田梟悅, 張永紅, 孫亞棟, 王多志, 劉晨江*
(1. 新疆大學 a. 石油化工天然氣精細化工教育部&自治區(qū)重點實驗室;
b. 化學化工學院,新疆 烏魯木齊 830046)
·快遞論文·
離子液體1-乙基-3-丁基磺酸咪唑對甲苯磺酸鹽催化合成氧雜蒽
田梟悅1a, 張永紅1a, 孫亞棟1a, 王多志1b*, 劉晨江1a*
(1. 新疆大學 a. 石油化工天然氣精細化工教育部&自治區(qū)重點實驗室;
b. 化學化工學院,新疆 烏魯木齊 830046)
以1-乙基咪唑為原料,合成了布朗斯特酸性離子液體——1-乙基-3-丁基磺酸咪唑對甲苯磺酸鹽(IL1),并將其用于催化芳香醛與5,5-二甲基-1,3-環(huán)己二酮或1,3-環(huán)己二酮在無溶劑條件下合成了系列氧雜蒽類化合物,其結構經(jīng)1H NMR,13C NMR和ESI-MS表征。研究結果表明:當IL1用量為5 mol%,于80 ℃反應40 min,收率78%~95%; IL1循環(huán)使用3次,收率86%~89%,催化活性無明顯變化。
布朗斯特酸性離子液體; 芳香醛; 環(huán)己二酮; 氧雜蒽; 催化; 無溶劑; 合成
氧雜蒽類化合物具有抗癌[1]、消炎[2]、抗病毒[3]和抗菌[4]等多種生物和藥理活性,同時作為一類重要的有機中間體被用于藥物合成領域[5]。此外,該類化合物由于具有優(yōu)異的分光特性被應用于激光技術[6];也可用其制成對pH敏感的熒光材料而用于生物分子組裝過程的標識[7]。因此,有關氧雜蒽化合物的合成研究受到了研究人員的廣泛關注。
氧雜蒽化合物的合成方法由Nagarajan等[8]于1992年首次報道。該方法利用鹽酸酸化雙達米酮而合成目標產(chǎn)物。自此,許多催化體系如脯氨酸三氟甲磺酸鹽[9]、三氟甲磺酸鍶[10],P2O5/Al2O3[11], BF3/SiO2[12],氧化鋅[13]、碘[14],NaHSO4[15], CAN/PEG-400體系[16]及Amberlyst-15[17]等均被用于該類化合物的合成,然而這些方法存在使用有機溶劑或反應時間較長等缺點。
離子液體因其具有極低的蒸汽壓而不會揮發(fā)出有害氣體,無溶劑反應因不需要使用有機溶劑作為反應介質,具有污染小、成本低和后處理簡單等優(yōu)點,符合綠色化學的發(fā)展方向。目前,離子液體已在氫化[18]、傅克[19],D-A[20], Heck[21],氧化脫氫偶聯(lián)[22],Biginelli[23]等反應中得到了廣泛應用,有關離子液體在無溶劑條件下催化合成氧雜蒽的研究也見諸報道[24-25]。
為了豐富氧雜蒽類化合物的綠色合成方法,在本課題組前期成功開展氨基磺酸鋰催化合成氧雜蒽化合物的基礎上[26],本文以1-乙基咪唑為起始原料,分別與1,4-丁烷磺酸內酯或正丁基溴發(fā)生親核加成反應制得內鹽,再與對甲苯磺酸、三氟乙酸或硫酸反應,合成了布朗斯特酸性離子液體——1-乙基-3-丁基磺酸咪唑對甲苯磺酸鹽離子液體(IL1), 1-乙基-3-丁基磺酸咪唑硫酸氫鹽離子液體(IL2), 1-乙基-3-丁基磺酸咪唑三氟乙酸鹽離子液體(IL3)和1-乙基-3-丁基咪唑三氟乙酸鹽(IL4)(Scheme 1),其中IL3為新化合物;研究了無溶劑條件下IL1催化芳香醛和5,5-二甲基-1,3-環(huán)己二酮(1a)或1,3-環(huán)己二酮(1k)反應合成了系列氧雜蒽化合物(3a~3m, Scheme 2),其結構經(jīng)1H NMR,13C NMR和ESI-MS表征。
Scheme 1
1.1 儀器與試劑
Buchi B-540型熔點儀(溫度未校正);Varian Inova-400型核磁共振儀(DMSO-d6為溶劑,TMS為內標);Bruker Equinox 55型紅外光譜儀(KBr壓片);Agilent HP 1100型高效液相色譜質譜聯(lián)用儀(ESI源)。
所用試劑均為化學純或分析純。
1.2 合成
(1) IL1~IL4的合成(以IL1為例)
