遲春艷
摘 要: 在小學(xué)數(shù)學(xué)計算題教學(xué)中,教師應(yīng)注意以下問題:明確算理,掌握算法;規(guī)范格式,培養(yǎng)能力;嚴(yán)格訓(xùn)練,形成技能;掌握定律,簡便運算。
關(guān)鍵詞: 小學(xué)數(shù)學(xué) 計算題教學(xué) 計算能力
數(shù)學(xué)課程標(biāo)準(zhǔn)不同的學(xué)段對計算提出了不同的目標(biāo)“體會四則運算的意義,掌握必要的運算技能;在具體情境中,能進(jìn)行簡單的估算。”“掌握必要的運算技能;理解估算的意義;能用方程表示簡單的數(shù)量關(guān)系,能解簡單的方程?!痹凇罢n程改革目標(biāo)”中明確指出,要“關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗,精選終身學(xué)習(xí)必備的基礎(chǔ)知識和技能”。其中學(xué)生計算能力的培養(yǎng)就是學(xué)生終身學(xué)習(xí)的基礎(chǔ)知識和技能。
在小學(xué)階段學(xué)好四則混合運算,并形成一定的計算能力非常重要,也是終身受益的。而在當(dāng)下的小學(xué)數(shù)學(xué)教學(xué)中,人們一般認(rèn)為計算題簡單,學(xué)生很容易掌握,所以在教學(xué)中不夠重視。這就造成很多學(xué)生計算能力差,算理不通,年級越高越明顯,使后來的“簡算”教學(xué)成為教學(xué)難點,有時直接影響后來的數(shù)學(xué)學(xué)習(xí)。其實,要想使學(xué)生形成熟練的數(shù)學(xué)計算技能是小學(xué)數(shù)學(xué)的一個長期目標(biāo),需要經(jīng)過認(rèn)真細(xì)致地教,實實在在地練,長期嚴(yán)格訓(xùn)練才能達(dá)到目的。具體教學(xué)中,應(yīng)當(dāng)注意如下方面的問題。
一、明確算理,掌握算法
以往的計算教學(xué),教師只注重學(xué)生掌不掌握計算方法,會不會算,忽視了算理教學(xué)。算例是算法的基礎(chǔ)。多年的數(shù)學(xué)課堂經(jīng)驗告訴我,算理應(yīng)該是學(xué)生在自主探索中構(gòu)建。在教學(xué)四年上冊《除數(shù)是整十?dāng)?shù)的筆算除法》例題92÷30時,導(dǎo)入新課后,設(shè)計“自主探究明白算理”環(huán)節(jié),先讓學(xué)生“自主嘗試”:(1)用估算解決;(2)借直觀演示;(3)用豎式計算;(4)匯報展示。這一環(huán)節(jié),無論是引導(dǎo)學(xué)生進(jìn)行估算,還是引導(dǎo)學(xué)生借助小棒圖直觀演示結(jié)果,都是為了學(xué)生對商中“3”的位置進(jìn)行定位,使學(xué)生不斷加深對算理的認(rèn)識,為知識的遷移夯實基礎(chǔ)。算理是算法的基礎(chǔ),當(dāng)學(xué)生明確算理后,教師應(yīng)及時落實算理與算法的關(guān)系,有利于對算法的掌握。還以92÷30為例,學(xué)生自主嘗試后,教師利用“數(shù)形結(jié)合”引導(dǎo)學(xué)生數(shù)形結(jié)合闡述算理,通過將豎式計算過程與小棒圖對應(yīng)起來匯報,為學(xué)生說明算法、講明算理提供直觀支持,真正實現(xiàn)學(xué)生的自主探究,培養(yǎng)學(xué)生分析問題、解決問題的能力。
二、規(guī)范格式,培養(yǎng)能力
