• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SZEG? KERNEL FOR HARDY SPACE OF MATRIX FUNCTIONS?

    2016-04-18 05:44:20FuliHE賀福利SchoolofMathematicsandStatisticsCentralSouthUniversityChangsha410083ChinaEmailhefuli999163comMinKU庫敏UweHLERCIDMADepartmentofMathematicsUniversityofAveiroPortugalEmailkumin0844163comukaehleruapt
    關(guān)鍵詞:福利

    Fuli HE(賀福利)School of Mathematics and Statistics,Central South University,Changsha 410083,ChinaE-mail:hefuli999@163.comMin KU(庫敏)Uwe K?HLERCIDMA,Department of Mathematics,University of Aveiro,PortugalE-mail:kumin0844@163.com;ukaehler@ua.pt

    ?

    SZEG? KERNEL FOR HARDY SPACE OF MATRIX FUNCTIONS?

    Fuli HE(賀福利)
    School of Mathematics and Statistics,Central South University,Changsha 410083,China
    E-mail:hefuli999@163.com
    Min KU(庫敏)?Uwe K?HLER
    CIDMA,Department of Mathematics,University of Aveiro,Portugal
    E-mail:kumin0844@163.com;ukaehler@ua.pt

    AbstractBy the characterization of the matrix Hilbert transform in the Hermitian Clifford analysis,we introduce the matrix Szeg? projection operator for the Hardy space of Hermitean monogenic functions de fined on a bounded sub-domain of even dimensional Euclidean space,establish the Kerzman-Stein formula which closely connects the matrix Szeg? projection operator with the Hardy projection operator onto the Hardy space,and get the matrix Szeg? projection operator in terms of the Hardy projection operator and its adjoint.Furthermore,we construct the explicit matrix Szeg? kernel function for the Hardy space on the sphere as an example,and get the solution to a boundary value problem for matrix functions.

    Key wordsHardy space;Hermitean Clifford analysis;Szeg? projection;matrix function

    2010 MR Subject Classi fication30G35;15A66;30C40;31A25;31B10

    ?Received October 6,2014;revised March 12,2015.The project is supported by Portuguese funds through the CIDMA Center for Research and Development in Mathematics and Applications,and the Portuguese Foundation for Science and Technology(FCT-Funda?c?o para a Ciênciae a Tecnologia)within project UID/MAT/04106/2013 and by NNSF of China(11371375,11301547).The corresponding author is the recipient of a Postdoctoral Foundation from FCT under Grant No.SFRH/BPD/74581/2010.

    ?Corresponding author:Min KU.

    1 Introduction

    The Szeg? kernel function(for short Szeg? kernel)and the Szeg? projection,which were fi rst introduced by the Hungarian mathematician Gábor Szeg? in 1921(see ref.[1]),played an important role in the development of the complex analysis.The Szeg? kernel is a reproducing kernel for the Hilbert space of all square integrable holomorphic functions de fined on a domain(see refs.e.g.[2,3]),which is of importance to reveal the properties of the holomorphic map between two domains and to solve the boundary value problems.For instance,the conformal mappings onto the canonical domains,the classical functions,and other important objects of potential theory can be simply expressed in virtue of the Szeg? kernels(seen in refs.e.g.[3-5]).The Szeg? projection operator associates with smooth boundary of a domain is of fundamental interest in the complex analysis.Its action can often be expressed as an integration againsta distribution,known as the Szeg? kernel,and the study of its is naturally introduced for the space of square integrable function onto Hardy space de fined on the boundaries of a domain(see refs.e.g.[1,3]).This allows us to deeper understand the geometric and functional analytic properties in the complex analysis and the harmonic analysis(see refs.e.g.[2,3]).

    However,it is not feasible to obtain the closed formulas of the Szeg? kernels for the general domains of the complex plane.One of the difficulties lies in that one could not obtain an estimation for these kernels in terms of the geometrical properties of the considered domains.Only for the special cases,including the unit circle,the Szeg? kernels can be computed explicitly.Moreover,it is showed by Kerzman and Stein in ref.[2]that the unit circle is the only planar region,for which the Szeg? kernel and the Cauchy kernel coincide.On the contrary,for the general domains on the complex plane,they established the well-known Kerzman-Stein formula(see refs.e.g.[2,3]),which connects the Szeg? projection with the Hardy projection.Later on,in refs.[6-8],Bernstein,Calderbank,Delanghe and their collaborators generalized the Kerzman-Stein formula to the higher dimensions,making full use of the methods of the orthogonal Clifford analysis,seen in Refs.e.g.[12-19].More related results on the Szeg? kernel and the Szeg? projection in the orthogonal Clifford analysis can be also found in refs.e.g.[9-11].

