• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以4,4′-聯(lián)苯二甲酸和咪唑基化合物為配體的鈷配合物的合成和晶體結構

    2016-05-03 07:06:29劉光祥
    無機化學學報 2016年4期
    關鍵詞:晶體結構

    張 鳳 劉光祥

    (南京曉莊學院化學系,南京市新型功能材料重點實驗室,南京 211171)

    ?

    以4,4′-聯(lián)苯二甲酸和咪唑基化合物為配體的鈷配合物的合成和晶體結構

    張鳳劉光祥*

    (南京曉莊學院化學系,南京市新型功能材料重點實驗室,南京211171)

    摘要:以4,4′-聯(lián)苯二甲酸(H2BPDC)和4,4′-二咪唑基二苯醚(BIDPE)為原料,與硝酸鈷在不同溫度下反應,得到2個結構不同的配位聚合物{[Co2(BPDC)2(BIDPE)2(H2O)]·2H2O}n(1)和{[Co(BPDC)(BIDPE)]·H2O}n(2)。對它們進行了元素分析、紅外光譜分析,并利用X射線衍射測定了它們的單晶結構。配合物1屬于單斜晶系,C2/c空間群,a=1.456 02(15) nm, b=1.557 51(16) nm, c=2.522 6(3) nm,β=90.834 0(10)°, V=5.720 2(10) nm3, Z=4, Mr=1 256.98, Dc=1.460 g·cm(-3),μ=0.655, F(000)=2 592, R1=0.036 7, wR2=0.087 5(I>2σ(I))。配合物2屬于三斜晶系,P1空間群,a=1.061 92(10) nm, b=1.098 51(11) nm, c=1.324 51(13) nm,α=112.725 0(10) nm,β= 92.112 0(10)°,γ=96.574 0(10)°, V=1.410 2(2) nm3, Z=2, Mr=619.48, Dc=1.459 g·cm(-3),μ=0.662, F(000)=638, R1=0.047 4, wR2=0.116 5 (I>2σ(I))。單晶結構分析顯示,配合物1擁有一維鏈狀結構,而配合物2具有二維兩重貫穿結構,并表現(xiàn)出聚輪烷的結構特征。結果說明了反應溫度在配合物組裝過程中起著非常重要的作用。

    關鍵詞:鈷配合物;雙咪唑配體;芳香羧酸配體;晶體結構

    國家自然科學基金(No.21271106)和教育部科學技術重點項目(No.210102)資助。*通信聯(lián)系人。E-mail:njuliugx@126.com

    0 Introduction

    The design and synthesis of coordination polymers (CPs) are of great interest, not only because of their intriguing variety of architectures and topologies, but also because of their tremendous potential applications in nonlinear optics, catalysis, gas absorption, luminescence, and magnetism[1-4]. However, the rational design and synthesis of CPs with unique structure and function still remain a long-term challenge. The resultant structural framework is frequently influenced by various factors such as medium, pH value of solution, temperature, the nature of metal ions, coordination geometry, and a number of coordination donors provided by organic ligands[5-10]. From a synthetic point of view, the judicious selection of appropriate organic ligands and coordination geometries of the metals is proved to be one of the most effective ways to manipulate the versatile structures of CPs[11-12].

    Among the various types of organic ligands, imidazole and its derivatives are often employed to fabricate CPs because of their strong coordination abilities and relatively versatile coordination geometries[13-15]. The V-shaped ligand 4,4′-bis(imidazole -l-yl)diphenyl ether (BIDPE) has previously been justified as an efficient and versatile organic building unit for construction of coordination architectures[16-18]. For BIDPE, which features three special characteristics: ?the free rotation of the imidazolyl ring can improve the flexibility of the polymeric frameworks to meet the requirement of coordination geometries of metal ions for tuning the fine structure.The long size makes it an excellent candidate to generate CPs of entangled topology.The V-shaped conformation can form coordinative loops or rings which are beneficial for the assembly of polyrotaxane- and polycatenane-like motifs. More importantly, recent studies indicate that utilizing mixed ligands is an effective route to construct intriguing CPs with attractive topological structures[19-22]. Such a dual-ligand strategy offers great promise for the construction of target frameworks with high complexities due to the presence of distinct donors which can coordinate with metal centers through different coordination modes. With a view to develop possible synthetic strategies, the employment of mixed N- and O-donor ligands would be a feasible method to build coordination architectures with interesting topologies and remarkable functionalities[23-27]. As is known, polycarboxylate ligands are excellent coligands for the construction of highly connected, different dimensional frameworks due to their versatile bridging modes. However, investigation of the BIDPE-carboxylate mixed-ligand system remains largely unexplored. Thus, the development of comprehensive research on this topic is necessary. Considering all of the above-mentioned, we prepared two new coordination polymers, namely, {[Co2(BPDC)2(BIDPE)2(H2O)]·2H2O}n(1) and {[Co(BPDC)(BIDPE)]·H2O}n(2). Herein, we report their syntheses, crystal structures and thermal properties.

    1 Experimental

    1.1 Materials and general methods

    All chemicals and solvents were of reagent grade and used as received without further purification. The BIDPE ligand was synthesized according to the reported method[28]. Elemental analyses (C, H and N) were performed on a Vario ELⅢelemental analyzer. Infrared spectra were recorded on KBr discs using a Nicolet Avatar 360 spectrophotometer in the range of 4 000~400 cm-1. Thermogravimetric analyses (TGA) were performed on a Netzsch STA-409PC instrument in flowing N2with a heating rate of 10℃·min-1. Powder X-ray diffraction (PXRD) patterns wereobtained on Bruker D8 Advance X-ray diffractometer with Cu Kα radiation (λ=0.154 056 nm) at room temperature.

