨后BOCCA等[57]將其應(yīng)用到木質(zhì)實(shí)驗(yàn)?zāi)P蜆蚰B(tài)分析的數(shù)據(jù)同步采集(見(jiàn)圖6)中,達(dá)到了1 kHz采樣頻率下優(yōu)于10 μs的時(shí)間同步精度。由上述研究可以看出:雖然研究還未涉及需要高采樣頻率的聲發(fā)射信號(hào),但基于上述研究思路,可通過(guò)搭建無(wú)線聲發(fā)射傳感器監(jiān)測(cè)網(wǎng)絡(luò),并構(gòu)建傳感器間的數(shù)據(jù)采集時(shí)間同步協(xié)議,以此確保無(wú)線聲發(fā)射傳感器在立體管網(wǎng)泄漏源實(shí)時(shí)監(jiān)測(cè)中的工程應(yīng)用成為可能。
圖6 芬蘭學(xué)者木質(zhì)實(shí)驗(yàn)?zāi)P蜆騀ig.6 Finland scholars’ wooden experiment model bridge
4結(jié)語(yǔ)
實(shí)現(xiàn)立體管網(wǎng)微泄漏的實(shí)時(shí)監(jiān)測(cè),需要依托聲發(fā)射應(yīng)力波信號(hào)采集系統(tǒng),對(duì)管道微泄漏應(yīng)力波的回波傳輸機(jī)理及其分離與弱化算法進(jìn)行研究,克服泄漏辨識(shí)過(guò)程中具有相同波形特征的回聲欺騙;同時(shí),基于工程信號(hào)故障波形特征進(jìn)行小波基設(shè)計(jì),構(gòu)造專(zhuān)用于增強(qiáng)管道微泄漏聲發(fā)射應(yīng)力波特征的專(zhuān)用小波基,實(shí)現(xiàn)管道微泄漏聲發(fā)射應(yīng)力波信號(hào)強(qiáng)背景噪聲的分離。探索多分叉路徑下的管網(wǎng)微泄漏聲發(fā)射應(yīng)力波傳播規(guī)律,研究立體管網(wǎng)微泄漏事故段的多傳感器識(shí)別算法,進(jìn)而在剔除泄漏段的聲發(fā)射應(yīng)力波回聲與強(qiáng)背景噪聲基礎(chǔ)上,實(shí)現(xiàn)泄漏源的精確定位。另外,結(jié)合現(xiàn)有傳感器監(jiān)測(cè)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的研究成果,構(gòu)建具有分層式數(shù)據(jù)處理機(jī)制的簇頭型無(wú)線傳感網(wǎng)絡(luò),設(shè)計(jì)數(shù)據(jù)采集簇頭與感知節(jié)點(diǎn)的冗余性連接,以此確保系統(tǒng)安全;研究基于硬件觸發(fā)計(jì)時(shí)的無(wú)線傳感網(wǎng)絡(luò)同步協(xié)議,揭示無(wú)線傳感網(wǎng)絡(luò)軟件延時(shí)的不確定性和節(jié)點(diǎn)晶振的波動(dòng)對(duì)時(shí)鐘同步精度的影響規(guī)律,提取網(wǎng)絡(luò)時(shí)鐘同步對(duì)準(zhǔn)周期極限,實(shí)現(xiàn)網(wǎng)絡(luò)低開(kāi)銷(xiāo)的同時(shí),提高時(shí)間同步精度。為中國(guó)遠(yuǎn)距離油、氣管道運(yùn)行狀態(tài)的實(shí)時(shí)監(jiān)控技術(shù)及其系統(tǒng)研發(fā),以及城市供水管網(wǎng)泄漏的實(shí)時(shí)監(jiān)控提供技術(shù)參考。
參考文獻(xiàn)/References:
[1]ELLIOTT J, FLETCHER R, WRIGGLESWORTH M. Seeking the hidden threat: Applications of a new approach in pipeline leak detection[C]//Abu Dhabi International Petroleum Exhibition and Conference.[S.l.]:[s.n.], 2008: 118070-MS.
[2]KHALIFA A, BEN-MANSOUR R, YOUCEF-TOUMI K, et al. Characterization of in-pipe acoustic wave for water leak detection[C]// ASME International Mechanical Engineering Congress & Exposition.[S.l.]: IMECE ,2011:62333.
[3]KHALIFA AE, CHATZIGEORIOU DM, YOUCEF-TOUMI K, et al. Quantifying acoustic and pressure sensing for in-pipe leak detection[C]//ASME International Mechanical Engineering Congress & Exposition.[S.l.]: IMECE,2010:40056.