首先,從心理上就應(yīng)該足夠重視,把每一節(jié)都當(dāng)成重點,每種計算方法都必須認(rèn)真對待,必須達(dá)到所有學(xué)生都會的目的。如:加法口算方法,筆算法則,算式書寫。每一項都必須嚴(yán)格訓(xùn)練,嚴(yán)格要求,使學(xué)生知道每一步計算的理由,并能說出為什么?從書寫格式,如:小數(shù)加減中,小數(shù)點對齊;必須規(guī)范,不得馬虎到每一步所遵循的法則,做到口、心、手一致。還得經(jīng)過一段時間的嚴(yán)格重復(fù)訓(xùn)練,才能形成思維定勢。教授每一種計算技能都是這樣,都要使學(xué)生熟練掌握計算法則和運算定律,規(guī)范書寫格式,并能說出進(jìn)行每一步計算的理由。經(jīng)過這樣長期嚴(yán)格重復(fù)訓(xùn)練,培養(yǎng)規(guī)范計算格式,正確進(jìn)行計算的能力。
三、嚴(yán)格訓(xùn)練,形成技能
在計算題教學(xué)中不要被學(xué)生當(dāng)堂課上表現(xiàn)出來的現(xiàn)象所迷惑,學(xué)生在課堂上所表現(xiàn)出來的現(xiàn)象是暫時的,離形成技能還差很多,要知道每一種技能的形成并達(dá)到熟練,必須經(jīng)過長期嚴(yán)格的重復(fù)訓(xùn)練。在訓(xùn)練中糾錯,在訓(xùn)練中體會,理解掌握,才能形成技能。因為,當(dāng)堂形成的初步理解還會反復(fù)還會忘。這也是導(dǎo)致學(xué)生計算能力差的一個原因。所以教師在計算能力培養(yǎng)時,應(yīng)有意每天設(shè)計一定的基本計算題,讓學(xué)生做(做時不能走過場)。由于計算題是由數(shù)字與抽象的運算符號構(gòu)成的,學(xué)生容易感到煩躁和厭倦,為了激發(fā)學(xué)生計算的積極性,避免單一、重復(fù)、機械的訓(xùn)練,教師可采用一些方法,如:運用電教媒體增強數(shù)學(xué)計算的趣味性,組織游戲競賽,設(shè)計一些趣味題或進(jìn)行計算技能比賽等。通過多種教學(xué)手段,豐富學(xué)習(xí)活動,激發(fā)學(xué)生做計算題的興趣,才能促進(jìn)計算的正確性,提高學(xué)生的計算能力,形成計算技能。
四、掌握定律,簡便運算
小學(xué)階段涉及五個運算定律:加法交換律、加法結(jié)合律、乘法交換律、乘法結(jié)合律、乘法分配律,在教學(xué)這些運算定律時,教師必須注意的問題是:
(一)不能操之過急,教材在編排上安排的課時短,內(nèi)容少又簡單,題也典型,教材只是告訴你教什么內(nèi)容,并提供范例,發(fā)揮還在教師,所以教師在教學(xué)時要一步一步來,一條一條說明。如講括號的作用時,難點是添括號、去括號時括號里邊運算符號的變化規(guī)律。如:15-4-2=15-(4+2),15÷3÷5=15÷(3×5),還需要讓學(xué)生在充分計算實踐的基礎(chǔ)上,自己歸納那樣變是為什么?因為定律是建立在法則的基礎(chǔ)上的。加不加括號,用不用運算定律,最后的計算結(jié)果是一樣的。這條原則不變。
(二)熟練應(yīng)用運算定律、括號。在積累大量計算經(jīng)驗如:8×125=1000的基礎(chǔ)上再教簡算才會顯得自然、簡單。簡算是有效利用運算定律,括號是使計算變得簡單的一種計算技能。運用括號使運算簡便,有時可直接口算,而不會改變計算結(jié)果,運用簡算可提高計算速度。簡算不單是在做簡算題時才用,是可以隨時使用的,這一點也應(yīng)讓學(xué)生清楚。
總之,計算技能的形成是小學(xué)數(shù)學(xué)教學(xué)的一個長期目標(biāo),它的實現(xiàn)需要經(jīng)過細(xì)致的、實實在在的、嚴(yán)格的長期訓(xùn)練。