• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以4,4′-聯(lián)苯二甲酸和咪唑基化合物為配體的鈷配合物的合成和晶體結構

    2016-05-03 07:06:29劉光祥
    無機化學學報 2016年4期
    關鍵詞:晶體結構

    張 鳳 劉光祥

    (南京曉莊學院化學系,南京市新型功能材料重點實驗室,南京 211171)

    ?

    以4,4′-聯(lián)苯二甲酸和咪唑基化合物為配體的鈷配合物的合成和晶體結構

    張鳳劉光祥*

    (南京曉莊學院化學系,南京市新型功能材料重點實驗室,南京211171)

    摘要:以4,4′-聯(lián)苯二甲酸(H2BPDC)和4,4′-二咪唑基二苯醚(BIDPE)為原料,與硝酸鈷在不同溫度下反應,得到2個結構不同的配位聚合物{[Co2(BPDC)2(BIDPE)2(H2O)]·2H2O}n(1)和{[Co(BPDC)(BIDPE)]·H2O}n(2)。對它們進行了元素分析、紅外光譜分析,并利用X射線衍射測定了它們的單晶結構。配合物1屬于單斜晶系,C2/c空間群,a=1.456 02(15) nm, b=1.557 51(16) nm, c=2.522 6(3) nm,β=90.834 0(10)°, V=5.720 2(10) nm3, Z=4, Mr=1 256.98, Dc=1.460 g·cm(-3),μ=0.655, F(000)=2 592, R1=0.036 7, wR2=0.087 5(I>2σ(I))。配合物2屬于三斜晶系,P1空間群,a=1.061 92(10) nm, b=1.098 51(11) nm, c=1.324 51(13) nm,α=112.725 0(10) nm,β= 92.112 0(10)°,γ=96.574 0(10)°, V=1.410 2(2) nm3, Z=2, Mr=619.48, Dc=1.459 g·cm(-3),μ=0.662, F(000)=638, R1=0.047 4, wR2=0.116 5 (I>2σ(I))。單晶結構分析顯示,配合物1擁有一維鏈狀結構,而配合物2具有二維兩重貫穿結構,并表現(xiàn)出聚輪烷的結構特征。結果說明了反應溫度在配合物組裝過程中起著非常重要的作用。

    關鍵詞:鈷配合物;雙咪唑配體;芳香羧酸配體;晶體結構

    國家自然科學基金(No.21271106)和教育部科學技術重點項目(No.210102)資助。*通信聯(lián)系人。E-mail:njuliugx@126.com

    0 Introduction

    The design and synthesis of coordination polymers (CPs) are of great interest, not only because of their intriguing variety of architectures and topologies, but also because of their tremendous potential applications in nonlinear optics, catalysis, gas absorption, luminescence, and magnetism[1-4]. However, the rational design and synthesis of CPs with unique structure and function still remain a long-term challenge. The resultant structural framework is frequently influenced by various factors such as medium, pH value of solution, temperature, the nature of metal ions, coordination geometry, and a number of coordination donors provided by organic ligands[5-10]. From a synthetic point of view, the judicious selection of appropriate organic ligands and coordination geometries of the metals is proved to be one of the most effective ways to manipulate the versatile structures of CPs[11-12].

    Among the various types of organic ligands, imidazole and its derivatives are often employed to fabricate CPs because of their strong coordination abilities and relatively versatile coordination geometries[13-15]. The V-shaped ligand 4,4′-bis(imidazole -l-yl)diphenyl ether (BIDPE) has previously been justified as an efficient and versatile organic building unit for construction of coordination architectures[16-18]. For BIDPE, which features three special characteristics: ?the free rotation of the imidazolyl ring can improve the flexibility of the polymeric frameworks to meet the requirement of coordination geometries of metal ions for tuning the fine structure.The long size makes it an excellent candidate to generate CPs of entangled topology.The V-shaped conformation can form coordinative loops or rings which are beneficial for the assembly of polyrotaxane- and polycatenane-like motifs. More importantly, recent studies indicate that utilizing mixed ligands is an effective route to construct intriguing CPs with attractive topological structures[19-22]. Such a dual-ligand strategy offers great promise for the construction of target frameworks with high complexities due to the presence of distinct donors which can coordinate with metal centers through different coordination modes. With a view to develop possible synthetic strategies, the employment of mixed N- and O-donor ligands would be a feasible method to build coordination architectures with interesting topologies and remarkable functionalities[23-27]. As is known, polycarboxylate ligands are excellent coligands for the construction of highly connected, different dimensional frameworks due to their versatile bridging modes. However, investigation of the BIDPE-carboxylate mixed-ligand system remains largely unexplored. Thus, the development of comprehensive research on this topic is necessary. Considering all of the above-mentioned, we prepared two new coordination polymers, namely, {[Co2(BPDC)2(BIDPE)2(H2O)]·2H2O}n(1) and {[Co(BPDC)(BIDPE)]·H2O}n(2). Herein, we report their syntheses, crystal structures and thermal properties.

    1 Experimental

    1.1 Materials and general methods

    All chemicals and solvents were of reagent grade and used as received without further purification. The BIDPE ligand was synthesized according to the reported method[28]. Elemental analyses (C, H and N) were performed on a Vario ELⅢelemental analyzer. Infrared spectra were recorded on KBr discs using a Nicolet Avatar 360 spectrophotometer in the range of 4 000~400 cm-1. Thermogravimetric analyses (TGA) were performed on a Netzsch STA-409PC instrument in flowing N2with a heating rate of 10℃·min-1. Powder X-ray diffraction (PXRD) patterns wereobtained on Bruker D8 Advance X-ray diffractometer with Cu Kα radiation (λ=0.154 056 nm) at room temperature.