[4]CHATZIGEORIOU DM, KHALIFA AE, YOUCEF-TOUMI K, et al. An in-pipe leak detection sensor: Sensing capabilities and evaluation[C]//ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference.[S.l.]: IDETC/CIE ,2011:48411.
[5]魏福祥,張帆,張楠.海水總磷總氮在線自動(dòng)監(jiān)測(cè)裝置[J].河北科技大學(xué)學(xué)報(bào),2012,33(5):464-468.
WEI Fuxiang, ZHANG Fan, ZHANG Nan.On-line automatic monitoring device for total phosphorusand total nitrogen of seawater[J].Journal of Hebei University of Science and Technology, 2012,33(5):464-468.
[6]INAUDI D, GLISIC B. Long-range pipeline monitoring by distributed fiber optic sensing[J]. Journal of Pressure Vessel Techology, 2010,132:1-9.
[7]SHINOZUKA M, FENG M, MOSALLAM A, et al. Wireless MEMS-sensor networks for monitoring and condition assessment of lifeline systems[C]// Urban Remote Sensing Joint Event. Paris:[s.n.], 2007: 1-6.
[8]JIN H, ZHANG L B, LIANG W, et al. Integrated leakage detection and localization model for gas pipelines based on the acoustic wave method[J]. Journal of Loss Prevention in the Process Industries, 2014,27:74-88.
[9]何正嘉,張涵浮,屈梁生.倒頻譜原理及其在噪聲分析中的應(yīng)用[J].噪聲與振動(dòng)控制,1983(6):8-12.
HE Zhengjia, ZHANG Hanfu, QU Liangsheng. Principle of the inverse spectrum and its application in noise analysis [J]. Noise and Vibration Control, 1983(6):8-12.
[10]MOSTAFAPOUR A, DAVOUDI S. Analysis of leakage in high pressure pipe using acoustic emission method[J]. Applied Acoustics, 2013,74:335-342.
[11]MOSTAFAPOUR A, DAVOUDI S. A theoretical and experimental study on acoustic signals caused by leakage in buried gas-filled pipe[J]. Applied Acoustics, 2015,87:1-8.
[12]MOSTAFAPOUR A, DAVOODI S. Continuous leakage location in noisy environment using modal and wavelet analysis with one AE sensor [J]. Ultrasonics, 2015,62:305-311.
[13]DAVOUDI S, MOSTAFAPOUR A. Modeling acoustic emission signal caused by leakage in pressurized gas pipe[J]. Journal of Nondestruct Eval, 2013, 32(4): 67-80.
[14]凌同華,張勝,陳倩倩,等.模式自適應(yīng)小波構(gòu)造與添加及其在爆破振動(dòng)信號(hào)分析中的應(yīng)用[J].振動(dòng)與沖擊,2014,33(12):53-57.
LING Tonghua,ZHANG Sheng,CHEN Qianqian,et al. Pattern adapted wavelet construction and addition and its application in blast vibration signal analysis[J]. Journal of Vibration and Shock,2014,33(12):53-57.
[15]RASHID S, QAISAR S, SAEED H, et al. Performance analysis of wavelet transforms for leakage detection in long range pipeline networks[C]// In Proceedings of the IEEE Conference on Systems, Process and Control.Tamil Nadu:[s.n.], 2013:11-15.
[16]趙靜榮.聲發(fā)射信號(hào)處理系統(tǒng)與源識(shí)別方法的研究[D].長(zhǎng)春:吉林大學(xué),2010.
ZHAO Jingrong.Acoustic Emission Signal Processing System and Source Recognition Methods[D].Changchun: Jilin University,2010.
[17]潘碧霞,徐長(zhǎng)航,曹?chē)?guó)梁,等.管道泄漏聲發(fā)射信號(hào)的傳播特性[J].油氣儲(chǔ)運(yùn),2013,32(10):1141-1145.
PAN Bixia, XU Changhang, CAO Guoliang, et al. Propagation characteristics of acoustic emission signals of pipeline leak[J].Oil & Gas Storage and Transportation,2013,32(10):1141-1145.
[18]HASSAB J C, BOUCHER R A. Probabilistic analysis of time delay extraction by the cepstrum in stationary Gaussian noise[J]. IEEE Transactions on Information Theory, 1976,22(4):444-454.
[19]HANSON D,RANDALL R B,BROWN G. Locating leaks in underground water pipes using the complex cepstrum[J]. Australian Journal of Mechanical Engineering, 2008,6(2):107-112.
[20]高偉,王寧,陳川.利用船舶噪聲的自相關(guān)與倒譜聯(lián)合估計(jì)多徑時(shí)延[J].聲學(xué)學(xué)報(bào),2013,38(5):521-523.
