許飛云 張茂星 曾后清 朱毅勇,*
(1南京農(nóng)業(yè)大學(xué) 資源與環(huán)境科學(xué)學(xué)院, 南京 210095;2杭州師范大學(xué) 生命與環(huán)境科學(xué)學(xué)院, 杭州 310036;*通訊聯(lián)系人, E-mail:yiyong1973@njau.edu.cn)
?
水稻根系細(xì)胞膜質(zhì)子泵在氮磷鉀養(yǎng)分吸收中的作用
許飛云1張茂星1曾后清2朱毅勇1,*
(1南京農(nóng)業(yè)大學(xué) 資源與環(huán)境科學(xué)學(xué)院, 南京 210095;2杭州師范大學(xué) 生命與環(huán)境科學(xué)學(xué)院, 杭州 310036;*通訊聯(lián)系人, E-mail:yiyong1973@njau.edu.cn)
許飛云, 張茂星, 曾后清, 等. 水稻根系細(xì)胞膜質(zhì)子泵在氮磷鉀養(yǎng)分吸收中的作用. 中國水稻科學(xué), 2016, 30(1): 106-110.
摘要:水稻是我國最重要的糧食作物,其產(chǎn)量的形成與養(yǎng)分的吸收密切相關(guān)。氮、磷、鉀是植物最重要的三種營養(yǎng)元素,它們在根系的吸收和轉(zhuǎn)運直接影響?zhàn)B分的利用效率。植物細(xì)胞膜質(zhì)子泵能夠?qū)⒓?xì)胞質(zhì)中的H+泵出細(xì)胞,在細(xì)胞膜內(nèi)外形成H+濃度梯度,建立膜電位,并形成質(zhì)子驅(qū)動力,從而為各種養(yǎng)分離子的跨膜運輸提供動力。本文綜述了近年來關(guān)于水稻根系細(xì)胞膜質(zhì)子泵在銨態(tài)氮、磷酸鹽和鉀離子吸收中的作用機(jī)理,為水稻養(yǎng)分利用效率的提高提供理論依據(jù)。
關(guān)鍵詞:水稻; 氮; 磷; 鉀; 細(xì)胞膜質(zhì)子泵
水稻是我國主要的糧食作物,其產(chǎn)量的形成與養(yǎng)分的供應(yīng)關(guān)系密切。氮、磷、鉀是農(nóng)業(yè)生產(chǎn)中最重要的三大營養(yǎng)元素和肥料來源。氮肥主要以銨態(tài)氮(NH4+)為主[1-2]。旱地土壤中硝化作用強(qiáng)烈,因此,大量的NH4+轉(zhuǎn)化為硝態(tài)氮(NO3-);但是淹水土壤或者酸性較強(qiáng)的土壤中,硝化作用受到抑制,因此氮肥施用后NH4+大量積累。磷肥的溶解性一般都比較差,即使是水溶性磷肥,施入土壤后也很容易與土壤中的鈣發(fā)生化學(xué)反應(yīng)而沉淀,或被土壤中的鐵鋁氧化物吸附,因此,磷肥的當(dāng)季利用率較低[3]。雖然鉀肥的有效性比較高,但是鉀肥的施用往往被忽視。在我國近三十多年的農(nóng)業(yè)生產(chǎn)中,由于片面追求高產(chǎn)而過量施肥,已經(jīng)導(dǎo)致了水體富營養(yǎng)化等嚴(yán)重的環(huán)境污染問題。因此,如何合理施肥,提高養(yǎng)分利用率是目前急需關(guān)注的問題。