    1.2 Synthesis of {[Co2(BPDC)2(BIDPE)2(H2O)]· 2H2O}n(1)

    A mixture containing Co (NO3)2·6H2O (29.6 mg, 0.1 mmol), H2BPDC (24.2 mg, 0.1 mmol), BIDPE (30.2 mg, 0.1 mmol) and NaOH (8.0 mg, 0.2 mmol) in 15 mL of deionized water was sealed in a 25 mL Teflon lined stainless steel container and heated at 120℃for 3 days. Purple platy crystals of 1 were collected by filtration and washed with water and ethanol several times with a yield of 53% based on BIDPE ligand. Anal. Calcd. for C64H50N8O13Co2(%): C, 61.15; H, 4.01; N, 8.91. Found(%): C, 61.16; H, 4.03; N, 8.92%. IR (KBr, cm-1): 3 462 (br), 3 122 (w), 1 610 (s), 1 558 (s), 1 521 (s), 1 423 (m), 1 389 (s), 1 276 (w), 1 242 (s), 1 171 (w), 1 133 (w), 1 102 (w), 1 083 (s), 1 040 (m), 987 (w), 892 (s), 827 (w), 782 (w), 672 (w), 573 (w), 547 (w).

    1.3 Synthesis of {[Co(BPDC)(BIDPE)]·H2O}n(2) Complex 2 was prepared by a process similar to that yielding complex 1 at 180℃by using Co(NO3)2·

    6H2O (29.6 mg, 0.1 mmol), H2BPDC (24.2 mg, 0.1 mmol), BIDPE (30.2 mg, 0.1 mmol) and NaOH (8.0 mg, 0.2 mmol) in 15 mL of deionized water. Purple block crystals of 2 were collected by filtration and washed with water and ethanol several times with a yield of 44% based on BIDPE ligand. Anal. Calcd. for C32H24N4O6Co (%): C, 62.04; H, 3.90; N, 9.04. Found (%): C, 62.02; H, 3.89; N, 9.05. IR (KBr, cm-1): 3 459 (br), 3 061 (w), 1 608 (s), 1 523 (m), 1 358 (s), 1 275 (m), 1 200 (s), 1 124 (w), 1 034 (w), 1 009 (s), 835 (m), 802 (s), 638 (w), 594 (m), 519 (m), 478 (m).

    1.4 X-ray crystallography

    Two block single crystals with dimensions of 0.22 mm×0.20 mm×0.08 mm for 1 and 0.20 mm×0.18 mm× 0.16 mm for 2 were mounted on glass fibers for measurement, respectively. X-ray diffraction intensity data were collected on a Bruker APEXⅡCCD diffractometer equipped with a graphite-monochromatic Mo Kα radiation (λ=0.071 073 nm) using the φ-ω scan mode at 293(2) K. Data reduction and empirical absorption correction were performed using the SAINT and SADABS program[29], respectively. The structures were solved by the direct method using SHELXS-97[30]and refined by full-matrix least squares on F2using SHELXL-97[31]. All of the non-hydrogen atoms were refined anisotropically. The details of the crystal parameters, data collection and refinement for 1 and 2 are summarized in Table 1, and selected bond lengths and angles with their estimated standard deviations are listed in Table 2.

    CCDC: 1429769 1; 1429770, 2.

    Table1 Crystal data and structure refinement for 1 and 2

    Continued Table 1

    Table2 Selected bond lengths(nm) and angles(°) for 1 and 2

    Fig.1 Coordination environments of the Coatoms in 1 with the ellipsoids drawn at the 30% probability level

    2 Results and discussion

    2.1 Crystal structure

    Single crystal X-ray diffraction analysis revealed that complex 1 crystallizes in the monoclinic space group C2/c and features a one-dimensional chain structure based on triply bridged binuclear units. As illustrated in Fig.1, the asymmetric unit of complex 1 contains one crystallography independent cobalt ion, one unique BPDC dianions, one entire BIDPE molecule, a half ligated water molecule located on a crystallographic 2-fold axis and a lattice watermolecule. The cobalt ion possesses a distorted [CoO4N2] octahedral coordination environment with a cis orientation of its nitrogen donors, which belong to two different BIDPE ligands. Bond lengths and angles about the cobalt ion are standard for octahedral coordination (Table 2). Three of the oxygen donors belong to three different BPDC anions, while the remaining coordination site is occupied by an aqua ligand. Each BPDC anion serves as an exotridentate linker, connecting two cobalt ions at one carboxylate terminus in a bis-bridging binding mode with a third cobalt ion via the other carboxylate locus in a monodentate binding mode. The aqua ligand serves to bridge two Coions in a μ2-fashion; two Coions are in turn also bridged by two carboxylate termini from two different BPDC anions to form a triply bridged binuclear unit. These have a Co…Co distance of 0.357 7 nm, with the two bridging carboxylate groups situated 45.66°apart. Individual binuclear units are connected into a 1D [Co2(BPDC)2(BIDPE)2(μ2-H2O)]nchain motif, coursing along c-axis, by means of the monodentate carboxylate termini of the BPDC anions (Fig.2). The Co…Co contact distance through the full extent of the DBA dianionic tethers is 1.444 9 nm. The BIDPE ligands fosters a Co…Co distance of 1.468 4 nm. Adjacent [Co2(BPDC)2(BIDPE)2(μ2-H2O)]nchains are conjoined along the a and b axes by intermolecular weak interactions to construct the 3D supramolecular network (Fig.3).

