• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      浙西北茶園土壤固碳能力及其不同形態(tài)有機(jī)碳的積累特點(diǎn)

      2016-05-04 01:31:40孔樟良
      關(guān)鍵詞:分布特征碳庫茶園

      孔樟良

      (浙江省建德市農(nóng)技推廣中心,浙江 建德 311600)

      ?

      浙西北茶園土壤固碳能力及其不同形態(tài)有機(jī)碳的積累特點(diǎn)

      孔樟良

      (浙江省建德市農(nóng)技推廣中心,浙江 建德 311600)

      摘要為了解茶園土壤的固碳能力及其積累特點(diǎn),從浙西北茶區(qū)采集黃筋泥、黃紅泥土和黃泥土等3類土壤上的9個代表性茶園土壤剖面的分層土樣,每類土壤包括植茶年齡為5~10、15~20和>30年的3個剖面,分析了有機(jī)碳、輕組分有機(jī)碳、顆粒態(tài)有機(jī)碳、微生物生物量碳和水溶性有機(jī)碳在土壤剖面中的積累特點(diǎn),并與利用時間相似的旱地土壤進(jìn)行比較。結(jié)果表明:茶園土壤的各類有機(jī)碳具明顯的表聚特征,隨剖面深度的增加,輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳含量占土壤有機(jī)碳總量的比例較有機(jī)總碳的下降更為明顯;隨著植茶年齡的增加,表層土壤中各類有機(jī)碳含量及全剖面有機(jī)碳貯量明顯地增加;表層土壤中>2 mm粒組的水穩(wěn)定性團(tuán)聚體明顯增加,同時,表層土壤中積累的有機(jī)碳(特別是輕組分有機(jī)碳)趨向于分布在>2 mm粒組的水穩(wěn)定性團(tuán)聚體中;輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳隨植茶時間的增加幅度明顯大于有機(jī)碳總量的增加,表明在植茶過程中有機(jī)碳主要以活性較高的輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳的形式積累,且積累的有機(jī)碳主要分布在近地表的土層。比較分析表明,茶園土壤有機(jī)碳的積累量均高于旱地土壤,說明茶園比一般旱地具有更高的土壤固碳潛力。

      關(guān)鍵詞茶園; 土壤; 碳庫; 活性有機(jī)碳; 分布特征

      Carbon sequestration potential of tea garden soil in northwest Zhejiang and its accumulation characteristic on different fractions of organic carbon.JournalofZhejiangUniversity(Agric. &LifeSci.), 2016,42(2):209-219

      KONG Zhangliang (AgriculturalTechnologyExtensionCenterofJiandeCityinZhejiangProvince,Jiande311600,Zhejiang,China)

      Summary Organic carbon is the basis of soil system, which plays an important role in the soil quality and regulating the supply of nutrients. Physical, chemical and biological properties and productivity of soil were all closely related to the content and character of organic carbon. Therefore, the maintenance of organic carbon in soils is emphasized by various soil researchers and land managers. Appropriate organic carbon contents in soils could increase cation exchange capacity (CEC), moisture storage, mineral nutrients, and food source for soil organisms, and improve soil structure and aggregate stability. As an important component in carbon pool of terrestrial ecosystem, soil organic carbon plays an important role in regulating greenhouse effect and global warming. Organic carbon contents in soils depended on the factors such as climate condition, soil type, mineralization process, and land use type and management. For a given soil, the maximum amount of organic carbon generally accumulated in the topsoil under long-term undisturbed vegetation, typically grassland or forest. Loss of organic carbon is generally regarded as undesirable, though some reports pointed out that low soil carbon contents can reduce application rates of pesticides in soil due to lower sorption. It is well known that various kinds of soil management can cause changes in organic carbon concentrations, and the carbon contents of cropped and tilled soils are usually lower than those of undisturbed grassland or forest. The decline of organic carbon contents was often caused by top soil erosion and breakdown of stabilized soil.

      To understand the sequestering carbon potential of tea garden soil and its accumulation characteristic on different fractions of organic carbon, soil profile samples were collected from nine tea gardens and three uplands in northwest Zhejiang. Samples from nine tea gardens were divided into three groups (quaternary red clay, yellow-red soil and yellowish red soil), each group corresponding to three tea plantation ages (5-10 years, 15-20 years, and > 30 years). The contents of total organic carbon, light-fraction organic carbon, particulate organic carbon, microbial biomass carbon and water soluble organic carbon in the soil samples were analyzed, and compared with those local upland soils with similar utilization time.

      The results showed that different fractions of organic carbon in the tea garden soils had surface accumulation pattern, and the proportion of the light-fraction and particulate organic carbons in the total organic carbon decreased faster with depth than the content of total organic carbon itself. Furthermore, different fractions of organic carbon in the surface soil and storages of total organic carbon in the whole soil profile increased with the age of tea plantation; the water-stable aggregates with size >2 mm increased obviously in the surface soil. Meanwhile, the organic carbon accumulated in the surface soil tended to distribute in the water-stable aggregates of > 2 mm, especially for the light-fraction organic carbon. Increase rate of the light-fraction and particulate organic carbons was greater than that of the total organic carbon with aging of tea plantation, suggesting that the light-fraction and particulate organic carbons with higher activity were the main forms accumulated, and the organic carbon accumulated in the soils was mainly distributed in the surface layer.