由于植物養(yǎng)分的吸收都要通過根系細(xì)胞膜上相應(yīng)的轉(zhuǎn)運蛋白或離子通道,因此,了解養(yǎng)分跨膜運輸?shù)臋C(jī)制,對于合理施肥具有重要的指導(dǎo)意義。銨在低濃度下主要通過細(xì)胞膜上的銨離子轉(zhuǎn)運蛋白AMT運輸[4],但是在高濃度下,主要是以氨分子的形式通過一類Amt/MEP/Rh的水通道蛋白運輸[5]。硝酸鹽與磷酸鹽兩種陰離子分別通過細(xì)胞膜上的硝轉(zhuǎn)運蛋白和磷轉(zhuǎn)運蛋白運輸[6]。鉀的吸收通常是由鉀離子通道進(jìn)行,但在鉀濃度極低的情況下主要通過鉀轉(zhuǎn)運蛋白進(jìn)行運輸[7-8]。養(yǎng)分離子跨膜運輸過程可以歸納為兩大類:陽離子的吸收是順著細(xì)胞膜內(nèi)外的電勢差進(jìn)入細(xì)胞,因此不需要耗能;而陰離子的吸收則是逆著細(xì)胞膜內(nèi)外的電勢差,因此需要細(xì)胞膜質(zhì)子泵提供質(zhì)子驅(qū)動力,并且外界濃度越低需要的質(zhì)子驅(qū)動力越大[9]。
質(zhì)子泵又叫細(xì)胞膜H+- ATPase[9-12],通過水解ATP產(chǎn)生能量將H+主動泵出細(xì)胞,在細(xì)胞膜內(nèi)外形成了H+濃度梯度,從而建立了細(xì)胞膜電位,細(xì)胞外大量的H+,則形成質(zhì)子驅(qū)動力,幫助養(yǎng)分離子運輸進(jìn)入細(xì)胞。它是由100 kD的單鏈氨基酸以單體或二聚體形式構(gòu)成的[13],現(xiàn)已發(fā)現(xiàn),擬南芥中有12個質(zhì)子泵基因[11],煙草中有9個質(zhì)子泵基因[12],水稻中有10個質(zhì)子泵基因[11]。在外界環(huán)境發(fā)生改變時,質(zhì)子泵活性會發(fā)生相應(yīng)的改變。有關(guān)土壤養(yǎng)分元素發(fā)生變化對質(zhì)子泵的影響也有不少報道。在給缺氮玉米再次供應(yīng)硝態(tài)氮時[14],會誘導(dǎo)根系質(zhì)子泵活性提高,而缺磷時會誘導(dǎo)白羽扇豆排根的質(zhì)子泵活性提高[15],而鉀的運輸是依靠質(zhì)子泵提供的膜電位進(jìn)行吸收的[16]。因此,根系細(xì)胞膜質(zhì)子泵在氮、磷、鉀營養(yǎng)元素的吸收中具有重要作用,在某種程度上直接調(diào)控了養(yǎng)分的跨膜運輸[10]。
1水稻根系細(xì)胞膜質(zhì)子泵與氮營養(yǎng)的關(guān)系
銨、硝是植物吸收的兩種最主要的氮素形態(tài)。由于NH4+的吸收只要依靠細(xì)胞膜電位就可以進(jìn)入細(xì)胞,或者以不帶電的NH3進(jìn)入細(xì)胞,因此,在運輸過程中不需要耗能。而NO3-的吸收要依靠質(zhì)子驅(qū)動力消耗能量,所以在銨、硝同時存在的情況下,根系會優(yōu)先吸收銨。但是在單一的NH4+-N營養(yǎng)下大多數(shù)植物都會發(fā)生銨中毒[16-17]。銨中毒的原因很多,其中的一個重要因素就是pH失調(diào):一方面根系大量吸收NH4+造成根際酸化;另一方面銨在細(xì)胞中同化時也會產(chǎn)生H+[18-19],而過多的H+會對細(xì)胞的生理活動帶來負(fù)面影響。