在反應瓶中依次加入1-乙基咪唑 5.00 g(52 mmol) 和1,4-丁烷磺酸內酯7.07 g(52 mmol),攪拌下于80 ℃反應24 h。冷卻至室溫,用乙醚洗滌,真空干燥得1-乙基-3-丁基磺酸咪唑內鹽。
在反應瓶中加入1-乙基-3-丁基磺酸咪唑內鹽4.87 g(21 mmol) 和對甲苯磺酸3.61 g(21 mmol),攪拌下于110 ℃反應72 h。用乙醚洗滌,減壓蒸除乙醚,真空干燥得IL1。
用類似的方法合成IL2, IL3和IL4(兩步反應分別為:于50 ℃反應12 h;于90 ℃反應72 h)。
IL1[27]:亮黃色液體,收率87%;1H NMR(D2O)δ: 1.34(t,J=7.2 Hz, 3H, CH3), 1.59~1.61(m, 2H, CH2), 1.85~1.86(m, 2H, CH2), 2.24(s, 3H, CH3), 2.79(m, 2H, CH2), 4.03~4.06(m, 4H, CH2), 7.21~7.54(m, 6H, ArH), 8.62(s, 1H, ArH); ESI-MSm/z: 234.1{[M+H]+}, 171.0[M-]。
Scheme 2
IL2[27]: 亮黃色液體,收率81%;1H NMR(D2O)δ: 1.29(t,J=7.6 Hz, 3H, CH3), 1.49~1.57(m, 2H, CH2), 1.78~1.85(m, 2H, CH2), 2.73(q,J=7.6 Hz, 2H, CH2), 3.99~4.05(m, 4H, CH2), 7.30(s, 2H, ArH), 8.58(s, 1H, ArH); ESI-MSm/z: 234.1{[M+H]+}, 97.0[M-]。
IL3: 亮黃色液體,收率85%;1H NMR(D2O)δ: 1.43(t,J=7.6 Hz, 3H, CH3), 1.64~1.72(m, 2H, CH2), 1.92~2.00(m, 2H, CH2), 2.87(m, 2H, CH2), 4.13~4.20(m, 4H, CH2), 7.43~7.45(m, 2H, ArH), 8.73(s, 1H, ArH);13C NMR(D2O)δ: 163.20(q,JC-F=35.7 Hz), 135.58, 122.92, 122.81, 116.83(q,JC-F=290.0 Hz), 50.74, 49.61, 45.52, 28.76, 21.63, 15.04; IRv: 3 447, 3 145, 3 103, 2 974, 2 878, 2 417, 1 767, 1 566, 1 457, 1 416, 1 331, 1 169, 1 038, 788, 704, 646, 602, 524 cm-1; ESI-MSm/z: 234.1{[M+H]+}, 113.0[M-]。
IL4[28]: 棕黃色離子液體,收率85%;1H NMR(D2O)δ: 0.77(t,J=7.2 Hz, 3H, CH3), 1.14~1.20(m, 2H, CH2), 1.36(t,J=7.2 Hz, 3H, CH3), 1.67~1.75(m, 2H, CH2), 4.05~4.13(m, 4H, CH2), 7.36~7.39(m, 2H, ArH),8.68(s, 1H, ArH);13C NMR(D2O)δ: 162.71(q,JC-F=35.6 Hz), 135.41, 123.00, 122.85, 116.71(q,JC-F=289.2 Hz), 50.00, 45.52, 31.95, 19.47, 15.24, 13.37; ESI-MSm/z: 154.2{[M+H]+}, 113.0[M-]。
(2) IL1催化合成3a~3m
在圓底燒瓶中加入芳香醛1 mmol, 1a或1k 2 mmol和0.05 mmol IL1,攪拌下于80 ℃反應40 min。冷卻至室溫,加入適量碎冰水,用刮刀將固體搗碎,抽濾,濾餅用適量蒸餾水洗滌,用乙醇重結晶得3a~3m。