    O ff ering a re fi nement of the orthogonal case,the Hermitean Clifford analysis,seen in refs.e.g.[20-24],emerged as a new and successful branch of Clifford analysis.It focuses on the simultaneous null-solutions of the two complex Hermitean Dirac operators,which recently invokes new tools for the study of circulant(2×2)matrix functions.A Cauchy integral formula in the Hermitean Clifford was constructed in terms of circulant(2×2)matrix functions(see refs.e.g.[25-28]),and the relationship with holomorphic function theory of several complex variables was observed,seen in refs.e.g.[24-26].The Hermitean Cauchy transform,which gave rise to the Hardy projection to be skew,and the related decomposition problems of continuous functions were discussed in refs.[27,28].The new Hilbert-like matrix operator was revealed by the non-tangential boundary limits of the Hermitean Cauchy transform in refs.e.g.[25,26].Much recent progress can be also seen in refs.[29,30]or elsewhere.Under this setting it is natural for us to want to know what is the matricial Szeg? projection.But,to our knowledge,little attention is devoted to up to now.This leads us to further consider the Hardy space for circulant(2×2)matrix functions.In the underlying paper,based on refs.[2,6,26,30],we will first de fine a proper inner product on the space of square integral circulant(2×2)matrix functions de fined on the boundary of a bounded sub-domain in even dimensional Euclidean space,and introduce the matrix Szeg? projection operator to be orthogonal for the Hardy space of Hermitean monogenic functions de fined on a bounded sub-domain of even dimensional Euclidean space.Then we will establish the Kerzman-Stein formula,which is closely related to the matrix Szeg? projection operator and the Hardy projection operator onto the Hardy space of Hermitean monogenic functions de fined on a bounded sub-domain,and present the matrix Szeg? projection operator in terms of the Hardy projection operator and its adjoint,explicitly.Lastly,we will give the explicit matrix Szeg? kernel function for the Hardy space on the sphere.As an application,we get the solution to a boundary value problem for matrix functions.

    The paper is organized as follows.In Section 2,we recall some basic facts about Hermitean Clifford analysis which will be needed in the sequel.In Section 3,we will introduce the matrixSzeg? projection operator for the Hardy space of Hermitean monogenic functions de fined on a bounded sub-domain,establish the Kerzman-Stein formula which closely connects the matrix Szeg? projection operator,and present the matrix Szeg? projection operator in terms of the Hardy projection operator and its adjoint in the Hermitean Clifford setting.At last we will construct the explicit matrix Szeg? kernel function for the Hardy space,and get the solution to Hermitean Dirichlet problem.

    2 Preliminaries

    In this section we recall some basic facts about Clifford algebra and Hermitean Clifford analysis which will be needed in the sequel.More details can be also seen in refs.e.g.[20-24].

    Let(e1,···,em)be an orthogonal basis of Euclid space Rm,the complex Clifford algebra Cm,which is constructed over Rm,its geometric multiplication is governed by the rules ejek+ ekej=?2δjk,j,k=1,···,m.The Cmthus is generated additively by elements of the form eA=ej1···ejk,where A={j1,···,jk}?{1,···,m},j1<···<jk,while for A=?,one puts e?=1,the identity element.Any Clifford number a in Cmmay thus be written asand its Hermitean conjugate a?is de fined bywhere the bar denotes the usual real Clifford algebra conjugation anddenotes the standard complex conjugation.The Euclidean space Rmis embedded in Cmby identifying(x1,x2,···,xm)with the Clifford vectorNote that the square of a vectoris scalar valued and equals the norm squared up to a minus signThe Fischer dual of the vectoris the vector valued first order differential operatoris called Dirac operator.It is precisely this Dirac operator which underlies the notion of monogenicity of a function,a notion which is the higher dimensional counterpart or holomorphy in the complex plane.As the Dirac operator factorizes the Laplacian,monogenicity can be regarded as a re fi nement of harmonicity.

    Hereby,introducing Hermitean Clifford analysis is based on the so-called almost complex structure on it,i.e.,an SO(m)-element J,satisfying J2=?1m.This forces the dimension m to be even,whence from now on,we will put m=2n.In terms of our basis,a particular realization of the almost complex structure is given by J(e2j?1)=?e2jand J(e2j)=e2j?1,j=1,···,n.

    The real Clifford vector and the Dirac operator are denoted by

    as well as their counterparts

    The Hermitean Clifford variables Z and Z?then given by

    which satisfy

    Hermitean Clifford analysis then focuses on simultaneous null solutions of two Hermitean Dirac operatorsintroduced by

    The fundamental solutions of the Dirac operators?X,?X|are

    where ω2ndenotes the surface area of the unit sphere in R2n.We introduce

    For further use,we introduce the oriented surface elements dσZand dσZ?by

    We denote the outward pointing unit normal vector atfor the element on??,leading to

    In this context the functions under consideration are de fined on an open subset ? of R2nand take values in the Clifford algebra C2n.They are of the form f=∑AfAeA,where the functions fAare complex-valued.Whenever a property such as continuity,differentiability,Lpintegrable and so forth is ascribed to f,it is meant that all the components fApossess the cited property.Let g1,g2be C2n-valued functions de fined in ??R2n,we consider the corresponding circulant(2×2)matrix function in the following

    In what follows,the operations of matrices such as addition and multiplication,and the operations between the complex numbers and the matrices,respectively,keep to the operation rules of the usual numerical matrices and of multiplication between the complex numbers and the usual numerical matrices.Let ??R2nbe a bounded sub-domain with smooth boundary??.Functions taking values in C2nde fined on ?∪?? will be considered.Notions of continuity,differentiability and integrability of G12are introduced entry-wise.For instance,the circulant(2×2)matrix function G12∈Ck(?,C2n),Hμ(?,C2n),Lp(?,C2n)and so on which mean each entry of G12belongs to Ck(?,C2n),Hμ(?,C2n),Lp(?,C2n)and so on.We introduce the particular circulant(2×2)matrices

    where δ is the Dirac delta distribution in R2n,theni.e.,ε is the fundamental solution of D(Z,Z?)(see refs.e.g.[20-24,26]).