水稻長期生活在淹水環(huán)境中,是一種典型的以NH4+吸收為主的作物[20],因而具有相應(yīng)的適應(yīng)機(jī)制。由于細(xì)胞膜H+-ATPase的一個重要生理功能是維持植物細(xì)胞中pH平衡[11],因此,在實驗中發(fā)現(xiàn)作物根系細(xì)胞膜質(zhì)子泵活性在銨態(tài)氮營養(yǎng)下要明顯高于硝態(tài)氮營養(yǎng)[21]。最早,科學(xué)家都認(rèn)為質(zhì)子泵的主要功能就是要將細(xì)胞中銨同化所產(chǎn)生的一部分氫離子排出,相比之下,硝態(tài)氮還原時消耗氫離子。我們的研究表明,在正常范圍的銨濃度下,水稻根系在吸銨過程中導(dǎo)致根際的pH值降低,是其質(zhì)子泵活性升高的主要原因[22],而不是主要因為細(xì)胞中的氫需要排出體外所引起的。因為在用硝態(tài)氮培養(yǎng)水稻時,如果將根際pH值人為下調(diào),也會導(dǎo)致其根系細(xì)胞膜質(zhì)子泵活性升高,我們的研究表明這是水稻長期適應(yīng)銨態(tài)氮營養(yǎng)下根際酸化的一種適應(yīng)性。我們的研究也發(fā)現(xiàn),質(zhì)子泵活性提高主要是水稻根系中5個細(xì)胞膜H+-ATPase的同源基因表達(dá)量升高,并且其排出氫離子的能力也提高[22]。由此可見,質(zhì)子泵活性升高是植物耐銨的一個必要前提。對于不耐銨的植物而言,其質(zhì)子泵活性不具有耐酸的適應(yīng)性,在長期銨態(tài)氮營養(yǎng)下會導(dǎo)致質(zhì)子泵活性受到抑制,并因此導(dǎo)致膜電位去極化,影響其他養(yǎng)分的吸收,最終導(dǎo)致根系與地上部分生長受到阻礙[23]。因此,提高細(xì)胞膜質(zhì)子泵的活性可以增強(qiáng)作物吸收利用銨態(tài)氮的能力。
對于水稻而言,當(dāng)根系發(fā)育成熟后能夠形成通氣組織而分泌大量的氧氣到根際中去,因此,在水稻根系表面上可能發(fā)生硝化作用而形成硝態(tài)氮,從而在根際形成大量銨與少量硝混合營養(yǎng)的根際環(huán)境。在吸收NO3-時,由于質(zhì)子要陪伴其進(jìn)入細(xì)胞,因此,質(zhì)子泵活性不需要應(yīng)對根際的酸化,其質(zhì)子泵活性低于NH4+培養(yǎng)下的水稻[22],但是這并不意味著NO3-的吸收不需要質(zhì)子泵的作用。研究表明,隨著NO3-供應(yīng)量的變化,水稻根系質(zhì)子泵活性也隨之改變[24],這說明了水稻根系吸收NO3-是需要細(xì)胞膜H+- ATPase活性來提供質(zhì)子驅(qū)動力的。因此,在銨硝混合營養(yǎng)下,由于銨的吸收促進(jìn)了質(zhì)子泵的活性,也會進(jìn)一步促進(jìn)水稻對NO3-的吸收。
2水稻根系細(xì)胞膜質(zhì)子泵與磷營養(yǎng)的關(guān)系
植物吸收磷營養(yǎng)的主要形式是磷酸一氫根(HPO42-)或是磷酸二氫根(H2PO4-),需要結(jié)合2~3個H+,在質(zhì)子驅(qū)動力的作用下,通過細(xì)胞膜磷轉(zhuǎn)運蛋白進(jìn)入植物細(xì)胞[25],因此幾乎所有的磷轉(zhuǎn)運蛋白都是依靠細(xì)胞膜H+- ATPase作用后釋放的H+結(jié)合磷酸根離子的形式運輸磷營養(yǎng)[26,27]。因此,在包括水稻在內(nèi)的很多植物中,在缺磷的環(huán)境下質(zhì)子泵活性會提高,并分泌大量的氫離子酸化根際[23,28-29]。