      It is concluded that the accumulation rate of organic carbon in the tea garden soil is significantly higher than that in the upland soil. Therefore, the tea garden soil has a greater potential of sequestering carbon than the upland.

      Key wordstea garden; soil; carbon pool; active organic carbon; distribution characteristic

      有機(jī)碳是土壤系統(tǒng)的基礎(chǔ)物質(zhì),是土壤質(zhì)量的核心,也是控制土壤養(yǎng)分供應(yīng)能力和碳、氮、磷、硫循環(huán)的重要因子[1],土壤的物理、化學(xué)和生物學(xué)性質(zhì)以及土壤的生產(chǎn)力都與土壤有機(jī)碳的含量和性狀密切相關(guān)[2-4]。作為陸地碳庫的重要組成部分,土壤有機(jī)碳庫對于溫室效應(yīng)和全球變化也具有重要的控制作用[5-8]。因此,提高土壤有機(jī)碳貯量有2方面的意義,一是維持和提高土地質(zhì)量的需要;二是全球環(huán)境固碳的需要。

      茶園是我國南方地區(qū)重要的土地利用方式,其大多由荒山、荒坡或者林地開墾而成。在荒坡地上種植茶樹后,其物質(zhì)的輸入和輸出可發(fā)生明顯的變化,因此種植茶樹后土壤質(zhì)量的演變深受人們的重視[9-11]。一些研究已表明,長期種植茶樹和施肥可導(dǎo)致土壤酸化,促進(jìn)磷、鉀養(yǎng)分的提高[12-13];同時,因茶園采用等高種植及每年有大量的落葉返還土壤,與耕地相比,前者水土流失較弱,且有較高的土壤有機(jī)質(zhì)水平。土壤有機(jī)質(zhì)是茶園土壤潛在肥力的重要指標(biāo),也是茶園土壤熟化的重要標(biāo)志;土壤有機(jī)質(zhì)水平對茶樹生長、茶葉產(chǎn)量及品質(zhì)有著極大的影響。土壤碳庫成分復(fù)雜,不同碳庫組分的穩(wěn)定性變化很大,它們對土壤結(jié)構(gòu)形成、養(yǎng)分供應(yīng)都存在較大的差異[14]。以往對茶園土壤有機(jī)碳的研究主要偏重于表層有機(jī)碳總量,對有機(jī)碳組分的關(guān)注較少[10,15]。近年來,利用物理、化學(xué)分組方法研究有機(jī)質(zhì)組分已成為重要的方法,并提出了輕組分有機(jī)碳、微生物生物量碳、顆粒態(tài)有機(jī)碳和水溶性有機(jī)碳等概念[16-18],這為深入研究土壤有機(jī)碳的穩(wěn)定性提供了可能[19-20]。為了深入了解茶園種植過程中有機(jī)碳組分的變化特征及其固碳作用,本文以浙西北茶區(qū)典型茶園土壤為例,探討了不同植茶年齡土壤中有機(jī)碳積累及其活性組分的變化特點(diǎn)。

      1材料與方法

      1.1供試土壤

      在田間調(diào)查的基礎(chǔ)上,于2013年12月在浙江省西北部選擇了9個代表性茶園與3塊旱地進(jìn)行土壤剖面樣品的采集,在每一個茶園和旱地中各采集一個代表性土壤剖面。9個代表性茶園土壤剖面按土壤類型可分為3組,分別為發(fā)育于第四紀(jì)紅土母質(zhì)的黃筋泥、發(fā)育于泥頁巖的黃紅泥土和發(fā)育于酸性巖的黃泥土,每組土壤包括植茶年齡分別為5~10年、15~20年和>30年的3個剖面。3個旱地土壤剖面的地理位置與茶園相鄰,分別為開墾利用時間為>30年和15~20年的黃筋泥與開墾利用時間為>30年的黃紅泥土,主要種植番薯與蔬菜。挖掘的土壤剖面長×寬×深為100 cm×70 cm×100 cm,按15 cm的深度間隔采集分層土壤樣品,即每一土壤剖面分別采集0~15、15~30、30~45、45~60、60~75和75~90 cm等6層土樣。在采集分層土壤的同時,用環(huán)刀法測定每層土壤的體積質(zhì)量(容重)。本研究的茶園與旱地分布區(qū)的地貌類型均為低丘,所采集剖面的基本情況見表1。

      表1 采集的土壤剖面基本情況

      1.2分析方法

      土樣經(jīng)室內(nèi)風(fēng)干、混勻后,過2 mm土篩,部分土樣進(jìn)一步研磨過0.125 mm土篩。土壤pH用電位計(jì)測定,土水質(zhì)量比為1∶2.5。土壤有機(jī)質(zhì)用重鉻酸鉀外加熱法測定[21]。土壤輕組分有機(jī)碳是指用密度為1.6~2.0 g/cm3重液分離的密度較低的有機(jī)碳,本文用密度為1.7 g/cm3的NaI溶液分離,分離獲得的輕組分物質(zhì)中的有機(jī)碳用重鉻酸鉀外加熱法測定,然后根據(jù)輕組分物質(zhì)占土壤的比例換算為土壤中輕組分有機(jī)碳占土壤的含量。顆粒態(tài)有機(jī)碳是指粒徑大于53 μm的土壤有機(jī)碳,主要由與砂粒結(jié)合的植物殘體半分解產(chǎn)物組成,相對于土壤黏粒和粉砂結(jié)合的土壤有機(jī)質(zhì),被認(rèn)為是有機(jī)碳中的非保護(hù)性部分,用5 g/L焦磷酸鈉溶液振蕩分散土樣過53 μm土篩分離獲得[22],其含量用重鉻酸鉀外加熱法測定。微生物生物量碳采用氯仿熏蒸-硫酸鉀提取法測定[23],提取液中可溶性總碳含量用Shimadzu TOC自動分析儀測定。水溶性有機(jī)碳用0.5 mol/L K2SO4溶液浸提,用Shimadzu TOC自動分析儀測定。土壤各形態(tài)碳的貯量根據(jù)各土層中各形態(tài)碳的含量與土壤體積質(zhì)量計(jì)算。數(shù)據(jù)采用Excel 2003處理,統(tǒng)計(jì)分析采用DPS 3.0軟件實(shí)現(xiàn)。