    1.2 Synthesis of {[Co2(BPDC)2(BIDPE)2(H2O)]· 2H2O}n(1)

    A mixture containing Co (NO3)2·6H2O (29.6 mg, 0.1 mmol), H2BPDC (24.2 mg, 0.1 mmol), BIDPE (30.2 mg, 0.1 mmol) and NaOH (8.0 mg, 0.2 mmol) in 15 mL of deionized water was sealed in a 25 mL Teflon lined stainless steel container and heated at 120℃for 3 days. Purple platy crystals of 1 were collected by filtration and washed with water and ethanol several times with a yield of 53% based on BIDPE ligand. Anal. Calcd. for C64H50N8O13Co2(%): C, 61.15; H, 4.01; N, 8.91. Found(%): C, 61.16; H, 4.03; N, 8.92%. IR (KBr, cm-1): 3 462 (br), 3 122 (w), 1 610 (s), 1 558 (s), 1 521 (s), 1 423 (m), 1 389 (s), 1 276 (w), 1 242 (s), 1 171 (w), 1 133 (w), 1 102 (w), 1 083 (s), 1 040 (m), 987 (w), 892 (s), 827 (w), 782 (w), 672 (w), 573 (w), 547 (w).

    1.3 Synthesis of {[Co(BPDC)(BIDPE)]·H2O}n(2) Complex 2 was prepared by a process similar to that yielding complex 1 at 180℃by using Co(NO3)2·

    6H2O (29.6 mg, 0.1 mmol), H2BPDC (24.2 mg, 0.1 mmol), BIDPE (30.2 mg, 0.1 mmol) and NaOH (8.0 mg, 0.2 mmol) in 15 mL of deionized water. Purple block crystals of 2 were collected by filtration and washed with water and ethanol several times with a yield of 44% based on BIDPE ligand. Anal. Calcd. for C32H24N4O6Co (%): C, 62.04; H, 3.90; N, 9.04. Found (%): C, 62.02; H, 3.89; N, 9.05. IR (KBr, cm-1): 3 459 (br), 3 061 (w), 1 608 (s), 1 523 (m), 1 358 (s), 1 275 (m), 1 200 (s), 1 124 (w), 1 034 (w), 1 009 (s), 835 (m), 802 (s), 638 (w), 594 (m), 519 (m), 478 (m).

    1.4 X-ray crystallography

    Two block single crystals with dimensions of 0.22 mm×0.20 mm×0.08 mm for 1 and 0.20 mm×0.18 mm× 0.16 mm for 2 were mounted on glass fibers for measurement, respectively. X-ray diffraction intensity data were collected on a Bruker APEXⅡCCD diffractometer equipped with a graphite-monochromatic Mo Kα radiation (λ=0.071 073 nm) using the φ-ω scan mode at 293(2) K. Data reduction and empirical absorption correction were performed using the SAINT and SADABS program[29], respectively. The structures were solved by the direct method using SHELXS-97[30]and refined by full-matrix least squares on F2using SHELXL-97[31]. All of the non-hydrogen atoms were refined anisotropically. The details of the crystal parameters, data collection and refinement for 1 and 2 are summarized in Table 1, and selected bond lengths and angles with their estimated standard deviations are listed in Table 2.

    CCDC: 1429769 1; 1429770, 2.

    Table1 Crystal data and structure refinement for 1 and 2

    Continued Table 1

    Table2 Selected bond lengths(nm) and angles(°) for 1 and 2

    Fig.1 Coordination environments of the Coatoms in 1 with the ellipsoids drawn at the 30% probability level

    2 Results and discussion

    2.1 Crystal structure

    Single crystal X-ray diffraction analysis revealed that complex 1 crystallizes in the monoclinic space group C2/c and features a one-dimensional chain structure based on triply bridged binuclear units. As illustrated in Fig.1, the asymmetric unit of complex 1 contains one crystallography independent cobalt ion, one unique BPDC dianions, one entire BIDPE molecule, a half ligated water molecule located on a crystallographic 2-fold axis and a lattice watermolecule. The cobalt ion possesses a distorted [CoO4N2] octahedral coordination environment with a cis orientation of its nitrogen donors, which belong to two different BIDPE ligands. Bond lengths and angles about the cobalt ion are standard for octahedral coordination (Table 2). Three of the oxygen donors belong to three different BPDC anions, while the remaining coordination site is occupied by an aqua ligand. Each BPDC anion serves as an exotridentate linker, connecting two cobalt ions at one carboxylate terminus in a bis-bridging binding mode with a third cobalt ion via the other carboxylate locus in a monodentate binding mode. The aqua ligand serves to bridge two Coions in a μ2-fashion; two Coions are in turn also bridged by two carboxylate termini from two different BPDC anions to form a triply bridged binuclear unit. These have a Co…Co distance of 0.357 7 nm, with the two bridging carboxylate groups situated 45.66°apart. Individual binuclear units are connected into a 1D [Co2(BPDC)2(BIDPE)2(μ2-H2O)]nchain motif, coursing along c-axis, by means of the monodentate carboxylate termini of the BPDC anions (Fig.2). The Co…Co contact distance through the full extent of the DBA dianionic tethers is 1.444 9 nm. The BIDPE ligands fosters a Co…Co distance of 1.468 4 nm. Adjacent [Co2(BPDC)2(BIDPE)2(μ2-H2O)]nchains are conjoined along the a and b axes by intermolecular weak interactions to construct the 3D supramolecular network (Fig.3).