研究者可以觀察到根際pH 的降低可以促進(jìn)植物對磷的吸收,其實質(zhì)則是根系細(xì)胞膜質(zhì)子泵活性的提高[30]。雖然不同形態(tài)的氮對植物吸收磷均具有促進(jìn)作用[31,33];但是,研究發(fā)現(xiàn)NH4+-N比NO3--N培養(yǎng)下的水稻能夠吸收更多的磷營養(yǎng),并促進(jìn)作物的生長[34]。我們在NH4+-N營養(yǎng)液中添加抑制質(zhì)子泵活性的釩酸鹽后,水稻根系對磷的吸收速率降低;而在NO3--N營養(yǎng)液中添加促進(jìn)質(zhì)子泵活性的梭殼菌素后磷的吸收速率增加[30]。這一結(jié)果表明,細(xì)胞膜H+-ATPase活性是導(dǎo)致磷素吸收差異的根本原因。
如圖1所示,由于NH4+-N的吸收導(dǎo)致根際pH值下降,細(xì)胞膜H+- ATPase活性增強(qiáng),根系周圍的H2PO4-結(jié)合H+,通過磷轉(zhuǎn)運蛋白的轉(zhuǎn)運進(jìn)入根系;而NO3--N的吸收是與質(zhì)子驅(qū)動力相偶聯(lián)的主動運輸[35],也要大量消耗根外的H+,與磷酸鹽的吸收形成了一定程度上的競爭,導(dǎo)致磷的吸收減少。銨態(tài)氮營養(yǎng)下,水稻根系細(xì)胞膜質(zhì)子泵活性升高,促進(jìn)了水稻對磷營養(yǎng)的吸收。
另外,由于土壤中有效磷的含量比較低,因此,植物會產(chǎn)生一些生理上的適應(yīng)機(jī)制[36]。其中,比較普遍的是大多數(shù)植物根系會分泌有機(jī)酸來活化土壤中的難溶性磷[37]。在此過程中,為了維持細(xì)胞膜兩側(cè)的電荷平衡,根系質(zhì)子泵活性提高釋放出大量的H+,Zhang等[29]的研究表明,水稻根系細(xì)胞膜質(zhì)子泵在缺磷情況下活性提高。而細(xì)胞膜H+-ATPase基因OsA8敲除后導(dǎo)致水稻對磷的吸收及轉(zhuǎn)運能力顯著降低[38]。在其他作物中也發(fā)現(xiàn),細(xì)胞膜H+- ATPase基因超表達(dá)的轉(zhuǎn)基因擬南芥由于質(zhì)子泵活性提高,明顯促進(jìn)了磷的吸收[25],這說明了細(xì)胞膜H+- ATPase與磷的吸收之間存在密切的關(guān)系。
3水稻根系細(xì)胞膜質(zhì)子泵與鉀營養(yǎng)的關(guān)系
植物根系鉀營養(yǎng)的吸收與細(xì)胞膜質(zhì)子泵關(guān)系的研究并不多。有研究表明,在缺鉀情況下,植物細(xì)胞膜質(zhì)子泵活性顯著增強(qiáng),通過泵出H+形成更大的質(zhì)子驅(qū)動力,以H+與K+結(jié)合的形式運輸K+到細(xì)胞中去,由于其正電荷增加,更容易進(jìn)入細(xì)胞,從而使根系吸收更多的鉀營養(yǎng)[39-41]。
圖1銨硝營養(yǎng)通過影響質(zhì)子泵活性來改變水稻根系對磷營養(yǎng)的吸收
Fig. 1. Effect of NH4+and NO3-on the plasma membrane H+-ATPase of rice roots involved in the uptake of Pi.