      在0~15 cm土層中土壤水穩(wěn)性團(tuán)聚體的測定采用CAMBARDELLA等[24]的方法,具體步驟如下:稱取60 g風(fēng)干土,置于套篩(從上到下依次為2、0.25和0.053 mm)頂層上,浸潤10 min,上下移動套篩3 cm,2 min內(nèi)重復(fù)50次,然后將土樣依次通過土篩,將留在每個土篩上的土壤沖洗至鋁盒中,在50 ℃下烘干,稱量。各團(tuán)聚體中的有機(jī)碳、輕組分有機(jī)碳測定方法同上。根據(jù)各粒級水穩(wěn)定性團(tuán)聚體的組成及其有機(jī)碳與輕組分有機(jī)碳含量計(jì)算有機(jī)碳在各粒級中的分配。

      2結(jié)果與分析

      2.1土壤有機(jī)碳、輕組分和顆粒態(tài)有機(jī)碳含量變化

      各土層的體積質(zhì)量和pH值見表2。隨著植茶時間的增加表層土壤pH值呈現(xiàn)下降趨勢;土壤體積質(zhì)量隨植茶時間的增加也略有增加。

      表2 茶園土壤體積質(zhì)量、黏粒含量和pH

      研究區(qū)茶園土壤有機(jī)碳、輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳含量均以0~15 cm土層最高,隨剖面深度的增加而下降(表3),這顯然與土壤有機(jī)碳主要由地表輸入有關(guān)。相關(guān)分析表明,土壤中輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳含量與土壤有機(jī)碳含量呈顯著的正相關(guān),相關(guān)系數(shù)分別為0.912**和0.904**(P<0.01)。顆粒態(tài)有機(jī)碳含量高于輕組分有機(jī)碳含量。輕組分有機(jī)碳含量和顆粒態(tài)有機(jī)碳含量占土壤有機(jī)碳的比例隨剖面深度的增加也顯著地下降。0~15 cm土層輕組分有機(jī)碳含量占土壤有機(jī)碳的比例在11%~36%之間,而15 cm以下土層該比例在1%~14%之間;0~15 cm土層顆粒態(tài)有機(jī)碳含量占土壤有機(jī)碳的比例在8%~29%之間,而15 cm以下土層該比例在0.4%~9%之間。總體上,黃紅泥土和黃泥土的有機(jī)碳、輕組分和顆粒態(tài)有機(jī)碳含量高于黃筋泥。隨著植茶年齡的增加,表層土壤有機(jī)碳、輕組分和顆粒態(tài)有機(jī)碳含量呈明顯的增加。總體上,植茶年齡的增加對土壤有機(jī)碳積累的深度影響在黃紅泥土、黃泥土中比在黃筋泥中更為明顯,在黃筋泥中的影響主要為0~30 cm土層,而在黃紅泥土和黃泥土中的影響深度主要在0~45 cm土層。從變化速率來看,植茶年齡和土壤剖面深度對土壤輕組分和顆粒態(tài)有機(jī)碳含量的影響比有機(jī)碳總量的影響更為明顯。

      表3茶園土壤中有機(jī)碳、輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳的垂直變化

      Table 3Vertical profile changes of total, light-fraction and particulate organic carbons (C) in different tea garden soils

      g/kg

      植茶年齡Timeofteaplantation/a土層深度Soildepth/cmw(有機(jī)碳) OrganicCcontent w(輕組分有機(jī)碳) Light-fractionorganicCcontent w(顆粒態(tài)有機(jī)碳) ParticulateorganicCcontent 黃筋泥Quaternaryredsoil黃紅泥土Yellow-redsoil黃泥土Yellowishredsoil黃筋泥Quaternaryredsoil黃紅泥土Yellow-redsoil黃泥土Yellowishredsoil黃筋泥Quaternaryredsoil黃紅泥土Yellow-redsoil黃泥土Yellowishredsoil5~10 0~155.327.366.580.6610.8330.8721.2470.9981.30815~303.185.695.230.1310.2960.4590.2570.3090.55830~452.123.123.690.0500.0970.1570.0510.1240.12645~601.231.272.250.0170.0290.0600.0160.0660.13160~750.480.520.490.0080.0130.0150.0070.0180.02875~900.340.290.310.0080.0040.0040.0100.0080.01315~20 0~159.3110.3211.321.8402.2142.6213.1044.1584.20315~303.426.476.890.1550.4220.6800.6510.7170.95630~452.184.234.320.0500.1630.2390.0870.2270.28245~601.132.582.320.0170.0380.0980.0220.0510.13160~750.520.840.470.0090.0140.0200.0080.0140.04175~900.290.450.340.0070.0090.0050.0070.0140.012>30 0~1513.2517.6519.683.5175.0736.9775.7808.45511.23315~304.658.688.980.3190.8381.1860.7891.0691.69230~452.326.495.670.0550.3020.3470.1410.3300.56545~601.073.653.140.0150.0780.1290.0190.0930.15360~750.531.120.510.0100.0230.0200.0130.0200.03875~900.310.490.320.0060.0100.0050.0130.0160.016