    Fig.2 View of 1D [Co2(BPDC)2(BIDPE)2(μ2-H2O)]nchain motif in 1

    Fig.3 Molecular packing diagram projected along a axis in 1

    Changing the temperature from 120 to 180℃for the same reaction mixture of 1 affords complex 2, which crystallizes in the triclinic P1 space group and shows a 2D→2D entanglement pattern with polycatenane features. The asymmetric unit of 2 contains one crystallographically independent Coion, one individual BIDPE ligand, two halves BPDC anions located on inversion centres and one lattice water molecule. As depicted in Fig.4, each Cois four-coordinated by two oxygen atoms from two BPDC anions and two nitrogen atoms from the imidazole groups of two BIDPE ligands, exhibiting a slightly distorted octahedral geometry. All chemical bonds fall in the normal ranges[32]. In 2, every two V-shaped BIDPE ligands are joined by two Coions to form a Co2(BIDPE)2ring with Co…Co separation of 1.504 8 nm and meanwhile all these rings are connected by BPDC anions to generate a 1D linear necklace-likechain along the b axis. These parallel chains are further bridged through the BPDC anions into a twodimensional layer (Fig.5) and neighboring layers are interpenetrated with each other in a parallel fashion to give an entangled 2D→2D double-layer (Fig.6). Undoubtedly, the structure of 2 can be described as a metal-organic polycatenane framework.

    Fig.4 Coordination environments of the Coatoms in 2 with the ellipsoids drawn at the 30% probability level

    Fig.5  Perspective view of the 2D layer structure in 2

    Fig.6 Perspective view of the 2D→2D polycatenane-like framework in 2

    Complexes 1 and 2 were obtained under similar reactions at different reaction temperatures. At lower temperature, the carboxylate anions in 1 display monodentate and bis(bridging) modes, whereas in 2, there is only one bis(monodentate) coordination fashion. The different coordination modes of the Coion and different frameworks of 1 and 2 clearly showthat the formation of the framework is influenced by classical thermodynamic factors, such as condensation due to entropy driven dehydration reaction at higher temperature.Transformationreactionshavebeenstudied extensively by modifying reaction conditions[33-35], but to our knowledge this is the first attempt in CPs of aromatic carboxylates and V-shaped bis (imidazole) ligands where the temperature effects have been investigated and correlated with the structure.

    2.2 FTIR spectra

    The IR spectra of 1 and 2 show the absence of the characteristic bands at around 1 700 cm-1attributed to the protonated carboxylate group indicates that the complete deprotonation of H2BPDC ligand upon reaction with Co ion. The presence of vibrational bands of 1 610 ~1 558 cm-1are characteristic of the asymmetric stretching of the deprotonated carboxylic groups of BPDC2-anion. The difference between asymmetric and symmetric carbonyl stretching frequencies (Δν=νasym-νsym) was used to fetch information on the metal-carboxylate binding modes. Complex 1 shows two pairs of νasymand νsymfrequencies at 1 610, 1 423 (Δν=187) and 1 558, 1 389 (Δν=169) cm-1for the carbonyl functionality indicating two coordination modes as observed in the crystal structure. Complex 2 showed a pairs of νasymand νsymfrequencies at 1 608, 1 358 (Δν=250) cm-1corresponding to the carbonyl functionality of dicarboxylate ligand indicating a symmetric monodentate coordination mode. OH stretching broad bands at 3 462 cm-1for 1 and at 3 459 cm-1for 2 are attributable to the coordinated lattice water. The bands in the region of 640~1 250 cm-1are attributed to the -CH- in-plane or out-of-plane bend, ring breathing, and ring deformation absorptions of benzene ring. The IR spectra exhibit the characteristic peaks of imidazole groups at ca. 1 520 cm-1[36].

    Fig.7 TGA curves of complexes 1 and 2

    Fig.8 PXRD patterns of complexes 1 and 2

    2.3 Thermal stability and powder X-ray diffraction (PXRD)

    To examine the thermal stabilities of complexes 1 and 2, TG analyses were carried out (Fig.7). The TGA study of complex 1 shows a weight loss of 4.42% from 30 to 210℃, corresponding to the loss of two lattice water molecules and one coordinated water molecule (Calcd. 4.27% ). Then the TG curve presents a platform and frame starts to decompose at 310℃. In the case of complex 2, a little weight loss is observed from 30 to 90℃due to the release of one lattice water molecule, with a weight loss of 3.01% (Calcd. 2.90%). Furthermore, the decomposition of 2 occurs upon 315℃.

    Powder X-ray diffraction analysis (PXRD)experiments were carried out for 1 and 2 at room temperature to characterize their purity. As shown in Fig.8, the measured peak positions closely match the simulated peak positions, indicative of pure products.