另外,研究也發(fā)現(xiàn),K+本身也是質(zhì)子泵工作時所必需的,因為在正常的鉀濃度下,質(zhì)子泵排出一個氫離子就需要細(xì)胞吸收一個鉀離子,以維持細(xì)胞膜兩側(cè)的電荷平衡。因此,在銨態(tài)氮營養(yǎng)下,如果根系細(xì)胞吸收大量的銨離子會導(dǎo)致鉀離子的吸收減少,并引發(fā)植物銨中毒。即使水稻這樣的耐銨植物,在根際范圍內(nèi)如果銨的濃度超過4mmol/L也會導(dǎo)致其產(chǎn)生中毒癥狀。Konstantine等[42]發(fā)現(xiàn),10 mmol/L NH4+配以5 mmol/L K+處理,水稻幼苗生長最好,而低于這個鉀濃度則產(chǎn)生銨中毒。我們通過其實驗設(shè)計的濃度進(jìn)行重復(fù)后發(fā)現(xiàn),在高濃度的NH4+培養(yǎng)的水稻中提高K+的濃度有助于緩解銨毒,并促進(jìn)水稻的生長。 這是因為,鉀轉(zhuǎn)運蛋白及鉀通道也可以運輸NH4+,兩種離子可以產(chǎn)生競爭關(guān)系[43],在高濃度NH4+情況下添加鉀可以增加銨、鉀的競爭,緩解高銨對根系細(xì)胞膜質(zhì)子泵的毒害作用;根系吸收K+產(chǎn)生的局部能量也可以幫助根系細(xì)胞膜質(zhì)子泵外排H+[44],提高質(zhì)子泵活性,增加質(zhì)子驅(qū)動力,從而有效地減少高銨對植株造成的毒害作用。這對于水稻種植中應(yīng)對銨中毒有極其重要的意義。
4結(jié)論
植物細(xì)胞膜質(zhì)子泵(H+- ATPase)是植物中的主宰酶(Master enzyme),在養(yǎng)分吸收過程中具有重要的作用,尤其是對于水稻吸收銨態(tài)氮具有重要的實際作用。因此,通過研究質(zhì)子泵的變化規(guī)律,為生產(chǎn)中通過配施硝態(tài)氮肥或是增施鉀肥來緩解銨態(tài)氮肥對水稻生長的影響,同時促進(jìn)氮磷鉀的同步吸收提供了理論依據(jù)。
參考文獻(xiàn):
[1]Marschner H. Mineral nutrition of higher plants. 2nd edn. London:Academic Press, 1995, 231-254.
[2]Falkengren-Grerup U, Mansson K F, Olsson M O. Uptake capacity of amino acids by ten grasses and forbs in relation to soil acidity and nitrogen availability.EnvironExpBot, 2000, 44:207-219.
[3]Raghothama K G, Karthikeyan A S. Phosphate acquisition.PlantSoil, 2005, 274: 37-49.
[4]Ludewig U,von Wiren N, Frommer W B. Uniport of NH4+by the root hair plasma membrane ammonium transporter LeAMT1; 1.JBiolChem, 2002, 277: 13548-13555.
[5]Shahram K, Joseph O, Jonathan, et al. Mechanism of ammonia transport by Amt/MEP/Rh: Structure of AmtB at 1.35 A.Science, 2004, 305: 1587-1594.
[6]Raghothama K G. Phosphate acquisition.AnnuRevPlantPhysiolPlantMolBiol, 1999, 50:665-693.
[7]Fuchs I, St?lzle S, Ivashikina N, et al. Rice K+uptake channel OsAKT1 is sensitive to salt stress.Planta, 2005, 221: 212-221.
[8]Yao X, Horie T, Xue S, et al. Differential sodium and potassium transport selectivities of the rice OsHKT2;1 andOsHKT2;2 transporters in plant cells.PlantPhysiol, 2010, 152: 341-355.
[9]Serrano R. Structure and function of plasma membrane ATPase.AnnRevPlantPhysiolPlantMolBiol, 1989, 40:61-94.
[10]Arango M, Gevaudant F, Oufattole M,et al. The plasma membrane proton pump ATPase: The significance of gene subfamailies.Planta, 2003, 216:355-356.
[11]Palmgren M G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake.AnnRevPlantPhysiolPlantMolBiol, 2001, 52:817-845.
[12]Micheler B, Boutry M. The plasma membrane H+-ATPase: A highly regulated enzyme with multiple physiological functions.PlantPhysiol, 1995, 108:1-6.
[13]Sze H, Li X, Palmgren M G. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis.PlantCellEnviron, 1999,11: 677-689.
[14]Santi S , Locci G , Monte R , et al. Induction of nitrate uptake in maize roots: Expression of a putative high-affinity nitrate transporter and plasma membrane H+-A TPase isoforms.JExpBot, 2003, 54(389): 1851-1864.