    Fig.2 View of 1D [Co2(BPDC)2(BIDPE)2(μ2-H2O)]nchain motif in 1

    Fig.3 Molecular packing diagram projected along a axis in 1

    Changing the temperature from 120 to 180℃for the same reaction mixture of 1 affords complex 2, which crystallizes in the triclinic P1 space group and shows a 2D→2D entanglement pattern with polycatenane features. The asymmetric unit of 2 contains one crystallographically independent Coion, one individual BIDPE ligand, two halves BPDC anions located on inversion centres and one lattice water molecule. As depicted in Fig.4, each Cois four-coordinated by two oxygen atoms from two BPDC anions and two nitrogen atoms from the imidazole groups of two BIDPE ligands, exhibiting a slightly distorted octahedral geometry. All chemical bonds fall in the normal ranges[32]. In 2, every two V-shaped BIDPE ligands are joined by two Coions to form a Co2(BIDPE)2ring with Co…Co separation of 1.504 8 nm and meanwhile all these rings are connected by BPDC anions to generate a 1D linear necklace-likechain along the b axis. These parallel chains are further bridged through the BPDC anions into a twodimensional layer (Fig.5) and neighboring layers are interpenetrated with each other in a parallel fashion to give an entangled 2D→2D double-layer (Fig.6). Undoubtedly, the structure of 2 can be described as a metal-organic polycatenane framework.

    Fig.4 Coordination environments of the Coatoms in 2 with the ellipsoids drawn at the 30% probability level

    Fig.5  Perspective view of the 2D layer structure in 2

    Fig.6 Perspective view of the 2D→2D polycatenane-like framework in 2

    Complexes 1 and 2 were obtained under similar reactions at different reaction temperatures. At lower temperature, the carboxylate anions in 1 display monodentate and bis(bridging) modes, whereas in 2, there is only one bis(monodentate) coordination fashion. The different coordination modes of the Coion and different frameworks of 1 and 2 clearly showthat the formation of the framework is influenced by classical thermodynamic factors, such as condensation due to entropy driven dehydration reaction at higher temperature.Transformationreactionshavebeenstudied extensively by modifying reaction conditions[33-35], but to our knowledge this is the first attempt in CPs of aromatic carboxylates and V-shaped bis (imidazole) ligands where the temperature effects have been investigated and correlated with the structure.

    2.2 FTIR spectra

    The IR spectra of 1 and 2 show the absence of the characteristic bands at around 1 700 cm-1attributed to the protonated carboxylate group indicates that the complete deprotonation of H2BPDC ligand upon reaction with Co ion. The presence of vibrational bands of 1 610 ~1 558 cm-1are characteristic of the asymmetric stretching of the deprotonated carboxylic groups of BPDC2-anion. The difference between asymmetric and symmetric carbonyl stretching frequencies (Δν=νasym-νsym) was used to fetch information on the metal-carboxylate binding modes. Complex 1 shows two pairs of νasymand νsymfrequencies at 1 610, 1 423 (Δν=187) and 1 558, 1 389 (Δν=169) cm-1for the carbonyl functionality indicating two coordination modes as observed in the crystal structure. Complex 2 showed a pairs of νasymand νsymfrequencies at 1 608, 1 358 (Δν=250) cm-1corresponding to the carbonyl functionality of dicarboxylate ligand indicating a symmetric monodentate coordination mode. OH stretching broad bands at 3 462 cm-1for 1 and at 3 459 cm-1for 2 are attributable to the coordinated lattice water. The bands in the region of 640~1 250 cm-1are attributed to the -CH- in-plane or out-of-plane bend, ring breathing, and ring deformation absorptions of benzene ring. The IR spectra exhibit the characteristic peaks of imidazole groups at ca. 1 520 cm-1[36].

    Fig.7 TGA curves of complexes 1 and 2

    Fig.8 PXRD patterns of complexes 1 and 2

    2.3 Thermal stability and powder X-ray diffraction (PXRD)

    To examine the thermal stabilities of complexes 1 and 2, TG analyses were carried out (Fig.7). The TGA study of complex 1 shows a weight loss of 4.42% from 30 to 210℃, corresponding to the loss of two lattice water molecules and one coordinated water molecule (Calcd. 4.27% ). Then the TG curve presents a platform and frame starts to decompose at 310℃. In the case of complex 2, a little weight loss is observed from 30 to 90℃due to the release of one lattice water molecule, with a weight loss of 3.01% (Calcd. 2.90%). Furthermore, the decomposition of 2 occurs upon 315℃.

    Powder X-ray diffraction analysis (PXRD)experiments were carried out for 1 and 2 at room temperature to characterize their purity. As shown in Fig.8, the measured peak positions closely match the simulated peak positions, indicative of pure products.

    References:

    [1] Long J R, Yaghi O M. Chem. Soc. Rev., 2009,38:1213-1214

    [2] Liu K, Shi W, Cheng P. Coord. Chem. Rev., 2015,289:74-122

    [3] Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014,43:5415 -5418

    [4] Ma L, Abney C, Lin W. Chem. Soc. Rev., 2009,38:1248-1256

    [5] Guo X M, Guo H D, Zou H Y, et al. CrystEngComm, 2013, 15:9112-9120

    [6] Zhao F H, Jing S, Che Y X, et al. CrystEngComm, 2012,14: 4478-4485

    [7] Shen L J, Gray D, Masel R I, et al. CrystEngComm, 2012, 14:5145-5147

    泰國、印度等國家醫(yī)療旅游發(fā)展經驗告訴我們,一個地區(qū)之所以成為具有競爭力的醫(yī)療旅游目的地,是由許多因素共同決定的:醫(yī)療基礎設施、休閑設施、高質量的醫(yī)療服務人才、合理的價格(交通、住宿、醫(yī)療等)等。因此,海南在加快提升醫(yī)療服務水平和能力建設的同時,還需要進一步提高旅游公共服務體系建設,包括安全便捷高效的交通基礎設施建設,價格合理、服務優(yōu)質、符合國際標準的酒店、餐飲以及景區(qū)建設;通曉國際規(guī)則和精通多國外語的國際旅游人才隊伍建設;信息準確、及時的醫(yī)療旅游門戶網站建設等。