    For gi∈Lp(??,C2n),1<p<+∞,i=1,2,we de fi ne the orthogonal Cauchy type integrals as

    which are well-de fined(see refs.e.g.[12,13]),where E(X),E|(X)and dσX,dσX|as above.Then for

    where

    3 Szeg? Projection Operator

    In this section we will introduce the matrix Szeg? projection operator for the Hardy space of Hermitean monogenic functions de fined on a bounded sub-domain,establish the Kerzman-Stein formula,and present the matrix Szeg? projection operator in terms of the Hardy projection operator and its adjoint,explicitly.

    Inspired by the inner product〈·,·〉L2on L2(??,C2n),given by

    where[·]0denotes the scale part of any·in C2n.We introduce the following bi-linear form on the vector space L2(??,C2n)

    Then,by directly calculating,for arbitraryand λ∈C,we can check that

    Thus,〈·,·〉L2is a inner product,which derives the norm on L2(??,C2n)by

    Hence,(L2(??),‖·‖)is the Hilbert space,which is different from the space of L2(??)in refs.e.g.[26,30].Under this setting,we have the following lemma without proof,which was also stated in[24,26,30]in the sense of different topology.For convenience without confusion and ambiguity,(L2(??),‖·‖)still denotes by L2(??).

    Lemma 3.1Let ? be a non-empty,open and bounded subset of R2nwith smooth boundary??.is de fined similarly to(1<p<+∞),then,for arbitrary T∈??,

    where the limits of(ii)mean the non-tangential limits,which is the same in the following context,

    and

    which are both Cauchy principle value integrals in the sense of Lp(1<p<+∞).When the variables are omitted without confusion and ambiguity,for convenience[Hf](T),[H|f](T)are for short of Hf,H|f,respectively,and it is also similar in the following context.

    we will consider the Hardy space

    and H2(??)denotes the L2(??)-closure of the set of boundary values of elements of H2(?).

    Remark 3.2Associating the Hardy space with(ii)of Lemma 3.1,the Hermitean Cauchy transform C maps L2(??,C2n)onto H2(??)for arbitrarywhich is skew and so-called the Hardy projection.

    Associating the de finition of the above C-valued inner product on L2(??),we have the following lemma which is only stated without proof.

    Lemma 3.3Suppose that H,L2(??)and H2(??)as Lemma 3.1 and Remark 3.2.Then

    (i)H2=I,

    where I denotes(2×2)identity matrix operator,H?means the adjoint operators of H on L2(??)and

    with ν being the outward pointing unit normal vector at X∈?? and J(ν)=ν|.

    Remark 3.4The results similar to Lemma 3.3 were also mentioned in refs.[24,26]with respect to(C2n)2×2-valued inner product,which does not derive a norm and is different from our C-valued inner product on L2(??).

    Starting with(ii)of Lemma 3.3,the matrix orthogonal projection operator S from L2(??)onto H2(??),which is so-called the matrix Szeg? projection operator,may be Hermitean monogenically extended to H2(?)by

    Remark 3.5Particularly,when ?=B(1)the unit ball centered at 0 of R2n,??=S2nthe unit sphere of R2nand

    where

    We consider the Dirichlet problem as follows,given the boundary datafind the functionsuch that

    where

    It is easy to verify that(3.3)is equivalent to the system

    In virtue of(iv)in Lemma 3.3,we have

    Then the above Dirichlet problem(3.3)exists the unique solution.Moreover the solution is formulated in the following form

    In what follows,we introduce the matrix Kerzman-Stein operator on y2(??)by

    where

    are both well-de fined,C?and C|?denote the adjoint operators of C and C|on the Hilbert space of L2(??,C2n),respectively,given by

    with H2(??)being L2(??,C2n)-closure of the set of boundary values of elements of

    ν,ν|,H,H|as Section 2,and 1 being the identity operator.More detail can be seen in refs.[10-12].

    Applying Lemma 3.3,we directly get the following lemma.

    Lemma 3.6Let A and A|be as term(3.6),and C be as Remark 3.2.Then

    where H?,seen in Lemma 3.3,andmean the adjoint operators of H and C on L2(??).

    Theorem 3.7Let S be as term(3.2),and C be as Remark 3.2.Then

    where I denotes(2×2)identity matrix operator.

    ProofSince the matrix operator S is orthogonal projection operator on the Hilbert space L2(??),S=S?.Noticing that the operators S and C are orthogonal and skew projection operators from L2(??)to H2(??),respectively,then SC and CS are both operators from L2(??)to H2(??).In particular,operators S and C are both the identical operators on H2(??),respectively.Therefore,we have

    Applying the property of the adjoint operator on the Hilbert space of L2(??)(see refs.e.g.[3,10,12]or monographs of functional analysis),(SC)?is well-de fined and(SC)?=C?S?,where C?means the adjoint operator of C acting on L2(??).Taking the adjoint operators with respect to〈·,·〉L2,we have

    Hence,associating terms(3.9)with(3.10),we get

    Therefore,one has

    Thus,the proof of the result is complete.

    Remark 3.8Theorem 3.7 characterizes the relationship between Hermitean Hardy projection operator and matrix Szeg? projection operator,which is the generalization of the wellknown Kerzman-Stein formula into the setting of Hermitean Clifford analysis.