[15]Yan F, Zhu Y, Caroline Muller, et al. Adaptation of H+-pumping and plasma membrane H+ATPase activity in proteoid roots of white lupin under phosphate deficiency.PlantPhysiol, 2002, 129: 50-63.
[16]Briskin D P. Plasma membrane H+-transporting ATPase: Role in potassium ion transport.PhysiolPlant, 1986, 68(68):159-163.
[17]Britto D T, Glass A D M, Kronzucker H J, et al. Cytosolic concent rat ions and transmembrane fluxes of NH4+/ NH3-: An evaluat ion of recent proposals.PlantPhysiol, 2001, 125:523-526.
[18]Wang M, Siddiqi M Y, Ruth T J, et al. Ammonium uptake by rice roots: Ⅱ. Kinetics of13NH4+influx across the plasmalemma.PlantPhysiol,1993, 103:1259-1267.
[19]Schubert S, Yan F. Nitrate and ammonium nutrition of plants: Effects on acid/base balance and adaptation of root cell plasmalemma H+-ATPase.ZPanzenernahrBodenk, 1997, 160:275-281.
[20]Yamaya T, Oaks A.Metabolic regulation of ammonium uptake and assimilation//Amancio S, Stulen I (eds) Nitrogen Acquisition and Assimilation in Higher Plants (Plant Ecophysiology Series)Dordrecht, the Netherlands: Kluwer Academic Publisher, 2004: 35-64.
[21]狄廷均,朱毅勇,仇美華,等.水稻根系細(xì)胞膜H+- ATPase對銨硝營養(yǎng)的響應(yīng)差異.中國水稻科學(xué), 2007,21(4):360-366.
Di T J,Zhu Y Y,Qiu M H,et al.Response of plasma membrane H+-ATPase of rice root to ammonium and nitrate nutrition.ChinJRiceSci, 2007, 21(4):360-366.(in Chinese with English abstract)
[22]Zhu Y, Di T, Xu G, et al. Adaptation of plasma membrane H+-ATPase of rice roots to low pH as related to ammonium nutrition.PlantCellEnviron, 2009, 32:1428-1440.
[23]Yan F, Schubert S, Mengel K. Effect of low root medium pH on net proton release, root respiration, and root growth of corn (ZeamaysL.) and broad bean (ViciafabaL.).PlantPhysiol, 1992, 99: 415-421.
[24]Garrido F, Rodrigo G, Carlos A, et al. Rice varieties tonoplast and plasma membrane H+-ATPase differential activities in response to nitrate pules.JBiolSci, 2008, 8(1): 107-112.
[25]Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses.PlantPhysiol, 2003,133:16-20.
[26]Schachtman D P, Reid R J, Ayling S M. Phosphorus uptake by plants: From soil to cell.PlantPhysiol, 1998,116:447-453.
[27]Preuss C P, Huang C Y, Tyerman S D. Proton-coupled high-affinity phosphate transport revealed from heterologous characterization in Xenopus of barley-root plasma membrane transporter,HvPHT1;1.Plant,CellEnviron, 2011,34:681-689.
[28]Shen H, Chen J, Wang Z, et al. Root plasma membrane H+-ATPase is involved in the adaptation of soybean to phosphorus starvation.JExpBot, 2006, 57: 1353-1362.
[29]Zhang R, Liu G, Wu N, et al. Adaptation of plasma membrane H+-ATPase and H+pump to P deficiency in rice roots.PlantSoil, 2011, 349: 3-11.
[30]Zeng H, Liu G, Toshinori Kinoshita,et al. Stimulation oof phosphorus uptake bu ammonium nutrition involves plasma membrane H+ATPase in rice roots.PlantSoil, 2012,357:205-214.
[31]Grunes D L. Effect of nitrogen on the availability of soil and fertilizer phosphorous to plants.AdvAgron, 1959,11:369-396.
[32]Miller M H. Effect of nitrogen on phosphorus absorption by plants//Carson W.ed. The Plant Root and Its Environment.Charlottesville:Univ. Press of Virginia, 1974, 643-668.