    References:

    [1] Long J R, Yaghi O M. Chem. Soc. Rev., 2009,38:1213-1214

    [2] Liu K, Shi W, Cheng P. Coord. Chem. Rev., 2015,289:74-122

    [3] Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014,43:5415 -5418

    [4] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009,38:1248-1256

    [5] Guo X M, Guo H D, Zou H Y, et al. CrystEngComm, 2013, 15:9112-9120

    [6] Zhao F H, Jing S, Che Y X, et al. CrystEngComm, 2012,14: 4478-4485

    [7] Shen L J, Gray D, Masel R I, et al. CrystEngComm, 2012, 14:5145-5147

    泰國、印度等國家醫(yī)療旅游發(fā)展經驗告訴我們,一個地區(qū)之所以成為具有競爭力的醫(yī)療旅游目的地,是由許多因素共同決定的:醫(yī)療基礎設施、休閑設施、高質量的醫(yī)療服務人才、合理的價格(交通、住宿、醫(yī)療等)等。因此,海南在加快提升醫(yī)療服務水平和能力建設的同時,還需要進一步提高旅游公共服務體系建設,包括安全便捷高效的交通基礎設施建設,價格合理、服務優(yōu)質、符合國際標準的酒店、餐飲以及景區(qū)建設;通曉國際規(guī)則和精通多國外語的國際旅游人才隊伍建設;信息準確、及時的醫(yī)療旅游門戶網站建設等。

    [8] Stock N, Biswas S. Chem. Rev., 2012,112:933-969

    [9] Guo H D, Guo X M, Zou H Y, et al. CrystEngComm, 2014, 16:7459-7468

    [10]Liu G X, Zhu K, Chen H, et al. CrystEngComm, 2008,10: 1527-1530

    [11]Pan M, Su C Y. CrystEngComm, 2014,16:7847-7859

    [12]Ding J G, Yin C, Zheng L Y, et al. RSC Adv., 2014,4: 24594-24600

    [13]Yao X Q, Pan Z R, Hu J S, et al. Chem. Commun., 2011, 47:10049-10051

    [14]Li S B, Sun W L, Wang K, et al. Inorg. Chem., 2014,53: 4541-4547

    [15]Phan A, Doonan C J, Uribe-Romo F J, et al. Acc. Chem. Res., 2010,43:58-67

    [16]Hu J S, Shang Y J, Yao X Q, et al. Cryst. Growth Des., 2010,10:4135-4142

    [18]Hu J S, Huang L F, Yao X Q, et al. Inorg. Chem., 2011,50: 2404-2414

    [19]Hauptvogel I M, Bon V, Grünker R, et al. Dalton Trans., 2012,41:4172-4179

    [20]Kim D, Lah M S. CrystEngComm, 2013,15:9491-9498

    [21]Cao T T, Peng Y Q, Liu T, et al. CrystEngComm, 2014,16: 10658-10673

    [22]Li Y W, Li D C, Xu J, et al. Dalton Trans., 2014,43:15708-15712

    [23]Jiang H L, Tatsu Y, Lu Z H, et al. J. Am. Chem. Soc., 2010, 132:5586-5587

    [24]Liu X M, Lin R B, Zhang J P, et al. Inorg. Chem., 2012,51: 5686-5692

    [25]Han L W, Lu J, Lin Z J, et al. CrystEngComm, 2014,16: 1749-1754

    [26]Kongpatpanich K, Horike S, Sugimoto M, et al. Chem. Commun., 2014,50:2292-2294

    [27]Das M C, Guo Q S, He Y B, et al. J. Am. Chem. Soc., 2012, 134:8703-8710

    [28]Liu G X, Zha X C, Wang Y, et al. J. Inorg. Organomet. Polym., 2012,22:258-263

    [29]Sheldrick G M. SADABS. Program for Empirical Absorption Correction of Area Detector Data, University of G?ttingen, Germany, 1996.

    [30]Sheldrick G M. SHELXS-97, Program for Crystal Structure Solution, University of G?ttingen, Germany, 1997.

    [31]Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structure, University of G?ttingen, Germany, 1997.

    [32]Liu Y, Qi Y, Su Y H, et al. CrystEngComm, 2010,12:3283 -3290

    [33]Dan M, Rao C N R. Angew. Chem., Int. Ed., 2006,45:281-285

    [34]Li B, Dai X M, Meng X G, et al. Dalton Trans., 2013,42: 2588-2593

    [35]Ma J, Jiang F L, Chen L, et al. CrystEngComm, 2012,14: 4181-4187

    [36]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordinated Compounds. 5th Ed. New York: Wiley & Sons, 1997.

    Syntheses and Crystal Structures of Two CobaltCoordination Polymers Constructedfrom 4, 4′-Biphenyldicarboxylate and Bis(imidazole) Ligands

    ZHANG Feng LIU Guang-Xiang*
    (Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171,China)

    Abstract:Two cobaltcoordination polymers, {[Co2(BPDC)2(BIDPE)2(H2O)]·2H2O}n(1) and {[Co(BPDC)(BIDPE)]· H2O}n(2) (H2BPDC=4, 4′-biphenyldicarboxylic acid and BIDPE=4, 4′-bis(imidazole-l-yl)diphenyl ether), have been synthesized and characterized by IR spectroscopy, elemental analyses and single-crystal X-ray diffraction. Complex 1 crystallizes in monoclinic, space group C2/c with a=1.456 02(15) nm, b=1.557 51(16) nm, c=2.522 6(3) nm,β= 90.834 0(10)°, V=5.720 2(10) nm3, Mr=1 256.98, Dc=1.460 g·cm(-3), F(000)=2 592,μ=0.655 mm(-1)and Z=4. The final R1is 0.036 7 and wR2is 0.087 5 for 4 258 observed reflections (I>2σ(I)). Complex 2 belongs to triclinic, space group P1 with a=1.061 92(10) nm, b=1.098 51(11) nm, c=1.324 51(13) nm,α=112.725 0(10)°,β=92.112 0(10)°,γ= 96.574 0(10)°, V=1.410 2(2) nm3, Mr=619.48, Dc=1.459 g·cm(-3), F(000)=638,μ=0.662 mm(-1)and Z=2. The final R1is 0.047 4 and wR2is 0.116 5 for 3 871 observed reflections (I>2σ(I)). Structural analyses reveal that complex 1 features a one-dimensional chain structure based on triply bridged binuclear units, which is further interlinked into a higher-dimensional supramolecular framework by intermolecular weak interactions, whereas complex 2 possesses a 2-fold parallel interpenetrating network consist of two identical sets of 2D layer motifs and shows polycatenane char-book=684,ebook=133acters. The results show that reaction temperature plays a significant role in the structure of the final products. CCDC: 1429769 1; 1429770, 2.