GAO Wei,WANG Ning, CHEN Chuan.Multipath time-delay estimation using auto-correlation and cepstrum of ship-radiated noise[J]. Acta Acustica,2013,38(5): 521-523.
[21]王燕,鄒男,付進(jìn),等.基于倒譜分析的單水聽(tīng)器目標(biāo)運(yùn)動(dòng)參數(shù)估計(jì)[J].物理學(xué)報(bào),2014,63(3):1-12.
WANG Yan, ZOU Nan, FU Jin, et al. Estimation of single hydrophone target motion parameter based on cepstrum analysis[J].Acta Physica Sinica, 2014,63(3):1-12.
[22]王衛(wèi)國(guó),蔡俊武.GPS多路徑信號(hào)的廣義倒譜相關(guān)函數(shù)分析法[J].裝備指揮技術(shù)學(xué)院學(xué)報(bào),2008,19(6):71-75.
WANG Weiguo, CAI Junwu. Generalized cepstrum correlation function analysis method on multipath signals of GPS[J]. Journal of the Academy of Equipment Command & Technology,2008,19(6):71-75.
[23]王宏超,陳進(jìn),董廣明.基于最小熵解卷積與稀疏分解的滾動(dòng)軸承微弱故障特征提取[J].機(jī)械工程學(xué)報(bào),2013,49(1):88-94.
WANG Hongchao,CHEN Jin,DONG Guangming. Fault diagnosis method for rolling bearing’s weak fault based on minimum entropy deconvolution and sparse decomposition[J].Journal of Mechanical Engineering,2013,49(1):88-94.
[24]王志武.強(qiáng)噪聲背景下機(jī)械故障微弱信號(hào)特征提取方法研究[D].太原:中北大學(xué),2014.
WANG Zhiwu. Research on Weak Signal Feature Extraction of Mechanical Equipment in Heavy Noise[D].Taiyuan: North Central University,2014.
[25]JIANG H K, XIA Y, WANG X D. Rolling bearing fault detection using an adaptive lifting multi-wavelet packet with a 1.5 dimension spectrum[J]. Measurement Science and Technology, 2014,24(12): 1-10.
[26]陳敬龍,張來(lái)斌,段禮祥,等.基于提升小波包的往復(fù)壓縮機(jī)活塞-缸套磨損故障診斷[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2011,35(1):130-134.
CHEN Jinglong, ZHANG Laibin, DUAN Lixiang, et al. Diagnosis of reciprocating compressor piston-cylinder liner wear fault based on lifting scheme packet[J]. Journal of China University of Petroleum(Edition of Natural Sciences), 2011,35(1):130-134.
[27]CHEN J L, ZHANG C L, ZHANG X Y, et al. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multi-wavelet analysis method[J]. Mechanical Systems and Signal Processing, 2015,54(55): 277-292.
[28]袁靜,何正嘉,訾艷陽(yáng).基于提升多小波的機(jī)電設(shè)備復(fù)合故障分離和提取[J].機(jī)械工程學(xué)報(bào),2010,46(1):79-85.
YUAN Jing, HE Zhengjia, ZI Yanyang. Separation and extraction of electromechanical equipment compound faults using lifting multiwavelets [J]. Journal of Mechanical Engineering, 2010,46(1):79-85.
[29]YUAN J, HE Z J, ZI Y Y, et al. Construction and selection of lifting-based multi-wavelets for mechanical fault detection[J]. Mechanical Systems and Signal Processing, 2013,40(2):571-588.
[30]何正嘉,孫海亮,訾艷陽(yáng).自適應(yīng)多小波基函數(shù)構(gòu)造與機(jī)械故障診斷應(yīng)用研究[J].中國(guó)工程科學(xué),2010,13(10):83-92.
HE Zhengjia, SUN Hailiang, ZI Yanyang.Adaptive construction of multiwavelet basis function and its applications for mechanical fault diagnosis[J]. Engineering Science, 2010,13(10):83-92.
[31]DAVOUDI S, MOSTAFAPOUR A. Gas leak locating in steel pipe using wavelet transform and cross-correlation method[J]. International Journal of Advanced Manufacturing Technology, 2014,70:1125-1135.
[32]LI S Y, WEN Y M, LI P, et al. Leak location in gas pipelines using cross-time-frequency spectrum of leakage-induced acoustic vibrations[J]. Journal of Sound and Vibration, 2014,333(17):3889-3903.
[33]MOSTAFAPOUR A, DAVOUDI S, GHAREAGHAJI M. Acoustic emission source location in plates using wavelet analysis and cross time frequency spectrum[J]. Ultrasonics, 2014,54(8):2055-2062.