[33]Smith F W, Jackson W A. Nitrogen enhancement of phosphate transport in roots of Zea mays L: I. Effects of ammonium and nitrate pretreatment.PlantPhysiol, 1987, 84:1314-1318.
[34]Jing J, Rui Y, Zhang F, et al. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification.FieldCropsRes, 2010, 119:355-364.
[35]Crawford N M, Glass A D M.Molecular and physiological aspects of nitrate uptake in plants.TrendsPlantSci,1998, 3: 389-395.
[36]Wu P, Ma L, Hou X, et al. Phosphate starvation triggers distinct alterations of genome expression in ara bidopsis roots and leaves.PlantPhysiol, 2003,132:1260-1271.
[37]Raghothama K G, Karthikeyan A S. Phosphate acquisition.PlantSoil, 2005, 274:37-49.
[38]Chang C, Hu Y, Sun S, et al. Proton pumpOsA8 is linked to phosphorus uptake and translocation in rice.JExperBot, 2008, 60: 557-565.
[39]Maathuis F J M, Sanders D. Mechanism of potassium absorption by higher plant roots.PhysiolPlant,1996, 96:158-168.
[40]Rodriguez-Navarro A. Potassium transport in fungi and plants.BiochimBiophysActa, 2000, 1469:1-30.
[41]Alvarez-Pizarro J C, Gomes-Filho E, Prisco J T. NH4+-stimulated low-K+uptake is associated with the induction of H+extrusion but the plasma membrane H+-ATPase in sorghum roots under K+deficiency.JPlantPhysiol, 2011, 168: 1617-1626.
[42]Konstantine D. Balkos, Herbert J. Optimization of ammonium acquisition and metabolism by potassium in rice (OryzasativaL. cv. IR-72).Plant,CellEnviron. 2010, 33: 23-34.
[43]Floor ten Hoopen, Tracey A C, Pai Pedas, et al. Competition between uptake of ammonium and potassium in barley andArabidopsisroots: Molecular mechanisms and physiological consequences.JExperiBot, 2010,61: 2303-2315.
[44]Gajdanowicz P, Michard E, Sandmann M,et al. Potassium (K+) gradients serve as a mobile energy source in plant vascular tissues.ProcNatlAcadSciUSA, 2011, 108(2):864-869.
Involvement of Plasma Membrane H+-ATPase in Uptake of Nitrogen, Phosphorus and Potassium by Rice Root
XU Fei-yun1, ZHANG Mao-xing1, ZENG Hou-qing2, ZHU Yi-yong1,*
(1College of Resources and Environmental Sciences,Nanjing Agricultural University, Nanjing 210095, China;2College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China;*Corresponding author, E-mail:yiyong1973@njau.edu.cn)
XU Feiyun, ZHANG Maoxing, ZENG Houqing, et al. Involvement of plasma membrane H+-ATPase in uptake of nitrogen, phosphorus and potassium by rice root. Chin J Rice Sci, 2016, 30(1): 106-110.
Abstract:Rice is an important staple crop in China. The yield of rice is closely related to the uptake of plant nutrients. As the major essential elements, nitrogen, phosphorus and potassium, their transport across the plasma membrane is critical for the nutrient absorption efficiency. The plasma membrane H+-ATPase actively drives H+ outside the plant cells. Thus the proton gradient across the plasma membrane not only builds up the membrane potential but also forms the proton motive force for the transport of various nutrients. This review illustrates the mechanism of plasma membrane H+-ATPase of rice roots involved in the uptake of nitrogen, phosphate and potassium to provide more strategies for improving the nutrition use efficiency.
Key words:rice; nitrogen; phosphorus; potassium; PM H+-ATPase
文章編號:1001-7216(2016)01-0106-05
中圖分類號:Q945.12; S511.01
文獻(xiàn)標(biāo)識碼:A
基金項目:國家自然科學(xué)基金資助項目(31471937); 教育部新世紀(jì)優(yōu)秀人才資助項目(NCET-11-0672)。
收稿日期:2015-07-13; 修改稿收到日期: 2015-10-16。