    Keywords:cobalt coordination polymer; bis(imidazole) ligands; polycarboxylate; crystal structure

    收稿日期:2015-10-26。收修改稿日期:2016-01-18。

    DOI:10.11862/CJIC.2016.083

    中圖分類號:O614.81+2

    文獻標識碼:A

    文章編號:1001-4861(2016)04-0683-08

    猜你喜歡
    晶體結構
    例談晶體結構中原子坐標參數(shù)的確定
    化學軟件在晶體結構中的應用
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    五元瓜環(huán)與氯化鈣配合物的合成及晶體結構
    貴州科學(2016年5期)2016-11-29 01:25:53
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結構及量子化學研究
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結構及催化性能
    火炸藥學報(2014年3期)2014-03-20 13:17:39
    二維網狀配聚物[Co(btmb)2(SCN)2]n的合成、晶體結構和Pb2+識別性能
    基于2-苯基-1H-1,3,7,8-四-氮雜環(huán)戊二烯并[l]菲的Pb(Ⅱ)、Co(Ⅱ)配合物的晶體結構與發(fā)光
    氨荒酸配合物([M(MeBnNCS2)3],M=Sb(Ⅲ),Bi(Ⅲ))的合成、晶體結構及抑菌活性
    一個雙核β-二酮鏑(Ⅲ)配合物的超聲化學合成、晶體結構和磁性
    一区二区三区高清视频在线| 亚洲av第一区精品v没综合| 三级国产精品欧美在线观看| 久久久久国产网址| 国产色爽女视频免费观看| 亚洲国产精品久久男人天堂| 人妻系列 视频| 乱系列少妇在线播放| 一夜夜www| 舔av片在线| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区视频9| 中文欧美无线码| 天天躁夜夜躁狠狠久久av| 国产午夜福利久久久久久| 人妻夜夜爽99麻豆av| 日本免费一区二区三区高清不卡| 国产精品福利在线免费观看| 国产av在哪里看| 深夜a级毛片| 久久精品久久久久久噜噜老黄 | 国产乱人偷精品视频| 国产 一区 欧美 日韩| 精品久久久久久久久久免费视频| av专区在线播放| 亚洲国产日韩欧美精品在线观看| 99久久久亚洲精品蜜臀av| 国产精品一及| 亚洲精品影视一区二区三区av| 精品日产1卡2卡| 亚洲在久久综合| 日本五十路高清| 亚洲无线在线观看| 久久人人爽人人片av| 日韩一区二区视频免费看| 亚洲第一区二区三区不卡| 久久这里只有精品中国| 色播亚洲综合网| 精品久久久久久成人av| 国产亚洲精品久久久久久毛片| 国产精品av视频在线免费观看| 精品免费久久久久久久清纯| 九九爱精品视频在线观看| 人妻制服诱惑在线中文字幕| 热99在线观看视频| 18禁在线播放成人免费| 91久久精品国产一区二区三区| 精品久久久久久久久久免费视频| 欧美另类亚洲清纯唯美| 国产成人精品一,二区 | 99久久中文字幕三级久久日本| 日韩强制内射视频| a级毛片a级免费在线| 免费人成视频x8x8入口观看| 两个人视频免费观看高清| 两个人视频免费观看高清| 日本免费a在线| 日韩av在线大香蕉| 禁无遮挡网站| 99热全是精品| 老女人水多毛片| 欧美日本视频| 精品久久久久久久久亚洲| 偷拍熟女少妇极品色| 国产精品一区www在线观看| 高清毛片免费看| 干丝袜人妻中文字幕| 国产精品蜜桃在线观看 | 中国美白少妇内射xxxbb| 久久久久免费精品人妻一区二区| 国产高清不卡午夜福利| 日韩一本色道免费dvd| 久久国产乱子免费精品| 国产伦精品一区二区三区视频9| 嫩草影院新地址| 人妻久久中文字幕网| 黄色一级大片看看| 国产高清激情床上av| 天天躁日日操中文字幕| 亚洲在线自拍视频| 99国产极品粉嫩在线观看| 听说在线观看完整版免费高清| 日本黄色片子视频| 网址你懂的国产日韩在线| 99久久精品热视频| 国产精品久久久久久精品电影小说 | 九九久久精品国产亚洲av麻豆| 天美传媒精品一区二区| 尤物成人国产欧美一区二区三区| 国产女主播在线喷水免费视频网站 | 午夜福利在线观看免费完整高清在 | 免费黄网站久久成人精品| 国产精品国产高清国产av| 一区福利在线观看| 亚洲最大成人手机在线| 美女被艹到高潮喷水动态| 国产女主播在线喷水免费视频网站 | 搞女人的毛片| 只有这里有精品99| 色综合站精品国产| 免费人成视频x8x8入口观看| 啦啦啦韩国在线观看视频| 日本免费一区二区三区高清不卡| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 日韩欧美 国产精品| 亚洲熟妇中文字幕五十中出| 乱系列少妇在线播放| 日韩一区二区视频免费看| 91午夜精品亚洲一区二区三区| 