      2.2土壤微生物生物量碳和水溶性有機(jī)碳含量變化

      與輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳含量的變化相似,土壤微生物生物量碳和水溶性有機(jī)碳含量也隨土壤剖面深度的增加明顯地下降(表4),并隨植茶時間的增加而顯著地增加。總體上,植茶年齡對土壤微生物生物量碳和水溶性有機(jī)碳含量的影響也主要在上層土壤(尤其是0~15 cm土層),向下的影響明顯減弱。土壤中微生物生物量碳和水溶性有機(jī)碳含量與土壤有機(jī)碳含量間的相關(guān)系數(shù)分別為0.948**和0.979**(P<0.01)。

      2.3植茶后土壤有機(jī)碳的積累特征

      由表5可知,隨著植茶年齡的增加,0~90 cm土層中有機(jī)碳、輕組分有機(jī)碳、顆粒態(tài)有機(jī)碳、微生物生物量碳和水溶性有機(jī)碳都呈顯著地增加。植茶時間30年以上的黃筋泥在0~90 cm土層中有機(jī)碳、輕組分有機(jī)碳、顆粒態(tài)有機(jī)碳、微生物生物量碳和水溶性有機(jī)碳總貯量分別為植茶時間5~10年黃筋泥的1.78倍、4.59倍、4.36倍、2.25倍和1.98倍;而在黃紅泥土中分別為2.14倍、5.16倍、6.80倍、2.47倍和2.23倍;在黃泥土中分別為2.12倍、5.79倍、6.61倍、2.91倍和2.13倍。輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳隨植茶時間的增加明顯高于有機(jī)碳總量的增加。這表明在植茶過程中有機(jī)碳主要以活性較高的輕組分有機(jī)碳、顆粒態(tài)有機(jī)碳形式積累。在黃紅泥土和黃泥土中各形態(tài)有機(jī)碳積累速率總體高于黃筋泥,這可能與黃紅泥土和黃泥土土質(zhì)較為疏松,比較適合茶樹根系伸展有關(guān),而黃筋泥黏粒含量

      表4茶園土壤中微生物生物量碳和水溶性有機(jī)碳的垂直變化

      Table 4Vertical profile changes of microbial biomass C and water soluble organic C in different tea garden soils

      mg/kg

      植茶年齡Timeofteaplantation/a土層深度Soildepth/cmw(微生物生物量碳) MicrobialbiomassCcontent w(水溶性有機(jī)碳) WatersolubleorganicCcontent 黃筋泥Quaternaryredsoil黃紅泥土Yellow-redsoil黃泥土Yellowishredsoil黃筋泥Quaternaryredsoil黃紅泥土Yellow-redsoil黃泥土Yellowishredsoil5~10 0~15 87.3 74.3 64.213.2011.8713.5415~3035.441.234.17.548.7410.3230~4523.525.327.44.125.655.4345~6018.723.125.62.183.546.1260~7512.314.218.71.242.583.2575~908.49.810.32.321.772.2615~20 0~15142.3166.4159.823.5024.1225.4115~3046.354.663.511.9013.2514.6230~4524.529.838.56.458.588.7445~6019.825.431.23.214.126.9860~7513.215.317.61.482.454.2375~907.67.69.81.642.632.14>30 0~15254.6278.1312.128.7036.5439.5415~3076.887.593.613.2016.3519.5630~4535.438.745.28.549.5612.1445~6023.524.633.13.285.237.2160~7512.314.616.52.542.884.3275~908.68.710.53.213.562.52

      表5 茶園土壤0~90 cm剖面中各類有機(jī)碳的總貯量

      較高(表2),限制了茶樹的生長,導(dǎo)致茶樹的生物量較低,進(jìn)入土壤的枯落物較少有關(guān)。表6和表7的結(jié)果也表明,隨著植茶時間的增加,在0~15 cm土層中有機(jī)碳、輕組分有機(jī)碳、顆粒態(tài)有機(jī)碳、微生物生物量碳和水溶性有機(jī)碳的積累量占全剖面的比例也逐漸增加,輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳尤為明顯。這表明在茶樹種植過程中積累的土壤有機(jī)物質(zhì)主要集中在近地表的土層,且積累的有機(jī)碳主要為活性較高的輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳。

      2.4表層土壤中有機(jī)碳和輕組分有機(jī)碳在不同團(tuán)聚體中的分布

      由表8可見:各表層土壤水穩(wěn)定性團(tuán)聚體以粒徑為>2 mm和0.25~2 mm的為主,<0.25 mm的團(tuán)聚體比例一般低于10%,隨著植茶年齡的增加,>2 mm的團(tuán)聚體比例增加,而相應(yīng)的0.25~2 mm和<0.25 mm的團(tuán)聚體比例逐漸下降;土壤有機(jī)碳和輕組分有機(jī)碳也主要分布于>2 mm和0.25~2 mm的團(tuán)聚體中,與水穩(wěn)定性團(tuán)聚體的分布相似,隨著植茶年齡的增加,>2 mm的團(tuán)聚體中有機(jī)碳和輕組分有機(jī)碳分配的比例也增加,而相應(yīng)地0.25~2 mm和<0.25 mm團(tuán)聚體中有機(jī)碳和輕組分有機(jī)碳分配的比例逐漸下降。比較各粒徑團(tuán)聚體中有機(jī)碳與輕組分有機(jī)碳分配的差異可知,輕組分有機(jī)碳比有機(jī)碳更集中分布于>2 mm的團(tuán)聚體中。