    [8] Stock N, Biswas S. Chem. Rev., 2012,112:933-969

    [9] Guo H D, Guo X M, Zou H Y, et al. CrystEngComm, 2014, 16:7459-7468

    [10]Liu G X, Zhu K, Chen H, et al. CrystEngComm, 2008,10: 1527-1530

    [11]Pan M, Su C Y. CrystEngComm, 2014,16:7847-7859

    [12]Ding J G, Yin C, Zheng L Y, et al. RSC Adv., 2014,4: 24594-24600

    [13]Yao X Q, Pan Z R, Hu J S, et al. Chem. Commun., 2011, 47:10049-10051

    [14]Li S B, Sun W L, Wang K, et al. Inorg. Chem., 2014,53: 4541-4547

    [15]Phan A, Doonan C J, Uribe-Romo F J, et al. Acc. Chem. Res., 2010,43:58-67

    [16]Hu J S, Shang Y J, Yao X Q, et al. Cryst. Growth Des., 2010,10:4135-4142

    [18]Hu J S, Huang L F, Yao X Q, et al. Inorg. Chem., 2011,50: 2404-2414

    [19]Hauptvogel I M, Bon V, Grünker R, et al. Dalton Trans., 2012,41:4172-4179

    [20]Kim D, Lah M S. CrystEngComm, 2013,15:9491-9498

    [21]Cao T T, Peng Y Q, Liu T, et al. CrystEngComm, 2014,16: 10658-10673

    [22]Li Y W, Li D C, Xu J, et al. Dalton Trans., 2014,43:15708-15712

    [23]Jiang H L, Tatsu Y, Lu Z H, et al. J. Am. Chem. Soc., 2010, 132:5586-5587

    [24]Liu X M, Lin R B, Zhang J P, et al. Inorg. Chem., 2012,51: 5686-5692

    [25]Han L W, Lu J, Lin Z J, et al. CrystEngComm, 2014,16: 1749-1754

    [26]Kongpatpanich K, Horike S, Sugimoto M, et al. Chem. Commun., 2014,50:2292-2294

    [27]Das M C, Guo Q S, He Y B, et al. J. Am. Chem. Soc., 2012, 134:8703-8710

    [28]Liu G X, Zha X C, Wang Y, et al. J. Inorg. Organomet. Polym., 2012,22:258-263

    [29]Sheldrick G M. SADABS. Program for Empirical Absorption Correction of Area Detector Data, University of G?ttingen, Germany, 1996.

    [30]Sheldrick G M. SHELXS-97, Program for Crystal Structure Solution, University of G?ttingen, Germany, 1997.

    [31]Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structure, University of G?ttingen, Germany, 1997.

    [32]Liu Y, Qi Y, Su Y H, et al. CrystEngComm, 2010,12:3283 -3290

    [33]Dan M, Rao C N R. Angew. Chem., Int. Ed., 2006,45:281-285

    [34]Li B, Dai X M, Meng X G, et al. Dalton Trans., 2013,42: 2588-2593

    [35]Ma J, Jiang F L, Chen L, et al. CrystEngComm, 2012,14: 4181-4187

    [36]Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordinated Compounds. 5th Ed. New York: Wiley & Sons, 1997.

    Syntheses and Crystal Structures of Two CobaltCoordination Polymers Constructedfrom 4, 4′-Biphenyldicarboxylate and Bis(imidazole) Ligands

    ZHANG Feng LIU Guang-Xiang*
    (Key Laboratory of Advanced Functional Materials of Nanjing, Department of Chemistry, Nanjing Xiaozhuang University, Nanjing 211171,China)

    Abstract:Two cobaltcoordination polymers, {[Co2(BPDC)2(BIDPE)2(H2O)]·2H2O}n(1) and {[Co(BPDC)(BIDPE)]· H2O}n(2) (H2BPDC=4, 4′-biphenyldicarboxylic acid and BIDPE=4, 4′-bis(imidazole-l-yl)diphenyl ether), have been synthesized and characterized by IR spectroscopy, elemental analyses and single-crystal X-ray diffraction. Complex 1 crystallizes in monoclinic, space group C2/c with a=1.456 02(15) nm, b=1.557 51(16) nm, c=2.522 6(3) nm,β= 90.834 0(10)°, V=5.720 2(10) nm3, Mr=1 256.98, Dc=1.460 g·cm(-3), F(000)=2 592,μ=0.655 mm(-1)and Z=4. The final R1is 0.036 7 and wR2is 0.087 5 for 4 258 observed reflections (I>2σ(I)). Complex 2 belongs to triclinic, space group P1 with a=1.061 92(10) nm, b=1.098 51(11) nm, c=1.324 51(13) nm,α=112.725 0(10)°,β=92.112 0(10)°,γ= 96.574 0(10)°, V=1.410 2(2) nm3, Mr=619.48, Dc=1.459 g·cm(-3), F(000)=638,μ=0.662 mm(-1)and Z=2. The final R1is 0.047 4 and wR2is 0.116 5 for 3 871 observed reflections (I>2σ(I)). Structural analyses reveal that complex 1 features a one-dimensional chain structure based on triply bridged binuclear units, which is further interlinked into a higher-dimensional supramolecular framework by intermolecular weak interactions, whereas complex 2 possesses a 2-fold parallel interpenetrating network consist of two identical sets of 2D layer motifs and shows polycatenane char-book=684,ebook=133acters. The results show that reaction temperature plays a significant role in the structure of the final products. CCDC: 1429769 1; 1429770, 2.