激情 狠狠 欧美| 美女高潮的动态| 国产探花极品一区二区| 高清日韩中文字幕在线| 国产精品一区www在线观看| 亚洲国产日韩欧美精品在线观看| 精品一区二区免费观看| 精品人妻熟女av久视频| 91精品一卡2卡3卡4卡| 日韩欧美精品v在线| 一区二区三区四区激情视频 | 国产国拍精品亚洲av在线观看| 人妻少妇偷人精品九色| 久久久久国产网址| 99在线人妻在线中文字幕| 国产黄色视频一区二区在线观看 | 亚洲欧美精品专区久久| 国产精品久久久久久av不卡| 欧美最黄视频在线播放免费| 国产真实伦视频高清在线观看| 日日摸夜夜添夜夜爱| 在线播放国产精品三级| 国产三级中文精品| 男女视频在线观看网站免费| 国产高清三级在线| 亚洲精品亚洲一区二区| 99久久无色码亚洲精品果冻| 免费一级毛片在线播放高清视频| 2022亚洲国产成人精品| 好男人视频免费观看在线| 国产在线精品亚洲第一网站| av在线观看视频网站免费| 欧美在线一区亚洲| 级片在线观看| 亚洲欧美精品专区久久| 亚洲四区av| 18+在线观看网站| 婷婷色综合大香蕉| 麻豆国产av国片精品| 久久久欧美国产精品| 亚洲精品成人久久久久久| 欧美xxxx黑人xx丫x性爽| 久久久精品大字幕| 午夜福利在线在线| 插阴视频在线观看视频| 免费一级毛片在线播放高清视频| 日韩中字成人| 国产精品美女特级片免费视频播放器| 熟妇人妻久久中文字幕3abv| 国产成年人精品一区二区| 人妻系列 视频| 亚洲色图av天堂| 国产高清视频在线观看网站| 欧美3d第一页| 我的老师免费观看完整版| 中文字幕熟女人妻在线| 国产久久久一区二区三区| 国产成人精品久久久久久| 久久人人爽人人爽人人片va| 久久国内精品自在自线图片| 人妻久久中文字幕网| 青春草视频在线免费观看| 欧美不卡视频在线免费观看| 成年女人看的毛片在线观看| 亚洲欧美成人综合另类久久久 | 久久久精品94久久精品| 高清毛片免费观看视频网站| 秋霞在线观看毛片| 亚洲图色成人| 天天一区二区日本电影三级| 欧美+亚洲+日韩+国产| 日韩三级伦理在线观看| 18禁在线无遮挡免费观看视频| 国内精品久久久久精免费| 黄片无遮挡物在线观看| 国产精品嫩草影院av在线观看| 久久这里有精品视频免费| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 麻豆一二三区av精品| 少妇丰满av| 久久久国产成人免费| 欧美人与善性xxx| 国产精品国产三级国产av玫瑰| 少妇熟女欧美另类| 夜夜看夜夜爽夜夜摸| 狂野欧美激情性xxxx在线观看| 成年av动漫网址| 悠悠久久av| 国产黄色小视频在线观看| 亚洲人成网站高清观看| 午夜a级毛片| 乱系列少妇在线播放| 99久久九九国产精品国产免费| 亚洲18禁久久av| 国产视频内射| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 天堂影院成人在线观看| 欧美日韩精品成人综合77777| 日韩亚洲欧美综合| 久久久久国产网址| 嫩草影院精品99| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 久久久国产成人免费| 欧美激情久久久久久爽电影| 淫秽高清视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人精品中文字幕电影| 精品人妻熟女av久视频| 免费观看在线日韩| 亚洲aⅴ乱码一区二区在线播放| 国产又黄又爽又无遮挡在线| 我的老师免费观看完整版| 国产高清有码在线观看视频| 亚洲欧美日韩高清在线视频| 男女做爰动态图高潮gif福利片| 亚洲欧美中文字幕日韩二区| 在线天堂最新版资源| 偷拍熟女少妇极品色| 国产在线精品亚洲第一网站| 婷婷六月久久综合丁香| 国产视频内射| 精品一区二区三区人妻视频| 欧美成人a在线观看| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 国产中年淑女户外野战色| 99视频精品全部免费 在线| 乱人视频在线观看| 亚洲在线自拍视频| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 亚洲中文字幕一区二区三区有码在线看| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| 少妇丰满av| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看 | 亚洲人与动物交配视频| 国产精品一区二区性色av| 欧美zozozo另类| 看片在线看免费视频| 久久精品国产清高在天天线| 午夜福利成人在线免费观看| 国产午夜精品久久久久久一区二区三区| 午夜精品在线福利| 国产老妇女一区| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜添av毛片| 少妇的逼好多水| 中出人妻视频一区二区| 亚洲成人av在线免费| 久久久成人免费电影| 男人的好看免费观看在线视频| 国产精品伦人一区二区| 国产白丝娇喘喷水9色精品| 