      表6 茶園土壤0~90 cm剖面中各土層有機(jī)碳、輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳的構(gòu)成

      表7 茶園土壤0~90 cm剖面中各土層微生物生物量碳和水溶性有機(jī)碳的構(gòu)成

      表8 茶園土壤0~15 cm土層中有機(jī)碳和輕組分有機(jī)碳在不同團(tuán)聚體中的分布

      2.5茶園與旱地土壤有機(jī)質(zhì)積累的差異

      與相同利用年限的旱地相比,茶園土壤的有機(jī)碳和輕組分有機(jī)碳含量均較高,這在離地表較近的土層中尤為明顯(圖1)。利用年限>30年的黃筋泥茶園土壤的0~15 cm土層有機(jī)碳和輕組分有機(jī)碳含量分別為相同利用年限旱地土壤的1.76倍和5.39倍;利用年限15~20年的黃筋泥茶園0~15 cm土層有機(jī)碳和輕組分有機(jī)碳含量分別為相同利用年限旱地土壤的1.19倍和2.44倍;利用年限>30年的黃紅泥土茶園0~15 cm土層有機(jī)碳和輕組分有機(jī)碳含量分別為相同利用年限旱地土壤的1.54倍和2.34倍。與茶園土壤隨利用時間增加土壤有機(jī)碳積累明顯增加不同,旱地土壤有機(jī)碳隨時間增加積累并不明顯。對0~90 cm全剖面土壤有機(jī)碳貯量計(jì)算表明,茶園土壤明顯高于旱地,其中,利用年限>30年的黃筋泥茶園有機(jī)碳貯量(4.79 kg/m2)和輕組分有機(jī)碳貯量(0.85 kg/m2)分別為相同利用年限旱地土壤的1.60倍和5.00倍;利用年限15~20年的黃筋泥茶園土壤有機(jī)碳貯量(3.68 kg/m2)和輕組分有機(jī)碳貯量(0.46 kg/m2)分別為相同利用年限旱地土壤的1.10倍和2.42倍;利用年限>30年的黃紅泥土茶園土壤有機(jī)碳貯量(7.96 kg/m2)和輕組分有機(jī)碳貯量(1.34 kg/m2)分別為相同利用年限旱地土壤的1.73倍和2.48倍。由此可見,茶園土壤比旱地土壤具有更高的固碳潛力。

      各剖面號表示的含義詳見表1.Please see Table 1 for details of each profile number.圖1 茶園與旱地土壤有機(jī)碳和輕組分有機(jī)碳剖面分布的比較Fig.1 Comparison of organic C and light-fraction organic C distribution in soil profiles between tea garden and upland

      3討論

      土壤固碳潛力主要由生物潛力、物理化學(xué)潛力和社會經(jīng)濟(jì)潛力等構(gòu)成[5,25-27],不同土壤之間的固碳潛力有很大的差異。生物潛力與進(jìn)入土壤的不同有機(jī)碳源的數(shù)量有關(guān),并與氣候條件有關(guān),它是土壤固碳的主要動力;物理化學(xué)潛力與土壤中有機(jī)碳的穩(wěn)定機(jī)制有關(guān),主要與粉砂黏粒結(jié)合的化學(xué)穩(wěn)定性、與微團(tuán)聚體結(jié)合的物理穩(wěn)定性和與有機(jī)質(zhì)本身性質(zhì)成分有關(guān)的生物學(xué)穩(wěn)定性等有關(guān);社會經(jīng)濟(jì)潛力與土壤管理措施有關(guān)。在本研究中相同土壤類型的茶園與旱地,由于分布區(qū)域相同、土壤質(zhì)地等性狀基本一致,它們對土壤中有機(jī)碳的保護(hù)能力較為接近。因此,茶園與旱地土壤之間有機(jī)碳固定能力的差異可能與外源有機(jī)物質(zhì)投入量差異及土壤管理措施對土壤中有機(jī)碳分解的影響不同有關(guān)。在研究區(qū)的旱地農(nóng)業(yè)系統(tǒng)中,由于不推行秸稈還田和缺乏有機(jī)肥的施用,每年進(jìn)入土壤的有機(jī)物質(zhì)非常有限,這在很大程度上影響了土壤中有機(jī)碳的積累;同時,旱地土壤耕作頻繁,加劇了土壤有機(jī)碳的分解速率[28-29],從而導(dǎo)致土壤有機(jī)碳的積累普遍偏低。而在茶園中,由于每年有一定數(shù)量的枯葉或修剪物進(jìn)入土壤[30],大大促進(jìn)了茶園土壤中有機(jī)碳的積累;另外,茶樹是多年生植物,不用耕作,對土壤擾動較弱,有利于土壤有機(jī)碳的保護(hù)。另外,茶園由于植被覆蓋度較高,在降雨季節(jié)有較多的降水進(jìn)入土壤,這在一定程度上增加了土壤的濕度,也可在一定程度上降低土壤有機(jī)碳的分解速率[31-32]。