    We de fi ne the matrix operator as follows

    where 1 denotes the identity operator on L2(??,C2n).

    Observing from term(3.6),the operators 1+A and 1+A|are invertible on L2(??,C2n),which could be also seen in Lemma 4.5 in[6]or[3],the matrix operator B is well de fined on L2(??).

    Theorem 3.9Let S and C be as Theorem 3.7.Then the matrix Szeg? projection operator is explicitly formulated by

    where I denotes(2×2)identity matrix operator.

    ProofApplying term(3.7),we know that operatoris anti-self conjugate.This implies that the spectra of operator A are pure imaginary numbers.Hence,operatoris invertible.Moreover,by calculating directly,we get(I+A)?1=B.It follows the result.

    Remark 3.10Equation(3.11)is our basic desired formula,which gives a characterization of the matrix Szeg? projection operator.Notice that,for smooth boundary of a bounded domain,the principal value parts in C?C?have disappeared,which leads to the inverse of operator A.For smooth boundary of general unbounded domains,it is more complicated,which we do not focus on.

    4 Szeg? Kernel

    In this section we construct the explicit matrix Szeg? kernel for the Hardy space H2(S2n).As an application of it,we get the solution to a boundary value problem for matrix functions in terms of integral formula.

    We introduce the functions

    where K=?(K+iK|),K?=K?iK|.

    ProofNoticing,for arbitrary Y,Y|∈S2n,

    we have

    Then we get

    Applying the Cauchy formula in[20,26],for arbitrarywe have

    Remark 4.2Let S=CnI denote the spinor space,where I=I1···Inis the primitive identity element withand the Grassmann algebra1,2,···,n generated by the Witt basisref.e.g.[26]).Whenwith g taking values in the homogeneous n-space of spinor space Sn,i.e.,g(z1,···,zn)=gn(z1,···,zn)with gn(z1,···,zn)being complex valued function de fined in R2n~=Cn,then by direct calculation,term(4.3)induces to the term as follows

    This implies that the matrix Szeg? kernelreduces to the Martinelli-Bochner kernel

    of holomorphic functions of several complex variables on the unit ball,where

    Furthermore,if n=1,term(4.5)is equal to the case

    As an application of the matrix Szeg? kernel,we get the theorem as follows.

    ProofApplying Lemma 3.3,associating with Theorem 3.11,it follows the result.

    Remark 4.4Hereby,we only present the explicit solution of the classical Dirichlet problem on the ball of higher-dimensional space,by means of the matrix Szeg? kernel.In fact,this leads the decomposition of the classical matrix Poisson kernel by

    where

    Following the same argument,we could consider the Dirichlet problem for matrix functions on the general sub-domains of higher-dimensional space,which will be discussed in the forthcoming paper.

    References

    [1]Szego G.über orthogonale polynome,die zu einer gegebenen Kurve der komplexen Ebene Geh?ren.Math Z,1921,9:218-270

    [2]Bell S.The Cauchy Transform,Potential Theory and Conformal Mapping.Boca Roton:CRC Press,1992

    [3]Kerzman N,Stein E M.The Cauchy kernel,the Szeg? kernel and the Riemann mapping function.Math Ann,1971,236:85-93

    [4]Bell S.Solving the Dirichlet problem in the plane by means of the Cauchy integral.Indiana Univ Math J,1990,39(4):1355-1371

    [5]Bell S.The Szeg? projection and the classical objects of potential theory in the plane.Duke Math J,1991,64(1):1-26

    [6]Bernstein S,Lanzani L.Szeg? projections for Hardy spaces of monogenic functions and applications.Int J Math Math Sci,2002,29:613-624

    [7]Calderbank D.Clifford Analysis for Dirac Operators on Manifolds with Boundary.Bonn:Max-Planck-Institute Für Mathematik,1996

    [8]Delanghe R.On some properties of the Hilbert transform in Euclidean space.Bull Belg Math Soc Simon Stevin,2004,11:163-180

    [9]Constales D,Krausshar R S.Szeg? and polymonogenic Bergman kernels for half-space and strip domains,and single-periodic functions in Clifford analysis.Complex Var Elliptic Equ,2002,47(4):349-360

    [10]Delanghe R,Brackx F.Hypercomplex function theory and Hilbert modules with reproducing kernel.Proc London Math Soc,1978,37(3):545-576

    [11]Ryan J.Complexi fied Cliff ord analysis.Complex Var Theory Appl,1982,1(1):119-149

    [12]Brackx F,Delanghe R,Sommen F.Clifford Analysis.London:Pitman,1982

    [14]Gürlebeck K,Spr?ssig W.Quaternionic and Cliff ord Calculus for Physicists and Engineers.Chichester,New York:Wiley,1997

    [15]Gilbert J E,Murry M A M.Cliff ord Algebra and Dirac Operators in Harmonic Analysis.Cambridge Studies in Advances Mathematics 26.Cambridge:Cambridge University Press,1991

    [16]McIntosh A.Clifford algebras,Fourier transforms,and singular convolution operators on Lipschitz surfaces.Rev Mat Iberoamericana,1994,10(3):665-721

    [17]Ku M,Du J Y.On integral representation of spherical k-regular functions in Cli fford analysis.Adv Appl Clifford Alg,2009,19(1):83-100

    [18]Ku M.Integral formula of isotonic functions over unbounded domain in Clifford analysis.Adv Appl Clifford Alg,2010,20(1):57-70