    Keywords:cobalt coordination polymer; bis(imidazole) ligands; polycarboxylate; crystal structure

    收稿日期:2015-10-26。收修改稿日期:2016-01-18。

    DOI:10.11862/CJIC.2016.083

    中圖分類號:O614.81+2

    文獻標識碼:A

    文章編號:1001-4861(2016)04-0683-08

    猜你喜歡
    晶體結構
    例談晶體結構中原子坐標參數(shù)的確定
    化學軟件在晶體結構中的應用
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    五元瓜環(huán)與氯化鈣配合物的合成及晶體結構
    貴州科學(2016年5期)2016-11-29 01:25:53
    鎳(II)配合物{[Ni(phen)2(2,4,6-TMBA)(H2O)]·(NO3)·1.5H2O}的合成、晶體結構及量子化學研究
    含能配合物Zn4(C4N6O5H2)4(DMSO)4的晶體結構及催化性能
    火炸藥學報(2014年3期)2014-03-20 13:17:39
    二維網狀配聚物[Co(btmb)2(SCN)2]n的合成、晶體結構和Pb2+識別性能
    基于2-苯基-1H-1,3,7,8-四-氮雜環(huán)戊二烯并[l]菲的Pb(Ⅱ)、Co(Ⅱ)配合物的晶體結構與發(fā)光
    氨荒酸配合物([M(MeBnNCS2)3],M=Sb(Ⅲ),Bi(Ⅲ))的合成、晶體結構及抑菌活性
    一個雙核β-二酮鏑(Ⅲ)配合物的超聲化學合成、晶體結構和磁性
    国产日韩欧美在线精品| 久久久a久久爽久久v久久| 男女啪啪激烈高潮av片| 老师上课跳d突然被开到最大视频| 亚洲激情五月婷婷啪啪| 国产成人精品一,二区| 两个人视频免费观看高清| 在线观看av片永久免费下载| 国产91av在线免费观看| 九九热线精品视视频播放| 日本黄色视频三级网站网址| 国产亚洲一区二区精品| 在线免费观看的www视频| 97超碰精品成人国产| av视频在线观看入口| 久久欧美精品欧美久久欧美| 天堂影院成人在线观看| 又爽又黄a免费视频| 一本一本综合久久| 欧美日韩精品成人综合77777| 亚洲国产欧美人成| 99热这里只有是精品在线观看| 日日撸夜夜添| 亚洲中文字幕日韩| 女人十人毛片免费观看3o分钟| 国产女主播在线喷水免费视频网站 | 日韩一区二区三区影片| 99热网站在线观看| 日本黄色视频三级网站网址| 亚洲在线观看片| 国产精品久久久久久精品电影小说 | 久久精品久久久久久久性| 亚洲欧洲日产国产| av在线观看视频网站免费| 伦精品一区二区三区| 成年免费大片在线观看| 九九热线精品视视频播放| 国产av在哪里看| 人人妻人人看人人澡| 精品无人区乱码1区二区| 久久久久久久午夜电影| 男的添女的下面高潮视频| 中国美白少妇内射xxxbb| 久久99热6这里只有精品| 激情 狠狠 欧美| 国产不卡一卡二| 特级一级黄色大片| 直男gayav资源| 一个人免费在线观看电影| 婷婷色麻豆天堂久久 | 身体一侧抽搐| 免费观看精品视频网站| 国产美女午夜福利| 激情 狠狠 欧美| 国产午夜精品久久久久久一区二区三区| 国产av码专区亚洲av| 黄色欧美视频在线观看| 一级黄片播放器| 色综合站精品国产| 国产不卡一卡二| 欧美激情久久久久久爽电影| 尤物成人国产欧美一区二区三区| 一本一本综合久久| 久久久精品欧美日韩精品| 免费观看a级毛片全部| 欧美日韩国产亚洲二区| 麻豆av噜噜一区二区三区| 色综合站精品国产| 少妇人妻一区二区三区视频| 免费无遮挡裸体视频| 国产精品久久久久久久久免| 一夜夜www| 亚洲av免费在线观看| 国产熟女欧美一区二区| 91精品一卡2卡3卡4卡| 嘟嘟电影网在线观看| 美女cb高潮喷水在线观看| 一级二级三级毛片免费看| 久久精品人妻少妇| 精品酒店卫生间| 啦啦啦观看免费观看视频高清| 久99久视频精品免费| 床上黄色一级片| 亚洲精品日韩av片在线观看| 日韩欧美 国产精品| 欧美变态另类bdsm刘玥| 亚洲av电影不卡..