      本研究還表明,在植茶過程中有機(jī)碳主要以活性較高的輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳的形式積累,而且增加的有機(jī)碳主要積累在近地表的土層中,這種積累方式顯然與進(jìn)入茶園的有機(jī)碳主要來自地表,即通過枯枝落葉的方式進(jìn)入茶園土壤有關(guān)。積累在茶園土壤中的有機(jī)碳主要為活性較高的輕組分有機(jī)碳,表明植茶有利于土壤有機(jī)碳更新,同時也表明積累在茶園土壤中的有機(jī)碳穩(wěn)定性相對較低,容易發(fā)生降解。在茶園土壤中有機(jī)碳主要分布于>2 mm和0.25~2 mm的水穩(wěn)定性團(tuán)聚體的結(jié)果也表明,這些積累在茶園土壤中的有機(jī)碳容易隨環(huán)境變化發(fā)生改變,特別是當(dāng)茶園土壤受人為擾動時其有機(jī)碳可能會明顯的下降。

      4結(jié)論

      對從浙西北茶區(qū)采集的黃筋泥、黃紅泥土和黃泥土等3個土壤類型上植茶年限分別為5~10、15~20和>30年的9個代表性茶園土壤剖面的有機(jī)碳、輕組分有機(jī)碳、顆粒態(tài)有機(jī)碳、微生物生物量碳和水溶性有機(jī)碳分析表明:茶園土壤的有機(jī)碳隨土壤深度的增加而下降,表層土壤的有機(jī)碳含量及全剖面有機(jī)碳貯量隨植茶年齡的增加呈明顯的增加;輕組分有機(jī)碳含量和顆粒態(tài)有機(jī)碳含量占土壤有機(jī)碳總量的比例在土壤剖面中的分布變化比有機(jī)碳總量的變化更為明顯;在植茶過程中有機(jī)碳主要以活性較高的輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳的形式積累,主要分布在近地表的土層;輕組分有機(jī)碳和顆粒態(tài)有機(jī)碳隨植茶時間的增加幅度明顯大于有機(jī)碳總量的增加;茶園土壤有機(jī)碳的積累量顯著高于旱地土壤。

      參考文獻(xiàn)(References):

      [1]黃耀,孫文娟,張穩(wěn),等.中國陸地生態(tài)系統(tǒng)土壤有機(jī)碳變化研究進(jìn)展.中國科學(xué)(生命科學(xué)),2010,40(7):577-586.

      HUANG Y, SUN W J, ZHANG W,etal. Changes in soil organic carbon of terrestrial ecosystems in China: A mini-review.ScientiaSinica(Vitae), 2010,40(7):577-586. (in Chinese with English abstract)

      [2]宋永林,袁鋒明,姚造華.化肥與有機(jī)物料配施對作物產(chǎn)量及土壤有機(jī)質(zhì)的影響.華北農(nóng)學(xué)報,2002,17(4):73-76.

      SONG Y L, YUAN F M, YAO Z H. Effect of combination of NPK chemical fertilizer and different organic materials on crop yield and soil organic matter.ActaAgriculturaeBoreali-Sinica, 2002,17(4):73-76. (in Chinese with English abstract)

      [3]劉睿,王正銀,朱洪霞.中國有機(jī)肥料研究進(jìn)展.中國農(nóng)學(xué)通報,2007,23(1):310-313.

      LIU R, WANG Z Y, ZHU H X. Research progress of organic fertilizer in China.ChineseAgriculturalScienceBulletin, 2007,23(1):310-313. (in Chinese with English abstract)

      [4]章明奎,鄭順安,王麗平.利用方式對砂質(zhì)土壤有機(jī)碳、氮和磷的形態(tài)及其在不同大小團(tuán)聚體中分布的影響.中國農(nóng)業(yè)科學(xué),2007,40(8):1703-1711.

      ZHANG M K, ZHENG S A, WANG L P. Chemical forms and distributions of organic carbon, nitrogen and phosphorus in sandy soil aggregate fractions as affected by land uses.ScientiaAgriculturaSinica, 2007,40(8):1703-1711. (in Chinese with English abstract)

      [5]潘根興,趙其國.我國農(nóng)田土壤碳庫演變研究:全球變化和國家糧食安全.地球科學(xué)進(jìn)展,2005,20(4):384-393.

      PAN G X, ZHAO Q G. Study on evolution of organic carbon stock in agricultural soils of China: Facing the challenge of global change and food security.AdvanceinEarthScience, 2005,20(4):384-393. (in Chinese with English abstract)

      [6]趙生才.我國農(nóng)田土壤碳庫演變機(jī)制及發(fā)展趨勢:第236次香山科學(xué)會議側(cè)記.地球科學(xué)進(jìn)展,2005,20(5):587-590.

      ZHAO S C. The evolution mechanism and development trend of carbon pool in farmland soil in China: A summary of the 236th Xiangshan science conference.AdvanceinEarthScience, 2005,20(5):587-590. (in Chinese)

      [7]周國模,劉恩斌,佘光輝.森林土壤碳庫研究方法進(jìn)展.浙江林學(xué)院學(xué)報,2006,23(2):207-216.

      ZHOU G M, LIU E B, SHE G H. Progress in research methods of forest soil carbon pool.JournalofZhejiangForestryCollege, 2006,23(2):207-216. (in Chinese with English abstract)

      [8]LAL R. Soil carbon sequestration impacts on global climate change and food security.Science, 2004,304:1623-1627.