3a: m.p.204~206 ℃(204~206 ℃[15]);1H NMRδ: 0.99(s, 6H, CH3), 1.10(s, 6H, CH3), 2.14~2.46(m, 8H, CH2), 4.75(s, 1H, CH), 7.10~7.30(m, 5H, ArH)。
3b: m.p.248~249 ℃(240~242 ℃[15]);1H NMRδ: 0.99(s, 6H, CH3), 1.10(s, 6H, CH3), 2.14~2.45(m, 8H, CH2), 3.73(s, 3H, CH3), 4.70(s, 1H, CH), 6.74~7.26(m, 4H, ArH)。
3c: m.p.224~226 ℃(222~224 ℃[15]);1H NMRδ: 1.02(s, 6H, CH3), 1.10(s, 6H, CH3), 2.13~2.45(m, 8H, CH2), 5.00(s, 1H, CH), 7.04~7.44(m, 4H, ArH)。
3d: m.p.189~190 ℃(186~187 ℃[25]);1H NMRδ: 1.01(s, 6H, CH3), 1.11(s, 6H, CH3), 2.16~2.48(m, 8H, CH2),4.73(s, 1H, CH), 7.09~7.26(m, 4H, ArH)。
3e: m.p.227 ℃(224 ℃[29]);1H NMRδ: 0.99(s, 6H, CH3), 1.11(s, 6H, CH3), 2.14~2.53(m, 8H, CH2), 4.83(s, 1H, CH), 7.46~8.11(m, 4H, ArH)。
3f: m.p.202~203 ℃(200 ℃[29]);1H NMRδ: 0.99(s, 6H, CH3), 1.12(s, 6H, CH3), 2.23~2.62(m, 8H, CH2), 4.67(s, 1H, CH), 7.00~7.26(m, 4H, ArH)。
3g: m.p.247~249 ℃(248~250 ℃[15]);1H NMRδ: 1.00(s, 6H, CH3), 1.10(s, 6H, CH3), 2.15~2.4(m, 8H, CH2), 4.68(s, 1H, CH), 6.59~7.26(m, 4H, ArH)。
3h: m.p.188~190 ℃(185~186 ℃[30]);1H NMRδ: 0.95(s, 6H, CH3), 1.09(s, 6H, CH3), 2.10~2.48(m, 8H, CH2), 3.77(s, 3H, CH3), 4.86(s, 1H, CH), 6.74~7.42(m, 4H, ArH)。
3i: m.p.209~210 ℃(209~211 ℃[31]);1H NMRδ: 1.00(s, 6H, CH3), 1.10(s, 6H, CH3), 2.15~2.46(m, 8H, CH2), 2.28(s, 3H, CH3), 4.71(s, 1H), 6.90~7.14(m, 4H, ArH)。
3j: m.p.223~224 ℃(226~229 ℃[32]);1H NMRδ: 1.03(s, 6H, CH3), 1.10(s, 6H, CH3), 2.13~2.45(m, 8H, CH2), 5.02(s, 1H, CH), 6.95~7.46(m, 4H, ArH)。
3k: m.p.203~205 ℃(204~206 ℃[15]);1H NMRδ: 1.98~2.06(m, 4H, CH2), 2.26~2.41(m, 4H, CH2), 2.51~2.68(m, 4H, CH2), 3.73(s, 3H, CH3), 4.76(s, 1H, CH), 6.74~7.22(m, 4H, ArH)。
3l: m.p.237~239 ℃(248~250 ℃[15]);1H NMRδ: 1.92~2.05(m, 12H, CH2), 2.30~2.34(m, 4H, CH2), 2.55~2.64(m,4H, CH2), 5.01(s, 1H, CH), 7.04~7.48(m, 4H, ArH)。