[34]RASHID S, QAISAR S, SAEED H, et al. A method for distributed pipeline burst and leakage detection in wireless sensor networks using transform analysis[J]. International Journal of Distributed Sensor Networks, 2014, 2014:939657.
[35]金中薇,姜明順,隋青美.基于廣義互相關(guān)時(shí)延估計(jì)算法的聲發(fā)射定位技術(shù)[J].傳感技術(shù)學(xué)報(bào),2013,26(11):1513-1518.
JIN Zhongwei, JIANG Mingshun, SUI Qingmei,et al. Acoustic emission localization technique based on generalized cross-correlation time difference estimation algorithm[J].Chinese Journal of Sensors and Actuators,2013,26(11):1513-1518.
[36]倫淑嫻,張化光,馮?。赃m應(yīng)模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng)在管道泄漏檢測(cè)中的應(yīng)用[J].石油學(xué)報(bào),2004,25(4):101-104.
LUN Shuxian, ZHANG Huaguang, FENG Jian. Filtering technique based on adaptive fuzzy-neural network applied to leakage detection of pipeline[J]. Acta Petrolei Sinica,2004,25(4):101-104.
[37]梁偉,張來(lái)斌,郭存杰.復(fù)雜工況下熱油管道漏失識(shí)別與定位方法研究[J].石油礦場(chǎng)機(jī)械,2009,38(6):12-16.
LIANG Wei, ZHANG Laibin, GUO Cunjie. Leak detection and positioning method for heat pipelines in complicated conditions[J]. Oil Field Equipment,2009,38(6):12-16.
[38]OZEVIN D, HARDING J. Novel leak localization in pressurized pipeline networks using acoustic emission and geometric connectivity[J]. International Journal of Pressure Vessels and Piping, 2012,92:63-69.
[39]李雄,劉偉軍,唐飄,等.排氣三通管道分散流流動(dòng)特性的數(shù)值模擬及分析[J].河北科技大學(xué)學(xué)報(bào),2014,35(3):272-278.
LI Xiong,LIU Weijun,TANG Piao,et a1.Numerical simulation and analysis on the dispersed flow characteristics in tee branch pipe of exhaust system[J].Journal of Hebei University of Science and Technology,2014,35(3):272-278.
[40]ABDELGAWAD A, BAYOUMI M. Remote measuring for sand in pipelines using wireless sensor network[J]. IEEE Transactions on Instrumentation and Measurement, 2011,60(4):1443-1452.
[41]ABDELGAWAD A. Distributed sand monitoring framework using wireless sensor networks[J]. Journal of Communications Engineering and Networks, 2013,1(1):1-10.
[42]NASIM M, QAISAR S. Hierarchical MIMO: A clustering approach for ad hoc wireless sensor networks[C]// Proceedings of the 44th Annual Conference on Information Sciences and Systems. Princeton:[s.n.], 2010:1-6.
[43]SADEGHIOON A, METJE N, CHAPMAN D, et al. Smartpipes: smart wirelesswensor networks for leak detection in water pipelines[J]. Journal of Sensor and Actuator Networks, 2014,3(1): 64-78.
[44]徐煥良,劉佼佼,王浩云,等.WSN/WSAN中的時(shí)間同步算法研究[J].計(jì)算機(jī)工程與應(yīng)用,2012,48(31):56-60.
XU Huanliang , LIU Jiaojiao , WANG Haoyun, et al. Research on clock synchronization algorithms for WSN/WSAN[J]. Computer Engineering and Applications, 2012,48(31):56-60.
[45]ELSON J, GIROD L, ESTRIN D. Fine-grained network time synchronization using reference broadcasts[C]// In Proceedings of the 5th Symposium. Boston:[s.n.],2002:147-163.
[46]GANERIWAL S, KUMAR R, SRIVASTAVA M B. Timing-sync protocol for sensor networks[C]// In Proceedings of Conference on Embedded Networked Sensor Systems.Los Angeles:[s.n.], 2003:138-149.
[47]MIHAIL L S, CHANCHAI V. Simple accurate time synchronization for wireless sensor networks[C]// In Proceedings of the IEEE Wireless Communications and Networking Conference.New Orleans:[s.n.], 2003:1266-1273.
[48]DAI H, HAN R. TSync:A lightweight bidirectional time synchronization service for wireless sensor networks[J]. Mobile Computing and Communications Review, 2004,8(1):125-139.
[49]GREUNEN J,RABAEY J.Lightweight time synchronization for sensor networks[C]// In Proceedings of International Conference on Wireless Sensor Networks and Applications.San Diego:[s.n.],2003:1-5.