      [9]顏雄,張楊珠,劉晶,等.洞庭湖區(qū)5個茶葉基地土壤的養(yǎng)分狀況與肥力質(zhì)量評價.湖南農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版),2008,34(5):598-600.

      YAN X, ZHANG Y Z, LIU J,etal. Evaluation of soil nutrient status and fertility quality of five tea production bases in Dongting Lake area.JournalofHunanAgriculturalUniversity(NaturalScienceEdition), 2008,34(5):598-600. (in Chinese with English abstract)

      [10]何燕,李廷軒,王永東.低山丘陵區(qū)不同坡位茶園土壤肥力特征研究.中國生態(tài)農(nóng)業(yè)學(xué)報,2009,17(4):661-666.

      HE Y, LI T X, WANG Y D. Study on the characteristics of soil fertility in different slope positions in the low mountain and hilly region.ChineseJournalofEcologicalAgriculture, 2009,17(4):661-666. (in Chinese with English abstract)

      [11]王紅娟,龔自明,高士偉,等.湖北省茶園土壤養(yǎng)分狀況評價.華中農(nóng)業(yè)大學(xué)學(xué)報,2009,28(3):291-294.

      WANG H J, GONG Z M, GAO S W,etal. Evaluation of tea plantation soil nutrient status in Hubei Province.JournalofHuazhongAgriculturalUniversity, 2009,28(3):291-294. (in Chinese with English abstract)

      [12]王利民,林新堅(jiān),黃東風(fēng),等.紅黃壤茶園不同培肥模式的土壤理化效應(yīng).東北林業(yè)大學(xué)學(xué)報,2012,40(1):55-57.

      WANG L M, LIN X J, HUANG D F,etal. Effects of different fertilization patterns on physical and chemical properties of tea garden red-yellow soil.JournalofNortheastForestryUniversity, 2012,40(1):55-57. (in Chinese with English abstract)

      [13]林新堅(jiān),黃東風(fēng),李衛(wèi)華,等.施肥模式對茶葉產(chǎn)量、營養(yǎng)累積及土壤肥力的影響.中國生態(tài)農(nóng)業(yè)學(xué)報,2012,20(2):151-157.

      LIN X J, HUANG D F, LI W H,etal. Effects of fertilization model on yield, nutrient accumulation of tea and soil fertility.ChineseJournalofEcologicalAgriculture, 2012,20(2):151-157. (in Chinese with English abstract)

      [14]沈宏,曹志洪,徐志紅.施肥對土壤不同碳形態(tài)及碳庫管理指數(shù)的影響.土壤學(xué)報,2000,37(2):166-173.

      SHEN H, CAO Z H, XU Z H. Effects of fertilization on different carbon fractions and carbon pool management index in soils.ActaPedologicalSinica, 2000,37(2):166-173. (in Chinese with English abstract)

      [15]王玉,侯玉杰,付乃峰,等.生物有機(jī)肥對茶園土壤肥力、養(yǎng)分及土壤環(huán)境的影響.北方園藝,2011(17):171-173.

      WANG Y, HOU Y J, FU N F,etal. Effects of bio-organic fertilizer on soil fertility, nutrient and soil environment of tea garden.NorthernHorticulture, 2011(17):171-173. (in Chinese with English abstract)

      [16]BLAIR G J, LEFROY R D B, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems.AustralianJournalofAgriculturalResearch, 1995,46:1459-1466.

      [17]POWLSON D S, BROOKES P C, CHRISTENSEN B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation.SoilBiologyandBiochemistry, 1987,19:159-164.

      [18]JENKINSON D S, RAYNER J H. The turnover of soil organic matter in some of the Rothamsted classical experiments.SoilScience, 1977,123:298-305.

      [19]PATRA D D, CHAND S, ANWAR M. Seasonal changes in microbial biomass in soils cropped with palmarosa (CymbopogonmartiniiL.) and Japanese mint (MenthaarvensisL.) in subtropical India.BiologyandFertilityofSoils, 1995,19:193-196.

      [20]徐明崗,于榮,王伯仁,等.長期施肥對我國典型土壤活性有機(jī)質(zhì)及碳庫管理指數(shù)的影響.植物營養(yǎng)與肥料學(xué)報,2006,12(4):459-465.

      XU M G, YU R, WANG B R,etal. Effect of long term fertilization on active organic matter and carbon pool management index of typical soils in China.PlantNutritionandFertilizerScience, 2006,12(4):459-465. (in Chinese with English abstract)

      [21]中國土壤學(xué)會.土壤農(nóng)業(yè)化學(xué)分析方法.北京:中國農(nóng)業(yè)出版社,1999:146-226.

      Soil Science Society of China.MethodsinSoilAgriculturalChemicalAnalysis. Beijing: China Agriculture Press, 1999:146-226.

      [22]ZHANG M K, HE Z L. Long-term changes in organic carbon and nutrients of an Ultisol under rice cropping in southeast China.Geoderma, 2004,118:167-179.

      [23]BRUUN S, JENSEN E S, JENSEN L S. Microbial mineralization and assimilation of black carbon: Dependency on degree of thermal alteration.OrganicGeochemistry, 2008,39:839-845.

      [24]CAMBARDELLA C A, ELLIOTT E T. Particulate soil organic-matter changes across a grassland cultivation sequence.SoilScienceSocietyofAmericanJournal, 1992,56:777-783.