在线观看| 简卡轻食公司| 99久久无色码亚洲精品果冻| 亚洲av.av天堂| 欧美日韩在线观看h| 久久久久国产网址| 99久久九九国产精品国产免费| 国产精品野战在线观看| 午夜爱爱视频在线播放| 午夜免费激情av| 欧美性猛交╳xxx乱大交人| 成人国产麻豆网| 91午夜精品亚洲一区二区三区| 黄色一级大片看看| 国产成人午夜福利电影在线观看| 九九热线精品视视频播放| 亚洲成色77777| 久久这里有精品视频免费| 久久久国产成人精品二区| 最近手机中文字幕大全| 一个人免费在线观看电影| 中文精品一卡2卡3卡4更新| 日日啪夜夜撸| 你懂的网址亚洲精品在线观看 | 亚洲aⅴ乱码一区二区在线播放| 日韩av在线大香蕉| 国产私拍福利视频在线观看| 国产亚洲5aaaaa淫片| 天堂中文最新版在线下载 | 久久精品人妻少妇| 国产精品一区二区在线观看99 | 性插视频无遮挡在线免费观看| 国产亚洲午夜精品一区二区久久 | 国产精品久久久久久久久免| 午夜爱爱视频在线播放| 18禁在线无遮挡免费观看视频| 精品免费久久久久久久清纯| 激情 狠狠 欧美| 亚洲国产欧美人成| 高清日韩中文字幕在线| 看非洲黑人一级黄片| 村上凉子中文字幕在线| 日本免费一区二区三区高清不卡| 成年女人看的毛片在线观看| 欧美不卡视频在线免费观看| 成人一区二区视频在线观看| 免费一级毛片在线播放高清视频| 国产成人精品一,二区| 直男gayav资源| 蜜桃亚洲精品一区二区三区| 热99re8久久精品国产| 亚洲av免费高清在线观看| 卡戴珊不雅视频在线播放| 日本免费a在线| 久久久久久大精品| 久久久久久久午夜电影| 国产精品国产三级国产av玫瑰| eeuss影院久久| 国产伦精品一区二区三区视频9| 黄片无遮挡物在线观看| 亚洲乱码一区二区免费版| 国产高潮美女av| 两个人的视频大全免费| 纵有疾风起免费观看全集完整版 | 超碰97精品在线观看| 麻豆成人午夜福利视频| 最近2019中文字幕mv第一页| 国产精品美女特级片免费视频播放器| 亚洲欧美清纯卡通| 日本爱情动作片www.在线观看| 国产免费视频播放在线视频 | 国产一区二区在线av高清观看| 爱豆传媒免费全集在线观看| 国产精品av视频在线免费观看| 亚洲成人中文字幕在线播放| 少妇人妻一区二区三区视频| 深夜a级毛片| eeuss影院久久| eeuss影院久久| 免费观看a级毛片全部| 精华霜和精华液先用哪个| 免费播放大片免费观看视频在线观看 | 免费观看在线日韩| 国产精品1区2区在线观看.| 欧美最新免费一区二区三区| 久久久久久久久久久免费av| 美女脱内裤让男人舔精品视频| 99视频精品全部免费 在线| 亚洲国产精品合色在线| 国产免费男女视频| 国内精品一区二区在线观看| av天堂中文字幕网| 亚洲电影在线观看av| 3wmmmm亚洲av在线观看| 国产午夜精品久久久久久一区二区三区| 久久久久久九九精品二区国产| 亚洲av中文av极速乱| 又粗又爽又猛毛片免费看| 国产av在哪里看| 国产真实伦视频高清在线观看| eeuss影院久久| 精品人妻视频免费看| 91精品一卡2卡3卡4卡| 在现免费观看毛片| 国产v大片淫在线免费观看| 免费不卡的大黄色大毛片视频在线观看 | 少妇人妻精品综合一区二区| 亚洲欧美中文字幕日韩二区| 午夜激情福利司机影院| 成年免费大片在线观看| 中文字幕免费在线视频6| 午夜久久久久精精品| 国产成人a区在线观看| 日韩在线高清观看一区二区三区| 日韩国内少妇激情av| 亚洲成人av在线免费| 一区二区三区高清视频在线| 免费看a级黄色片| 久久精品久久久久久噜噜老黄 | 日韩一区二区三区影片| 欧美极品一区二区三区四区| 乱码一卡2卡4卡精品| 国产亚洲精品av在线| 特级一级黄色大片| 看免费成人av毛片| 小说图片视频综合网站| 国产乱人视频| 亚洲欧美精品专区久久| 国产伦精品一区二区三区视频9| 国产一区亚洲一区在线观看| or卡值多少钱| 午夜福利在线观看吧| 久久久久性生活片| 老司机福利观看| 99热这里只有精品一区| 午夜久久久久精精品| 九九爱精品视频在线观看| videos熟女内射| 99热这里只有精品一区| 十八禁国产超污无遮挡网站| 久久久精品大字幕| 99久久精品一区二区三区| 亚洲成av人片在线播放无| 国产午夜精品论理片| 大香蕉久久网| 色综合色国产| 成年版毛片免费区| 小说图片视频综合网站| 全区人妻精品视频| 日本黄大片高清| 波多野结衣高清无吗| 亚洲精品日韩在线中文字幕| av国产免费在线观看| 菩萨蛮人人尽说江南好唐韦庄 | av又黄又爽大尺度在线免费看 | 一区二区三区乱码不卡18| 一本一本综合久久| 免费黄色在线免费观看| 免费在线观看成人毛片| 特大巨黑吊av在线直播| 国产精品伦人一区二区| 亚洲国产精品久久男人天堂| 波多野结衣巨乳人妻| 日本一本二区三区精品| 看黄色毛片网站| 熟妇人妻久久中文字幕3abv| 久久久久免费精品人妻一区二区| 啦啦啦观看免费观看视频高清| 啦啦啦韩国在线观看视频| 中文字幕久久专区| 欧美成人午夜免费资源| 国产色婷婷99| 久久精品熟女亚洲av麻豆精品 | 成人午夜高清在线视频| 18禁裸乳无遮挡免费网站照片| 2021少妇久久久久久久久久久| 国产视频内射| 精品99又大又爽又粗少妇毛片| 精品久久久久久久久久久久久| 国产综合懂色| 中文字幕人妻熟人妻熟丝袜美| 老女人水多毛片| 联通29元200g的流量卡| 久久久久久久久久成人| 国产成人a区在线观看| 老师上课跳d突然被开到最大视频| av女优亚洲男人天堂| 国产v大片淫在线免费观看| 99热这里只有是精品50| 国产成人精品久久久久久| 国产成人精品久久久久久| 亚洲国产精品sss在线观看| 国产黄a三级三级三级人| 