日韩欧美三级三区| 秋霞在线观看毛片| 99热精品在线国产| 成人毛片60女人毛片免费| АⅤ资源中文在线天堂| 精品一区二区三区视频在线| 成人美女网站在线观看视频| 国内精品美女久久久久久| av又黄又爽大尺度在线免费看 | 卡戴珊不雅视频在线播放| 亚洲av中文字字幕乱码综合| 久久亚洲精品不卡| 最后的刺客免费高清国语| 国产高清激情床上av| 亚洲五月天丁香| 人妻系列 视频| 午夜视频国产福利| 免费看a级黄色片| 日日摸夜夜添夜夜爱| 乱码一卡2卡4卡精品| 看十八女毛片水多多多| 国产不卡一卡二| 噜噜噜噜噜久久久久久91| 国产亚洲欧美98| 日韩,欧美,国产一区二区三区 | eeuss影院久久| 最近的中文字幕免费完整| 全区人妻精品视频| 一级毛片我不卡| 久久鲁丝午夜福利片| 乱人视频在线观看| 日韩在线高清观看一区二区三区| 99在线人妻在线中文字幕| 午夜久久久久精精品| 免费观看a级毛片全部| 最近的中文字幕免费完整| 精品一区二区三区人妻视频| 日本一二三区视频观看| 在线观看66精品国产| 国产成人a∨麻豆精品| 国产亚洲av片在线观看秒播厂 | 小蜜桃在线观看免费完整版高清| 亚洲国产欧美人成| 午夜精品一区二区三区免费看| 久久这里只有精品中国| 日本在线视频免费播放| 久久这里只有精品中国| 日本在线视频免费播放| 久久久成人免费电影| 女的被弄到高潮叫床怎么办| www日本黄色视频网| 国产视频内射| 日日啪夜夜撸| 青春草国产在线视频 | 高清毛片免费观看视频网站| 中文亚洲av片在线观看爽| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 久久综合国产亚洲精品| 国产免费男女视频| a级毛片a级免费在线| 蜜桃久久精品国产亚洲av| 国产视频内射| 精品久久久噜噜| 国产一级毛片七仙女欲春2| 麻豆国产97在线/欧美| 国产黄色视频一区二区在线观看 | 高清在线视频一区二区三区 | 成人一区二区视频在线观看| 91午夜精品亚洲一区二区三区| 欧美一区二区国产精品久久精品| 免费看av在线观看网站| 变态另类成人亚洲欧美熟女| 一边亲一边摸免费视频| 欧美3d第一页| 国产乱人视频| 亚洲人与动物交配视频| av天堂在线播放| 亚洲人与动物交配视频| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 日韩av不卡免费在线播放| av女优亚洲男人天堂| 亚洲电影在线观看av| 亚洲欧美清纯卡通| 精品熟女少妇av免费看| 午夜福利视频1000在线观看| av.在线天堂| 成人无遮挡网站| 亚洲成人av在线免费| videossex国产| av天堂中文字幕网| 美女cb高潮喷水在线观看| 日本成人三级电影网站| 欧美成人一区二区免费高清观看| 亚洲中文字幕日韩| 好男人在线观看高清免费视频| 天堂中文最新版在线下载 | 亚洲av二区三区四区| 男女视频在线观看网站免费| 成人亚洲欧美一区二区av| 99久久无色码亚洲精品果冻| 女同久久另类99精品国产91| 国产精品一区二区性色av| 一本一本综合久久| 1000部很黄的大片| 午夜激情福利司机影院| 国产午夜精品久久久久久一区二区三区| 色视频www国产| 人人妻人人澡欧美一区二区| 极品教师在线视频| 久久精品国产亚洲av香蕉五月| 99热这里只有精品一区| 美女国产视频在线观看| 精品久久久久久久久久免费视频| 国产成人福利小说| 亚洲欧美成人精品一区二区| 搡老妇女老女人老熟妇| 成年版毛片免费区| 一本久久精品| 寂寞人妻少妇视频99o| 国产精品嫩草影院av在线观看| 麻豆久久精品国产亚洲av| 一本久久中文字幕| 国产精品综合久久久久久久免费| 秋霞在线观看毛片| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 免费观看a级毛片全部| 成熟少妇高潮喷水视频| 日日撸夜夜添| 99精品在免费线老司机午夜| 中国国产av一级| 亚洲,欧美,日韩| 日韩成人av中文字幕在线观看| 国产精品乱码一区二三区的特点| 日韩av在线大香蕉| 夜夜看夜夜爽夜夜摸| 老司机影院成人| 一进一出抽搐gif免费好疼| 午夜爱爱视频在线播放| 日本与韩国留学比较| 免费看av在线观看网站| 久久这里只有精品中国| 欧美一级a爱片免费观看看| 国产亚洲91精品色在线| 日韩在线高清观看一区二区三区| av在线播放精品| 国产精品1区2区在线观看.