      [25]劉守龍,童成立,張文菊,等.湖南省稻田表層土壤固碳潛力模擬研究.自然資源學(xué)報,2006,21(1):118-125.

      LIU S L, TONG C L, ZHANG W J,etal. Simulation of carbon sequestration potential of surface soil in paddy field in Hunan Province.JournalofNaturalResources, 2006,21(1):118-125. (in Chinese with English abstract)

      [26]潘根興,李戀卿,張旭輝.土壤有機(jī)碳庫與全球變化研究的若干前沿問題兼開展中國水稻土有機(jī)碳固定研究的建議.南京農(nóng)業(yè)大學(xué)學(xué)報,2002,25(3):100-109.

      PAN G X, LI L Q, ZHANG X H. Perspectives on issues of soil carbon pools and global change with suggestions for studying organic carbon sequestration in paddy soils of China.JournalofNanjingAgriculturalUniversity, 2002,25(3):100-109. (in Chinese with English abstract)

      [27]王改蘭,段建南,李旭霖.長期施肥條件下土壤有機(jī)質(zhì)變化特征研究.土壤通報,2003,34(6):589-591.

      WANG G L, DUAN J N, LI X L. Characteristics of organic matter in soil under long-term fertilization.ChineseJournalofSoilScience, 2003,34(6):589-591. (in Chinese with English abstract)

      [28]張愛君,張明普.黃潮土長期輪作施肥土壤有機(jī)質(zhì)消長規(guī)律的研究.安徽農(nóng)業(yè)大學(xué)學(xué)報,2002,29(1):60-63.

      ZHANG A J, ZHANG M P. Study on regularity of growth and decline of soil organic matter under long-term fertilization for yellow fluvo-aguic soil.JournalofAnhuiAgriculturalUniversity, 2002,29(1):60-63. (in Chinese with English abstract)

      [29]FRANZLUEBBERS A J, ARSHAD M A. Particulate organic carbon content and potential mineralization as affected by tillage and texture.SoilScienceSocietyofAmericanJournal, 1997,61:1382-1386.

      [30]楊平平.茶樹修剪葉及其生物質(zhì)炭還田的土壤環(huán)境效應(yīng).南京:南京農(nóng)業(yè)大學(xué),2012:1-53.

      YANG P P. Soil environmental effects of pruning leaves and biomass carbon returning of tea tree to field. Nanjing: Nanjing Agricultural University, 2012:1-53. (in Chinese with English abstract)

      [31]黃耀,孫文娟.近20年來中國大陸農(nóng)田表土有機(jī)碳含量的變化趨勢.科學(xué)通報,2006,51(7):750-763.

      HUANG Y, SUN W J. Changing trend of organic carbon content in topsoil of farmland of China in recent 20 years.ScienceBulletin, 2006,51(7):750-763. (in Chinese with English abstract)

      [32]程先富,史學(xué)正,于東升,等.興國縣森林土壤有機(jī)碳庫及其與環(huán)境因子的關(guān)系.地理研究,2004,23(2):211-217.

      CHENG X F, SHI X Z, YU D S,etal. Organic carbon pool of forest soil and its relationship with environmental factors in Xingguo County.GeographicResearch, 2004,23(2):211-217. (in Chinese with English abstract)

      中圖分類號S 153

      文獻(xiàn)標(biāo)志碼A

      收稿日期(Received):2015-08-11;接受日期(Accepted):2015-10-10;網(wǎng)絡(luò)出版日期(Published online):2016-03-20

      *通信作者(

      Corresponding author):孔樟良(http://orcid.org/0000-0003-1183-3588),E-mail:183212557@qq.com

      基金項(xiàng)目:浙江省建德市耕地地力監(jiān)測(浙土肥字[2007]35號).

      URL:http://www.cnki.net/kcms/detail/33.1247.S.20160321.1425.026.html

      猜你喜歡
      分布特征碳庫茶園
      茶園斗“蟬”
      茶園飄香
      心聲歌刊(2021年6期)2021-02-16 01:12:36
      茶園之晨
      江淮法治(2020年16期)2020-11-27 10:30:20
      長期定位試驗(yàn)下砒砂巖與沙復(fù)配土的碳庫管理指數(shù)
      綠色科技(2020年20期)2020-11-20 01:56:34
      茶園觀色
      百科知識(2018年7期)2018-04-17 16:46:38
      秸稈還田對農(nóng)田土壤碳庫和溫室氣體排放的影響研究進(jìn)展
      大氣氮沉降對森林土壤碳庫的影響
      嶺南地區(qū)冠心病中醫(yī)證型及證素分布的地域性特征研究
      四川宜賓瀘州長江河谷地帶雷電監(jiān)測數(shù)據(jù)特征分析
      五壘島灣海域石油烴分布特征
      清涧县| 上蔡县| 云和县| 大新县| 河间市| 绥化市| 台前县| 丰原市| 永仁县| 融水| 镇原县| 屯门区| 灵石县| 霍州市| 锡林郭勒盟| 垣曲县| 中西区| 简阳市| 壤塘县| 兴国县| 称多县| 海林市| 太和县| 庆城县| 大足县| 乌鲁木齐市| 遂昌县| 凤翔县| 八宿县| 尚义县| 民乐县| 曲阜市| 会理县| 盖州市| 商南县| 乐昌市| 韩城市| 崇信县| 宁南县| 富源县| 额尔古纳市|