    [19]Ku M,Du J Y,Wang D S.On generalization of Martinelli-Bochner integral formula using Clifford analysis.Adv Appl Clifford Alg,2010,20(2):351-366

    [20]Brackx F,et al.Fundaments of Hermitean Clifford analysis.I.Complex structure.Complex Anal Oper Theory,2007,1:341-365

    [21]Brackx F,et al.Fundaments of Hermitean Clifford analysis.II.Splitting of h-monogenic equations.Complex Var Elliptic Equ,2007,52(10/11):1063-1079

    [22]Rocha-Chavez R,Shapiro M,Sommen S.Integral theorems for functions and differential forms in Cm//Research Notes in Mathematics 428.New York:Chapman Hall/CRC,2002

    [23]Brackx F,De Schepper H,Sommen F.The Hermitian Clifford analysis toolbox.Adv Appl Clifford Alg,2008,18:451-487

    [24]Brackx F,De Knock B,De Schepper H,Sommen F.On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis.Bull Braz Math Soc,2009,40(3):395-416

    [25]Brackx F,De Knock B,De Schepper H.A matrix Hilbert transform in Hermitean Clifford analysis.J Math Anal Appl,2008,344:1068-1078

    [26]Ku M,Wang D S.Half Dirichlet problem for matrix functions on the unit ball in Hermitean Clifford analysis.J Math Anal Appl,2011,374:442-457

    [27]Abreu Blaya R,Bory Reyes J,Moreno Garc′?a T.Hermitian decomposition of continuous functions on a fractal surface.Bull Braz Math Soc,2009,40(1):107-115

    [28]Abreu Blaya R,Bory Reyes J,Brackx F,De Knock B,De Schepper H,Pe?a Pe?a D,Sommen F.Hermitean Cauchy integral decomposition of continuous functions on hypersurfaces.Boundary Value Problems,2008,2008:Article ID 425256

    [29]Eelbode D,He F L.Taylor series in Hermitean Clifford analysis.Complex Anal Oper Theory,2011,5(1):97-111

    [30]Ku M,K?hler U,Wang D S.Half Dirichlet problem for the H?lder continuous matrix functions in Hermitian Clifford analysis.Complex Var Elliptic Equ,2013,58(7):1037-1056