| 亚洲精品国产av成人精品| 身体一侧抽搐| 午夜激情欧美在线| 亚洲欧美日韩无卡精品| 九九爱精品视频在线观看| 国产精品一及| 国产av麻豆久久久久久久| 中国国产av一级| 天天一区二区日本电影三级| 国模一区二区三区四区视频| 亚洲一区二区三区色噜噜| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 天美传媒精品一区二区| 最近最新中文字幕大全电影3| 2021天堂中文幕一二区在线观| 97热精品久久久久久| 黄色欧美视频在线观看| 久久久久久久久大av| 一卡2卡三卡四卡精品乱码亚洲| 国产极品天堂在线| 午夜福利成人在线免费观看| 少妇被粗大猛烈的视频| 乱码一卡2卡4卡精品| 亚洲av成人av| 亚洲性久久影院| 欧美性感艳星| 在线国产一区二区在线| 黄片wwwwww| 亚洲av男天堂| 免费看日本二区| 日本免费一区二区三区高清不卡| 久久午夜福利片| 欧美日本视频| 爱豆传媒免费全集在线观看| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 国产精品嫩草影院av在线观看| 三级男女做爰猛烈吃奶摸视频| 国产高清有码在线观看视频| av在线亚洲专区| 九九热线精品视视频播放| 99热这里只有是精品50| 日日撸夜夜添| 国产精品永久免费网站| 久久精品夜夜夜夜夜久久蜜豆| 高清在线视频一区二区三区 | 我的老师免费观看完整版| 少妇丰满av| 久久综合国产亚洲精品| av专区在线播放| 免费不卡的大黄色大毛片视频在线观看 | 午夜精品一区二区三区免费看| 看非洲黑人一级黄片| 亚洲人与动物交配视频| 国产精品久久久久久久电影| 一个人观看的视频www高清免费观看| av专区在线播放| 国产成人精品婷婷| 十八禁国产超污无遮挡网站| 久久精品国产清高在天天线| 高清毛片免费看| 久久精品久久久久久噜噜老黄 | 联通29元200g的流量卡| 免费大片18禁| 在线观看免费视频日本深夜| 国产麻豆成人av免费视频| 18禁黄网站禁片免费观看直播| 老师上课跳d突然被开到最大视频| 哪里可以看免费的av片| 日韩,欧美,国产一区二区三区 | 精品久久久久久久久久免费视频| 国产精品精品国产色婷婷| h日本视频在线播放| av女优亚洲男人天堂| 国产 一区精品| 老女人水多毛片| 日韩强制内射视频| .国产精品久久| 乱系列少妇在线播放| 18禁黄网站禁片免费观看直播| 丝袜喷水一区| 欧美性感艳星| 全区人妻精品视频| 桃色一区二区三区在线观看| 久久久久久久久大av| 小蜜桃在线观看免费完整版高清| 少妇猛男粗大的猛烈进出视频 | 老司机福利观看| av又黄又爽大尺度在线免费看 | 国产熟女欧美一区二区| 三级毛片av免费| 亚洲欧洲国产日韩| 精品国内亚洲2022精品成人| 国产高清有码在线观看视频| 身体一侧抽搐| 国产精品蜜桃在线观看 | 国产av一区在线观看免费| 久久精品综合一区二区三区| 老熟妇乱子伦视频在线观看| 精品人妻熟女av久视频| 国内揄拍国产精品人妻在线| 免费一级毛片在线播放高清视频| 少妇猛男粗大的猛烈进出视频 | 亚洲av电影不卡..在线观看| 天堂√8在线中文| 免费看光身美女| 日本欧美国产在线视频| 国产真实伦视频高清在线观看| 国产色爽女视频免费观看| 欧美一区二区亚洲| 中文亚洲av片在线观看爽| 99热这里只有是精品在线观看| 亚洲av.av天堂| 人人妻人人看人人澡| av卡一久久| 国产精品综合久久久久久久免费| 国产伦一二天堂av在线观看| 91久久精品国产一区二区成人| 三级国产精品欧美在线观看| 亚洲av不卡在线观看| 九色成人免费人妻av| 国内精品一区二区在线观看| 麻豆成人午夜福利视频| 黄片wwwwww| 国产欧美日韩精品一区二区| 毛片一级片免费看久久久久| 男人舔奶头视频| 级片在线观看| 一级毛片久久久久久久久女| 亚洲中文字幕一区二区三区有码在线看| 国产精品伦人一区二区| 天堂√8在线中文| 婷婷亚洲欧美| 熟女人妻精品中文字幕| 菩萨蛮人人尽说江南好唐韦庄 | 看十八女毛片水多多多| 国产麻豆成人av免费视频| 久久99热这里只有精品18| 日韩在线高清观看一区二区三区| 亚洲精品国产av成人精品| 国产精品无大码| 日韩视频在线欧美| 免费人成视频x8x8入口观看| 国产三级中文精品| 国产又黄又爽又无遮挡在线| 精品免费久久久久久久清纯| 成人毛片a级毛片在线播放| 欧美高清性xxxxhd video| 淫秽高清视频在线观看| 国产亚洲精品久久久久久毛片| 最近2019中文字幕mv第一页| 欧美+亚洲+日韩+国产| 久久精品国产99精品国产亚洲性色| 波多野结衣高清作品| 精品少妇黑人巨大在线播放 | 热99re8久久精品国产| 亚洲av.av天堂| 内射极品少妇av片p| 简卡轻食公司| 国产成人91sexporn| 欧美日本视频| 在现免费观看毛片| 热99在线观看视频| 久久久久免费精品人妻一区二区| 久久午夜亚洲精品久久| 最新中文字幕久久久久| 少妇的逼水好多| 日本一二三区视频观看| 欧美bdsm另类| 人人妻人人看人人澡| 国产亚洲av嫩草精品影院| eeuss影院久久| 国产精品人妻久久久久久| 毛片女人毛片| 哪个播放器可以免费观看大片| 久久这里有精品视频免费| 午夜亚洲福利在线播放| av天堂中文字幕网| 成人性生交大片免费视频hd| 国内久久婷婷六月综合欲色啪| 亚洲av免费在线观看| 日韩高清综合在线| 久久精品91蜜桃| 久久久国产成人精品二区| 亚洲av男天堂| 日韩成人伦理影院| 最后的刺客免费高清国语| 蜜臀久久99精品久久宅男| 国产久久久一区二区三区| 成年女人永久免费观看视频| www.av在线官网国产| 亚洲国产精品成人久久小说 | 久久久国产成人免费| av国产免费在线观看| 久久精品国产鲁丝片午夜精品| 久久精品综合一区二区三区| 黄色配什么色好看|