3m: m.p.245~248 ℃(250~252 ℃[30]);1H NMRδ: 1.95~2.06(m, 12H, CH2), 2.31~2.35(m, 4H, CH2), 2.55~2.67(m,4H, CH2), 5.40(s, 1H, CH3), 7.23~7.65(m, 4H, ArH)。
2.1 最佳反應條件的篩選
以1a和2a為模板底物,考察了IL1~IL4及其用量、反應溫度和反應時間等因素對反應的影響,結果見表1。由表1可以看出,當四種離子液體用量均為5 mol%時,收率分別為88%, 85%, 84%和87%(No.1~4),其中IL1為催化劑時,收率最高。因此以IL1為催化劑,進一步考察催化劑用量對反應的影響(No.1, 5~7)。結果表明:IL1用量為5 mol%時催化效果最好,減少或者增加其用量均會導致收率降低;反應時間對反應的影響結果表明:最佳反應時間為40 min,收率89%(No.8);最后,考察了不同反應溫度(80 ℃, 100 ℃和120 ℃)對收率的影響(No.8, No.10~11)。研究發(fā)現(xiàn)溫度的變化對收率影響不大,從節(jié)能角度考慮,最佳反應溫度為80 ℃。
表1 不同反應條件對收率的影響*
*反應條件: 1a 2 mmol, 無溶劑;a分離產(chǎn)率。
綜上所述,最佳反應條件為:5 mol% IL1為催化劑,反應溫度為80 ℃,反應時間為40 min。
2.2 反應普適性
在最佳反應條件下,選取不同芳香醛分別和5,5-二甲基-1,3-環(huán)己二酮或1,3-環(huán)己二酮反應,考察IL1催化不同底物的普適性效果,結果見Scheme 1。由Scheme 1可見,芳香醛的取代基無論是吸電子基還是給電子基,或取代基無論在甲?;泥徫?、間位和對位,反應均能順利進行,以78%~95%的收率獲得目標化合物,表明該催化劑對于不同的底物均具有較好的催化性能。
2.3 離子液體的循環(huán)使用
為了研究IL1的循環(huán)使用效果,選取1a和2a的反應為研究對象,在反應后的混合物加入碎冰,待融化后抽濾。濾液減壓蒸除溶劑,干燥回收離子液體,直接用于下次催化循環(huán)使用,結果見表2。由表2可見,IL1循環(huán)使用3次,收率無明顯變化,說明IL1具有很好的循環(huán)使用效果。
表2 IL1的循環(huán)使用效果*
*反應條件: 1a 2 mmol, 5 mol% IL1,于80 ℃反應40 min。
合成了一種布朗斯特酸性離子液體——1-乙基-3-丁基磺酸咪唑對甲苯磺酸鹽,并將其用于催化芳香醛與5,5-二甲基-1,3-環(huán)己二酮或1,3-環(huán)己二酮在無溶劑條件下高收率地合成了系列氧雜蒽類化合物。該方法具有操作簡便、收率高、對環(huán)境友好等優(yōu)點,為該類化合物的合成提供參考。
[1] Silva D L, Terra B S, Lage M R,etal. Xanthenones: calixarenes-catalyzed syntheses, anticancer activity and QSAR studies [J].Org Biomol Chem,2015,13:3280-3287.
[2] Hafez H N, Hegab M I, Ahmed-Farag I S,etal. A facile regioselective synthesis of novelspiro-thioxanthene andspiro-xanthene-9′,2-[1,3,4]thiadiazole derivatives as potential analgesic and anti-inammatory agents[J].Bioorg Med Chem Lett,2008,18:4538-4543.
[3] Qin C, Lin X, Lu X,etal. Sesquiterpenoids and xanthones derivatives produced by sponge-derived fungusStachybotrysp.HH1 ZSDS1F1-2[J].J Antibiot,2015,68:121-125.