    猜你喜歡
    福利
    “旅友視界”征稿啦!福利多多
    旅游世界(2021年5期)2021-11-07 10:33:24
    玉米福利
    我國動物福利立法探究
    家禽福利的未來:生產(chǎn)者能期待什么?
    那時候福利好,別看掙幾十塊錢,也沒覺得緊巴巴的
    快遞員的“公司福利”
    消費者報道(2015年8期)2015-05-30 10:48:04
    清明雨
    基于福利經(jīng)濟學的員工心理福利訴求研究
    丹麥兒童福利多
    福利中國(2015年6期)2015-01-03 08:44:43
    諸子百家的“福利思想”(上)
    福利中國(2015年1期)2015-01-03 08:40:55
    亚洲五月婷婷丁香| 在线观看免费日韩欧美大片| 在线观看免费视频网站a站| 老汉色∧v一级毛片| 亚洲欧美精品综合久久99| 午夜亚洲福利在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产亚洲av麻豆专区| 欧美日韩福利视频一区二区| 国产精品香港三级国产av潘金莲| 97人妻天天添夜夜摸| 国产av一区在线观看免费| 国产成人一区二区三区免费视频网站| av超薄肉色丝袜交足视频| 国产免费现黄频在线看| 久久精品国产清高在天天线| 亚洲精品在线观看二区| 热re99久久精品国产66热6| 91在线观看av| 9色porny在线观看| √禁漫天堂资源中文www| 亚洲男人的天堂狠狠| 可以免费在线观看a视频的电影网站| 久久久久久亚洲精品国产蜜桃av| 操出白浆在线播放| 精品无人区乱码1区二区| 大香蕉久久成人网| 淫秽高清视频在线观看| 亚洲精品美女久久av网站| 国产主播在线观看一区二区| 久久久久亚洲av毛片大全| 身体一侧抽搐| 午夜激情av网站| 午夜日韩欧美国产| 天堂影院成人在线观看| 午夜老司机福利片| 波多野结衣一区麻豆| 这个男人来自地球电影免费观看| 亚洲av第一区精品v没综合| 亚洲精品粉嫩美女一区| 热99国产精品久久久久久7| 欧美日韩亚洲国产一区二区在线观看| 亚洲免费av在线视频| 国产熟女午夜一区二区三区| 久久久久久久久久久久大奶| 叶爱在线成人免费视频播放| 长腿黑丝高跟| 另类亚洲欧美激情| 久久狼人影院| 亚洲精品一区av在线观看| 国产高清视频在线播放一区| 一边摸一边做爽爽视频免费| 色婷婷久久久亚洲欧美| 女人爽到高潮嗷嗷叫在线视频| 黑人操中国人逼视频| 久久 成人 亚洲| 天堂影院成人在线观看| 久久人妻av系列| 国产日韩一区二区三区精品不卡| 成人三级做爰电影| 成人18禁在线播放| 欧美日韩亚洲国产一区二区在线观看| 精品欧美一区二区三区在线| 很黄的视频免费| 久久久精品国产亚洲av高清涩受| 首页视频小说图片口味搜索| 成人国语在线视频| 十分钟在线观看高清视频www| av片东京热男人的天堂| 极品人妻少妇av视频| 国产亚洲欧美98| e午夜精品久久久久久久| 久久草成人影院| 老司机午夜福利在线观看视频| 黄色片一级片一级黄色片| 欧美人与性动交α欧美精品济南到| 久久性视频一级片| 嫁个100分男人电影在线观看| 超色免费av| 中文欧美无线码| 波多野结衣一区麻豆| 国产极品粉嫩免费观看在线| 香蕉国产在线看| 成年人黄色毛片网站| 男人操女人黄网站| 一进一出抽搐动态| 成年人黄色毛片网站| 亚洲色图 男人天堂 中文字幕| 在线观看日韩欧美| 国产麻豆69| 欧美中文日本在线观看视频| 亚洲一区高清亚洲精品| 欧美丝袜亚洲另类 | 国产熟女午夜一区二区三区| 国产黄色免费在线视频| 午夜免费激情av| 欧美精品一区二区免费开放| 在线观看日韩欧美| 十分钟在线观看高清视频www| 亚洲欧美精品综合久久99| 高清av免费在线| 天堂影院成人在线观看| xxx96com| 亚洲精品久久午夜乱码| 黄色毛片三级朝国网站| 热re99久久国产66热| 久久精品国产综合久久久| 黑人操中国人逼视频| 色婷婷久久久亚洲欧美| 日韩中文字幕欧美一区二区| 欧美日韩亚洲高清精品| 村上凉子中文字幕在线| 亚洲国产毛片av蜜桃av| 日本 av在线| 亚洲精品一二三| 女生性感内裤真人,穿戴方法视频| 亚洲欧美一区二区三区黑人| av超薄肉色丝袜交足视频| 久久天躁狠狠躁夜夜2o2o| 桃红色精品国产亚洲av| 亚洲一区二区三区欧美精品| 国产成人影院久久av| 啪啪无遮挡十八禁网站| 国产黄色免费在线视频| 99精品久久久久人妻精品| 人人妻人人澡人人看| 国产区一区二久久| 熟女少妇亚洲综合色aaa.| 亚洲欧洲精品一区二区精品久久久| 精品第一国产精品| 精品一区二区三区av网在线观看| 久久人人爽av亚洲精品天堂| 男男h啪啪无遮挡| 亚洲自偷自拍图片 自拍| 曰老女人黄片| 亚洲中文字幕日韩| 亚洲精品国产区一区二| 久久国产精品影院| 亚洲 欧美 日韩 在线 免费| 999精品在线视频| 最好的美女福利视频网| 久久精品国产亚洲av香蕉五月| 国产精品一区二区三区四区久久 | 高清毛片免费观看视频网站 | 两个人看的免费小视频| 亚洲精品av麻豆狂野| 又黄又爽又免费观看的视频| 国产亚洲精品久久久久久毛片| 欧美一区二区精品小视频在线| 亚洲精品一区av在线观看| 婷婷六月久久综合丁香| 长腿黑丝高跟| 国产亚洲精品久久久久5区| 色精品久久人妻99蜜桃| 一级,二级,三级黄色视频| 欧美色视频一区免费| 国产成人欧美在线观看| 黑人猛操日本美女一级片| 亚洲欧美日韩高清在线视频| 高清欧美精品videossex| 天堂俺去俺来也www色官网| 欧美+亚洲+日韩+国产| 一a级毛片在线观看| 欧美黑人欧美精品刺激| 亚洲av第一区精品v没综合| 成人黄色视频免费在线看| 欧美黄色淫秽网站| 久久人妻av系列| 香蕉久久夜色| 亚洲精品中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 精品一品国产午夜福利视频| 欧美激情极品国产一区二区三区| 天天添夜夜摸| 丝袜人妻中文字幕| 精品熟女少妇八av免费久了| 中出人妻视频一区二区| 在线播放国产精品三级| 精品久久久精品久久久| 亚洲人成网站在线播放欧美日韩| 国产男靠女视频免费网站| 亚洲,欧美精品.