亚洲av一区综合| 99久国产av精品国产电影| 国产精品一二三区在线看| 国产色婷婷99| 久久久久久久久久久免费av| 亚洲国产精品sss在线观看| 男女国产视频网站| 久久久午夜欧美精品| 日本与韩国留学比较| 一边亲一边摸免费视频| 一本久久精品| 欧美高清性xxxxhd video| 色5月婷婷丁香| 欧美一区二区精品小视频在线| 亚洲欧美日韩无卡精品| 精品久久国产蜜桃| 男插女下体视频免费在线播放| 中文字幕亚洲精品专区| 国产精品不卡视频一区二区| av天堂中文字幕网| 婷婷色麻豆天堂久久 | 亚洲国产精品久久男人天堂| 内射极品少妇av片p| 日本五十路高清| 麻豆国产97在线/欧美| 午夜老司机福利剧场| 久久久久久久久久久丰满| 成人欧美大片| 亚洲中文字幕日韩| 91av网一区二区| 亚洲av免费在线观看| 综合色丁香网| 国产精品美女特级片免费视频播放器| 天堂网av新在线| 免费av不卡在线播放| 国产精品无大码| 国产亚洲午夜精品一区二区久久 | 国产成人一区二区在线| 精品国产露脸久久av麻豆 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲人成网站在线观看播放| 美女脱内裤让男人舔精品视频| 久久热精品热| 国产精品av视频在线免费观看| 偷拍熟女少妇极品色| 国产麻豆成人av免费视频| 秋霞伦理黄片| 国产午夜福利久久久久久| 亚洲av男天堂| 欧美zozozo另类| 99热这里只有是精品在线观看| 日韩视频在线欧美| h日本视频在线播放| 少妇被粗大猛烈的视频| 超碰av人人做人人爽久久| 色视频www国产| 91精品一卡2卡3卡4卡| 边亲边吃奶的免费视频| 美女国产视频在线观看| 丰满少妇做爰视频| 久久精品国产鲁丝片午夜精品| 中文资源天堂在线| 免费看a级黄色片| 日本免费a在线| 免费在线观看成人毛片| 亚洲成av人片在线播放无| 欧美精品一区二区大全| АⅤ资源中文在线天堂| 美女内射精品一级片tv| 亚洲欧美精品综合久久99| 欧美激情国产日韩精品一区| 亚洲精品亚洲一区二区| 国产亚洲最大av| 成人性生交大片免费视频hd| 一级毛片aaaaaa免费看小| .国产精品久久| 国产精品久久久久久精品电影| 两个人视频免费观看高清| 成人鲁丝片一二三区免费| 国产精品野战在线观看| 国产极品精品免费视频能看的| 亚洲一级一片aⅴ在线观看| 2021少妇久久久久久久久久久| 乱码一卡2卡4卡精品| 熟女电影av网| 日韩三级伦理在线观看| 好男人视频免费观看在线| 亚洲图色成人| 国产精品1区2区在线观看.| 国产精品一及| 99久国产av精品国产电影| 成人一区二区视频在线观看| 亚洲精品aⅴ在线观看| 床上黄色一级片| 国产精品嫩草影院av在线观看| 男女那种视频在线观看| 身体一侧抽搐| 一级毛片电影观看 | 中文字幕久久专区| 欧美一区二区精品小视频在线| 亚洲精品色激情综合| 亚洲综合精品二区| 天堂影院成人在线观看| 天堂中文最新版在线下载 | 亚洲精品影视一区二区三区av| 婷婷色av中文字幕| 亚洲无线观看免费| 91aial.com中文字幕在线观看| av在线天堂中文字幕| 国产淫片久久久久久久久| 大又大粗又爽又黄少妇毛片口| 麻豆久久精品国产亚洲av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本黄色片子视频| 国产色婷婷99| 欧美最新免费一区二区三区| 久久精品国产自在天天线| 嫩草影院入口| 欧美高清性xxxxhd video| 女人久久www免费人成看片 | 蜜桃亚洲精品一区二区三区| 国产黄片美女视频| 亚洲国产欧美在线一区| 精品无人区乱码1区二区| 欧美+日韩+精品| www.色视频.com| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看| 日本av手机在线免费观看| 亚洲国产精品合色在线| 亚洲va在线va天堂va国产| 国产午夜福利久久久久久| 亚洲欧美中文字幕日韩二区| 1000部很黄的大片| 99久久精品国产国产毛片| 三级男女做爰猛烈吃奶摸视频| 日日摸夜夜添夜夜爱| 欧美日韩国产亚洲二区| 狂野欧美激情性xxxx在线观看| 国产亚洲精品av在线| 天美传媒精品一区二区| 看十八女毛片水多多多| 国内精品宾馆在线| 久久热精品热| 免费看日本二区| 亚洲欧美成人综合另类久久久 | 亚洲内射少妇av| 久久久欧美国产精品| 在线观看美女被高潮喷水网站| 国产毛片a区久久久久| av国产久精品久网站免费入址| 日本免费在线观看一区| 最近的中文字幕免费完整| 国产av在哪里看| 亚洲欧美精品综合久久99| 99久久精品热视频| 青春草视频在线免费观看| 国产视频首页在线观看| 欧美激情久久久久久爽电影| 亚洲精品国产av成人精品| 亚洲精品aⅴ在线观看| 免费在线观看成人毛片| 久久精品久久久久久噜噜老黄 | 嫩草影院精品99| 免费看光身美女| 久久午夜福利片| 大话2 