[4] Evangelinou O, Hatzidimitriou A G, Velali E,etal. Mixed-ligand copper(I) halide complexes bearing 4,5-bis(diphenylphosphano)-9,9-dimethyl-xanthene andN-methylbenzothiazole-2-thion:Synthesis,structures,luminescence and antibacterial activity mediated by DNA and membrane damage[J].Polyhedron,2014,72:122-129.
[5] Khurana J M, Lumb A, Chaudhary A,etal. Efficient and green syntheses of 12-aryl-2,3,4,12-tetrahydrobenzo[b]xanthene-1,6,11-triones in water and task-specific ionic liquid [J].Synth Commun,2013,43:2147-2154.
[6] Ahmad M, King T A, Ko D-K,etal. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases [J].J Phys D:Appl Phys,2008,35:1473-1476.
[7] Kushida Y, Nagano T, Hanaoka K. Silicon-substituted xanthene dyes and their applications in bioimaging[J].Analyst,2015,140:685-695.
[8] Nagarajan K, Shenoy S J. Chemistry of dimedone: structures of aldehyde-dimedone adducts[J].Indian J Chem,1992,31:73-87.
[9] Li J, Lu L, Su W. A new strategy for the synthesis of benzoxanthenes catalyzed by proline triate in water[J].Tetrahedron Lett,2010,51:2434-2437.
[10] Li J, Tang W, Lu L,etal. Strontium triflate catalyzed one-pot condensation ofβ-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds[J].Tetrahedron Lett,2008,49:7117-7120.
[11] Zarei A, Hajipour A R, Khazdooz L. The one-pot synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes catalyzed by P2O5/Al2O3under microwave irradiation[J].Dyes and Pigments,2010,85:133-138.
[12] Mirjalili B B F, Bamoniri A, Akbari A. BF3·SiO2:An efficient alternative for the synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes[J].Tetrahedron Lett,2008,49:6454-6456.
[13] Ghomi S J, Ghasemzadeh M A. Zinc oxide nanoparticles:A highly efficient and readily recyclable catalyst for the synthesis of xanthenes[J].Chin Chem Lett,2012,23:1225-1229.
[14] Sun X J, Zhou J F, Zhi S J. Efficient one-pot synthesis of tetrahydrobenzo[c]xanthene-1,11-dione derivatives under microwave irradiation[J].Synth Commun,2012,42:1987-1994.
[15] 馬晶軍,李靜慈,唐然肖,等. 離子液體中NaHSO4催化芳香醛與1,3-環(huán)己二酮的縮合反應 [J].有機化學,2007,27(5):640-642.
[16] 曹瑞偉,陳朝輝,吳春雷,等. CAN/PEG-400 體系催化氧雜蒽二酮類衍生物 [J].合成化學,2012,20(4):511-514.
[17] Piscopo C G, Bühler S, Sartori G,etal. Supported sulfonic acids:Reusable catalysts for more sustainable oxidative coupling of xanthene-like compounds with nucleophiles[J].Catal Sci Technol,2012,2:2449-2452.
[18] Wu Z F, Jiang, H Y. Effcient palladium and ruthenium nanocatalysts stabilized by phosphine functionalized ionic liquid for selective hydrogenation[J].RSC Adv,2015,5:34622-34629.
[19] Fekri L Z, Nikpassand M. Ultrasound-promoted Friedel-Crafts acylation of arenes and cyclic anhydrides catalyzed by ionic liquid of [bmim]Br/AlCl3[J].Russ J Gen Chem,2014,84:1825-1829.
[20] Do T D, Schmitzer A R. Intramolecular diels alder reactions in highly organized imidazolium salt-based ionic liquid crystals[J].RSC Adv,2015,5:635-639.
[21] Wang F R, Tang S S, Yu Y H,etal. Preparation of palladium nanoparticle catalyst in ionic liquidand its catalytic properties for Heck-Mizoroki reaction[J].Chineses J Catal,2014,35:1921-1926.
[22] Basle O, Borduas N, Dubois P,etal. Aerobic and electrochemical oxidative cross-dehydrogenative-coupling(CDC) reaction in an imidazolium-based ionic liquid[J].Chem Eur J,2010,16:8162-8166.