[50]LI Q, DANIELA R. Global clock synchronization in sensor networks[J]. IEEE Transactions on Computers, 2006,55(2):214-226.
[52]SU P. Delay Measurement Time Synchronization for Wireless Sensor Networks[R]. Santa Clara: Intel Research Berkeley Lab, 2003:IRB-TR-03-013.
[53]楊朔,李長(zhǎng)庚.無(wú)線傳感器網(wǎng)絡(luò)泛洪時(shí)間同步協(xié)議安全算法[J].傳感器與微系統(tǒng),2014,33(1):137-140.
YANG Shuo, LI Changgeng. Security algorithm of flooding time synchronization protocol in wireless sensor networks[J]. Transducer and Microsystem Technologies,2014,33(1):137-140.
[54]北京聲華興業(yè)科技有限公司.SAEW2分布式多通道聲發(fā)射檢測(cè)儀[EB/OL].http://www.soundwel.cn/product/133.html,2013-10-11.
[55]美國(guó)物理聲學(xué)公司(PAC)北京代表處.通道無(wú)線聲發(fā)射系統(tǒng)[EB/OL].http://www.pacndt.cn/ProductInfo.aspx?m=20131212100844083668&n=20131212131322847763, 2013-12-12.
[56]GANERIWAL S, KUMAR R, SRIVASTAVA M B. Timing-sync protocol for sensor networks[C]// In Proceedings of Conference on Embedded Networked Sensor Systems. Los Angeles: [s.n.], 2003:138-149.
[57]BOCCA M, ERIKSSON L M. MAHMOOD A, et al. A synchronized wireless sensor network for experimental modal analysis in structural health monitoring[J]. Computer-Aided Civil and Infrastructure Engineering, 2011,26(7):483-499.
Research overview of real-time monitoring system for micro leak of three-dimensional pipe network
WANG Shaofeng, ZHONG Jixiang, WANG Jianguo
(Institute of Mechanical Engineering,Inner Mongolia University of Science and Technology,Baotou,Inner Mongolia 014010, China)
Abstract:Aiming at the key technical problems encountered by domestic and foreign scholars in building the real-time monitoring system for the micro leak of three-dimensional pipe networks, the paper classifies the problems into three aspects: 1) in the extraction of fault signal frequency, how to avoid the effect of the mixed echo stack and improve the delay estimation accuracy of the correlation; 2) in network bifurcation structure, how to discern the signal propagation path, and how to locate the leak source; 3) under the uncertainly delay in transmitting and receiving information data, how to ensure the time synchronization accuracy of the real-time monitoring system for the three-dimensional pipe network leakage. Through the comparison of the monitoring technologies for the pipe network leakage at home and abroad, it shows that the acoustic emission sensor network based three-dimensional pipeline leak real-time monitoring has great advantages in detecting the weak leakage of flammable and explosive gas/liquid transportation pipelines.
Keywords:automatic control technology; leak detection; pipe network location; time synchronization; echo aliasing
中圖分類(lèi)號(hào):TP277
文獻(xiàn)標(biāo)志碼:A
作者簡(jiǎn)介:王少鋒(1980—),男,內(nèi)蒙古包頭人,講師,博士,主要從事復(fù)雜機(jī)械系統(tǒng)故障監(jiān)測(cè)與診斷以及數(shù)字化裝配與鏈接方面的研究。
基金項(xiàng)目:國(guó)家自然科學(xué)基金(51565047);內(nèi)蒙古自治區(qū)高等學(xué)??茖W(xué)研究項(xiàng)目(NJZY154);內(nèi)蒙古科技大學(xué)創(chuàng)新基金(2014QDL025);內(nèi)蒙古自治區(qū)研究生創(chuàng)新計(jì)劃資助項(xiàng)目(S20151012706);內(nèi)蒙古科技大學(xué)科技創(chuàng)新基金(2014087)
收稿日期:2015-11-26;修回日期:2016-01-23;責(zé)任編輯:王海云
doi:10.7535/hbkd.2016yx02004
文章編號(hào):1008-1542(2016)02-0130-09
E-mail:wsffree@163.com
王少鋒,仲濟(jì)祥,王建國(guó).立體管網(wǎng)微泄漏實(shí)時(shí)監(jiān)測(cè)系統(tǒng)研究概述[J].河北科技大學(xué)學(xué)報(bào),2016,37(2):130-138.
WANG Shaofeng,ZHONG Jixiang,WANG Jianguo.Research overview of real-time monitoring system for micro leak of three-dimensional pipe network[J].Journal of Hebei University of Science and Technology,2016,37(2):130-138.