| 精品久久久久久久毛片微露脸| 一二三四社区在线视频社区8| 国产1区2区3区精品| 免费在线观看影片大全网站| 亚洲第一av免费看| 真人一进一出gif抽搐免费| a级毛片在线看网站| 日韩av在线大香蕉| 香蕉国产在线看| 婷婷丁香在线五月| 久久热在线av| 一区二区三区国产精品乱码| 不卡av一区二区三区| ponron亚洲| 另类亚洲欧美激情| 日韩视频一区二区在线观看| 国产精品偷伦视频观看了| e午夜精品久久久久久久| 久久国产精品人妻蜜桃| 一级毛片精品| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久人人人人人| 亚洲国产看品久久| 国产亚洲欧美在线一区二区| 一个人观看的视频www高清免费观看 | 精品国产一区二区三区四区第35| 国产一卡二卡三卡精品| 久久久国产精品麻豆| 18禁裸乳无遮挡免费网站照片 | 黄色怎么调成土黄色| 国产亚洲精品综合一区在线观看 | 美女福利国产在线| 欧美激情久久久久久爽电影 | 国产亚洲av高清不卡| 99久久人妻综合| 91麻豆精品激情在线观看国产 | 精品国产乱子伦一区二区三区| 在线十欧美十亚洲十日本专区| 超碰97精品在线观看| 国产免费av片在线观看野外av| 天堂中文最新版在线下载| 一进一出抽搐动态| 国产在线精品亚洲第一网站| 日韩免费高清中文字幕av| 999精品在线视频| 国产精品久久久人人做人人爽| 天堂中文最新版在线下载| 午夜精品久久久久久毛片777| 国产亚洲欧美98| 人人妻人人澡人人看| 国产成人av激情在线播放| 天天躁夜夜躁狠狠躁躁| 91麻豆精品激情在线观看国产 | 黄色毛片三级朝国网站| 久热爱精品视频在线9| 亚洲伊人色综图| 一二三四社区在线视频社区8| 国产精品 国内视频| 在线av久久热| 高潮久久久久久久久久久不卡| 亚洲欧美精品综合一区二区三区| 乱人伦中国视频| 国产精品九九99| 久久九九热精品免费| 国产精品 欧美亚洲| 色婷婷久久久亚洲欧美| 女人被躁到高潮嗷嗷叫费观| 久久精品国产清高在天天线| 香蕉丝袜av| 女警被强在线播放| 亚洲精品av麻豆狂野| 又紧又爽又黄一区二区| 新久久久久国产一级毛片| 99在线人妻在线中文字幕| 大香蕉久久成人网| 制服人妻中文乱码| 高清欧美精品videossex| 激情视频va一区二区三区| 国产高清激情床上av| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲av国产电影网| 大码成人一级视频| 黄色毛片三级朝国网站| 丰满饥渴人妻一区二区三| 久久狼人影院| 久久精品国产亚洲av高清一级| 在线av久久热| 亚洲自偷自拍图片 自拍| 久久国产乱子伦精品免费另类| 国产精品日韩av在线免费观看 | 男人的好看免费观看在线视频 | 91麻豆av在线| 在线观看舔阴道视频| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区三区综合在线观看| 麻豆国产av国片精品| 久久热在线av| 一区二区三区激情视频| 午夜免费观看网址| 亚洲一区二区三区欧美精品| 高清在线国产一区| 黄色成人免费大全| avwww免费| 免费搜索国产男女视频| 国产精品 欧美亚洲| 国产精品1区2区在线观看.| 国产不卡一卡二| 18禁美女被吸乳视频| 亚洲成a人片在线一区二区| 看片在线看免费视频| 日本免费一区二区三区高清不卡 | 一区福利在线观看| 精品福利永久在线观看| 成年女人毛片免费观看观看9| 国产成+人综合+亚洲专区| 欧美日本亚洲视频在线播放| videosex国产| 国产精品美女特级片免费视频播放器 | 久久精品亚洲精品国产色婷小说| 自线自在国产av| 99国产精品免费福利视频| 两性夫妻黄色片| 91老司机精品| 亚洲精品国产区一区二| 亚洲精品美女久久久久99蜜臀| 香蕉国产在线看| 久久 成人 亚洲| 国产欧美日韩一区二区三区在线| 19禁男女啪啪无遮挡网站| 国产欧美日韩综合在线一区二区| 国产成人av激情在线播放| 又紧又爽又黄一区二区| 久久精品国产清高在天天线| 一级片免费观看大全| 欧洲精品卡2卡3卡4卡5卡区| 国产精品1区2区在线观看.| 国产免费av片在线观看野外av| 日韩av在线大香蕉| 久久伊人香网站| 国产精品1区2区在线观看.| 亚洲视频免费观看视频| 久久久久九九精品影院| 黄片播放在线免费| 老熟妇仑乱视频hdxx| 午夜亚洲福利在线播放| x7x7x7水蜜桃| 在线观看免费高清a一片| 涩涩av久久男人的天堂| 日本a在线网址| 狂野欧美激情性xxxx| 国产97色在线日韩免费| 国产色视频综合| 我的亚洲天堂| 国产精品综合久久久久久久免费 | 欧美亚洲日本最大视频资源| 日本黄色日本黄色录像| x7x7x7水蜜桃| 中文字幕精品免费在线观看视频| 成人三级黄色视频| 满18在线观看网站| 日本三级黄在线观看| 日本黄色视频三级网站网址| 啦啦啦 在线观看视频| 女人精品久久久久毛片| 亚洲午夜理论影院| 日韩 欧美 亚洲 中文字幕| 久久精品国产99精品国产亚洲性色 | 韩国精品一区二区三区| 黑丝袜美女国产一区| 国产精品 欧美亚洲| 神马国产精品三级电影在线观看 | 日本黄色日本黄色录像| 操出白浆在线播放| 亚洲色图综合在线观看| 国产深夜福利视频在线观看| 性色av乱码一区二区三区2| 性欧美人与动物交配| 女同久久另类99精品国产91| 