[23] Zhang Y H, Wang B, Zhang X M,etal. An efficient synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones catalyzed by a novel Br?nsted acidic ionic liquid under solvent-free conditions[J].Molecules,2015,20:3811-3820.
[24] Fang D,Liu Z L. Synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes catalyzed by acyclic acidic ionic liquids[J].J Heterocyclic Chem,2010,47:509-512.
[25] Hamid R S, Kobra A. Br?nsted acidic ionic liquids catalyzed one-pot synthesis of benzoxanthene leuco-dye derivatives[J].Res Chem Intermed,2015,41:409-417.
[26] 王昭申,劉晨江. 無溶劑條件下氨基磺酸鋰催化合成氧雜蒽化合物 [J].高等學?;瘜W學報,2012,33(3):507-510.
[27] Tao F R, Song H L, Chou L J. Hydrolysis of cellulose in SO3H-functionalized ionic liquids [J].Bioresour Technol,2011,102:9000-9006.
[28] Bonhote P, Dias A P, Papageorgiou N, etal. Hydrophobic highly conductive ambient-temperature molten salts[J].Inorg Chem,1996,35:1168-1178.
[29] Sagar A D, Chamle S N, Yadav M V. Microwave assisted rapid synthesis of 1,8-dioxo-Octahydroxanthenes using lignin sulphonic acid [J].J Chem Pharm Res,2013,5(7):156-160.
[30] Shirini F, Moghadam P N, Moayedi S,etal. Introduction ofO-sulfonated poly(4-vinylpyrrolidonium) chloride as a polymeric and reusable catalyst for the synthesis of xanthene derivatives[J].RSC Adv,2014,4:38581-38588.
[31] Zare A, Mokelesi M, Hasaninejad A,etal. Solvent-free synthesis of 1,8-dioxooctahydroxanthenes and 14-aryl-14H-dibenzo[a,j]xanthenes using saccharin sulfonic acid as an efficient and green catalyst[J].E-J Chem,2012,9(4):1854-1863.
[32] Ilangovan A, Malayappasamy S, Muralidharan S,etal. A highly efficient green synthesis of 1,8-dioxo- octahydroxanthenes[J].Chem Cent J,2011,5:81-86.
Synthesis of Xanthenes Catalyzed by Ionic Liquid 1-Ethyl-3-(4-sulfobutyl)-1H-imidazol-3-iump-Toluenesulfonate
TIAN Xiao-yue1a, ZHANG Yong-hong1a, SUN Ya-dong1a,WANG Duo-zhi1b*, LIU Chen-jiang1a*
(a. The Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region;b. College of Chemistry and Chemical Engineering, 1. Xinjiang University, Urumqi 830046, China)
Br?nsted acidic ionic liquid, 1-ethyl-3-(4-sulfobutyl)-1H-imidazol-3-iump-toluenesulfonate(IL1), was prepared using 1-ethylimidazole as raw material. A series of xanthenes were synthesized by condensation reaction of aromatic aldehydes with 5,5-dimethyl-1,3-cyclohexanedione or 1,3-cyclohexanedione catalyzed by IL1 under solvent-free conditions. The structures were characterized by1H NMR,13C NMR and ESI-MS. The results indicated that 5 mol% IL1 as catalyst, reaction at 80 ℃ for 40 min, the yields were 78%~95%. The catalytic activity of IL1 keep stable with the yields of 86%~89% after recycling of three times.
Br?nsted acidic ionic liquid; aromatic aldehyde; cyclohexanedione; xanthene; catalysis; solvent-free; synthesis
2015-04-15;
2016-01-18
國家自然科學基金資助項目(21162025, 21262035)
田梟悅(1989-),男,漢族,湖北襄陽人,碩士研究生,主要從事有機合成研究。 E-mail: 852472476@qq.com
王多志,副教授, E-mail: wangdz@xju.edu.cn; 劉晨江,教授, Tel. 0991-8582901, E-mail: pxylcj@126.com
O626.3
A
10.15952/j.cnki.cjsc.1005-1511.2016.04.15153