男鬼变身卡| 熟女人妻精品中文字幕| 97人妻精品一区二区三区麻豆| 久久久欧美国产精品| 日韩大片免费观看网站 | 日韩大片免费观看网站 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 1024手机看黄色片| 亚洲真实伦在线观看| 国产精品久久久久久久久免| 色吧在线观看| 国产午夜精品一二区理论片| 欧美激情在线99| 色网站视频免费| 亚洲四区av| 在线观看av片永久免费下载| 如何舔出高潮| 爱豆传媒免费全集在线观看| 亚洲精华国产精华液的使用体验| 99久久无色码亚洲精品果冻| 永久免费av网站大全| 秋霞在线观看毛片| 亚洲美女视频黄频| 久久精品熟女亚洲av麻豆精品 | 能在线免费看毛片的网站| 午夜福利网站1000一区二区三区| 国产精品国产三级国产专区5o | 夜夜爽夜夜爽视频| 免费看美女性在线毛片视频| 黄色日韩在线| 久99久视频精品免费| 美女大奶头视频| 亚洲天堂国产精品一区在线| 国产精品三级大全| www.av在线官网国产| 99久久精品国产国产毛片| 亚洲精品日韩在线中文字幕| 九九爱精品视频在线观看| 亚洲熟妇中文字幕五十中出| 特级一级黄色大片| 国模一区二区三区四区视频| 亚洲激情五月婷婷啪啪| 免费黄网站久久成人精品| 国产男人的电影天堂91| 久久精品国产亚洲av涩爱| 18禁裸乳无遮挡免费网站照片| 日韩一本色道免费dvd| 中文字幕制服av| 精品午夜福利在线看| 午夜免费男女啪啪视频观看| 男女视频在线观看网站免费| 国产精品综合久久久久久久免费| 老司机福利观看| 国产一区亚洲一区在线观看| 欧美+日韩+精品| 一区二区三区乱码不卡18| 日韩精品青青久久久久久| 精品99又大又爽又粗少妇毛片| 中文精品一卡2卡3卡4更新| 麻豆成人av视频| 好男人视频免费观看在线| 精品人妻偷拍中文字幕| 成年av动漫网址| 亚洲av成人av| 看免费成人av毛片| 国产片特级美女逼逼视频| 国产 一区精品| 又黄又爽又刺激的免费视频.| 乱人视频在线观看| 美女脱内裤让男人舔精品视频| 午夜激情福利司机影院| 精品一区二区免费观看| 波多野结衣巨乳人妻| 毛片一级片免费看久久久久| 日本免费一区二区三区高清不卡| 成年av动漫网址| 麻豆国产97在线/欧美| 九草在线视频观看| 简卡轻食公司| 亚洲欧美成人综合另类久久久 | 亚洲av熟女| 久久精品91蜜桃| 国产视频内射| 亚洲精品乱久久久久久| 亚洲性久久影院| 春色校园在线视频观看| 91aial.com中文字幕在线观看| 久久久a久久爽久久v久久| 美女xxoo啪啪120秒动态图| 国产精品.久久久| 乱系列少妇在线播放| 亚洲欧美成人综合另类久久久 | 少妇猛男粗大的猛烈进出视频 | 免费av不卡在线播放| 狂野欧美白嫩少妇大欣赏| 日本wwww免费看| 久久这里有精品视频免费| 色播亚洲综合网| 中文字幕av成人在线电影| 亚洲图色成人| 舔av片在线| 全区人妻精品视频| 国产精品伦人一区二区| 久久精品影院6| 国产成人freesex在线| 毛片女人毛片| 中文欧美无线码| 久久久精品大字幕| 男女国产视频网站| 欧美区成人在线视频| 99热6这里只有精品| 亚洲av.av天堂| 伦精品一区二区三区| 国产精品熟女久久久久浪| av播播在线观看一区| 久久久精品大字幕| 亚洲aⅴ乱码一区二区在线播放| 男的添女的下面高潮视频| 国产久久久一区二区三区| 久久精品综合一区二区三区| 在线a可以看的网站| 久久精品久久久久久久性| 免费不卡的大黄色大毛片视频在线观看 | 大香蕉久久网| 热99re8久久精品国产| 国产私拍福利视频在线观看| 精品少妇黑人巨大在线播放 | 婷婷色综合大香蕉| 国产探花在线观看一区二区| 91精品伊人久久大香线蕉| 神马国产精品三级电影在线观看| 精品人妻一区二区三区麻豆| 视频中文字幕在线观看| 成人毛片a级毛片在线播放| 一卡2卡三卡四卡精品乱码亚洲| 色综合站精品国产| 中文亚洲av片在线观看爽| 国产v大片淫在线免费观看| 亚洲国产欧美人成| 精品国产露脸久久av麻豆 | 99热这里只有是精品50| 国产亚洲最大av| 国语自产精品视频在线第100页| 狂野欧美白嫩少妇大欣赏| 我的女老师完整版在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美中文字幕日韩二区| 久久久成人免费电影| 久久久久久久久久成人| 人妻少妇偷人精品九色| 七月丁香在线播放| 亚洲最大成人中文| 热99re8久久精品国产| 久久久久久久久久黄片| 久久久久久久久久成人| 熟女人妻精品中文字幕| 最近最新中文字幕免费大全7| 久久鲁丝午夜福利片| 久久精品夜色国产| 日韩三级伦理在线观看| 免费无遮挡裸体视频| 久久99热6这里只有精品| 一边亲一边摸免费视频| 在线a可以看的网站| 蜜桃亚洲精品一区二区三区| 一级毛片电影观看 | 国国产精品蜜臀av免费| 麻豆成人av视频| 午夜免费激情av| 亚洲av成人av|