他把我摸到了高潮在线观看| 成人手机av| 美女福利国产在线| 欧美av亚洲av综合av国产av| 久久久久久久精品吃奶| 欧美久久黑人一区二区| 乱人伦中国视频| 欧美在线一区亚洲| svipshipincom国产片| 国产精品免费视频内射| 欧美黑人欧美精品刺激| 亚洲欧美激情综合另类| 欧美日韩瑟瑟在线播放| 国产精品免费一区二区三区在线| 欧美日韩福利视频一区二区| 99久久99久久久精品蜜桃| 日韩精品免费视频一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国产99久久九九免费精品| 国产在线观看jvid| 国产黄色免费在线视频| 99国产精品99久久久久| 波多野结衣av一区二区av| 国产成人影院久久av| 成人精品一区二区免费| 黄色女人牲交| 日本一区二区免费在线视频| 国产伦一二天堂av在线观看| 国产蜜桃级精品一区二区三区| 欧美成狂野欧美在线观看| 91在线观看av| 国产成人系列免费观看| 国产精品久久视频播放| 国产成人精品久久二区二区免费| 在线观看一区二区三区激情| 亚洲五月婷婷丁香| 国产成人精品久久二区二区免费| 啦啦啦免费观看视频1| 波多野结衣一区麻豆| 高清欧美精品videossex| 丰满的人妻完整版| 国产av又大| 香蕉久久夜色| 亚洲精品一二三| 免费不卡黄色视频| 亚洲中文字幕日韩| 国产精品日韩av在线免费观看 | 视频区图区小说| 欧美不卡视频在线免费观看 | 亚洲第一青青草原| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕精品免费在线观看视频| 国产精品国产av在线观看| 女警被强在线播放| 精品福利观看| 亚洲精品国产精品久久久不卡| 久久久国产一区二区| 欧美亚洲日本最大视频资源| 亚洲九九香蕉| 亚洲欧美日韩高清在线视频| 免费少妇av软件| 午夜免费激情av| 无限看片的www在线观看| 在线免费观看的www视频| 91麻豆av在线| 乱人伦中国视频| 欧美乱妇无乱码| 免费日韩欧美在线观看| 88av欧美| 91麻豆av在线| 三上悠亚av全集在线观看| 亚洲精品中文字幕一二三四区| 亚洲在线自拍视频| 久久狼人影院| 黄色片一级片一级黄色片| 亚洲五月色婷婷综合| 国产亚洲欧美在线一区二区| 国产一区在线观看成人免费| 99精品久久久久人妻精品| 激情在线观看视频在线高清| 亚洲av成人av| 亚洲男人的天堂狠狠| 99国产极品粉嫩在线观看| 久久性视频一级片| 欧美国产精品va在线观看不卡| 十八禁网站免费在线| 老司机福利观看| 天天躁夜夜躁狠狠躁躁| 色精品久久人妻99蜜桃| 看黄色毛片网站| 亚洲成av片中文字幕在线观看| 欧美中文日本在线观看视频| ponron亚洲| 亚洲人成电影观看| 国产精品乱码一区二三区的特点 | 中文亚洲av片在线观看爽| 在线观看一区二区三区激情| 亚洲色图 男人天堂 中文字幕| 又黄又粗又硬又大视频| 女生性感内裤真人,穿戴方法视频| 制服人妻中文乱码| 波多野结衣av一区二区av| 别揉我奶头~嗯~啊~动态视频| 亚洲av五月六月丁香网| 国产三级黄色录像| 欧美大码av| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 午夜两性在线视频| 最近最新中文字幕大全免费视频| 精品高清国产在线一区| 欧美黄色片欧美黄色片| 精品日产1卡2卡| av天堂在线播放| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| а√天堂www在线а√下载| 国产精品香港三级国产av潘金莲| 精品无人区乱码1区二区| 不卡一级毛片| 亚洲一区二区三区欧美精品| 欧美日韩瑟瑟在线播放| 国产一区二区激情短视频| 夜夜躁狠狠躁天天躁| 另类亚洲欧美激情| 精品日产1卡2卡| 村上凉子中文字幕在线| 午夜老司机福利片| 999久久久精品免费观看国产| 欧美成人性av电影在线观看| 在线观看舔阴道视频| 久久香蕉国产精品| xxx96com| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲伊人色综图| 日韩有码中文字幕| 一边摸一边做爽爽视频免费| 亚洲精华国产精华精| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女 | av在线播放免费不卡| 亚洲一区高清亚洲精品| 嫩草影视91久久| 国产欧美日韩综合在线一区二区| 激情视频va一区二区三区| 18美女黄网站色大片免费观看| 岛国在线观看网站| 亚洲性夜色夜夜综合| 久久 成人 亚洲| 国产欧美日韩精品亚洲av| av天堂久久9| av视频免费观看在线观看| 国产单亲对白刺激| 国产亚洲精品第一综合不卡| 国产成人一区二区三区免费视频网站| 精品国产超薄肉色丝袜足j| 国产成人影院久久av| 高清欧美精品videossex| 国产三级黄色录像| 久久青草综合色| 91精品三级在线观看| 国产成人av激情在线播放| 丰满的人妻完整版| 日本三级黄在线观看| avwww免费| 可以免费在线观看a视频的电影网站| 日韩成人在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 国产欧美日韩综合在线一区二区| 日本黄色视频三级网站网址| 久久天躁狠狠躁夜夜2o2o| 欧美日韩精品网址| 男女下面插进去视频免费观看| 午夜91福利影院| 久久久精品欧美日韩精品| 国产成人免费无遮挡视频| 19禁男女啪啪无遮挡网站| 日日夜夜操网爽| 亚洲熟妇中文字幕五十中出 | 巨乳人妻的诱惑在线观看| 操美女的视频在线观看| 欧美+亚洲+日韩+国产| 国产欧美日韩综合在线一区二区| 激情视频va一区二区三区| 黄片大片在线免费观看| 国产亚洲av高清不卡| 中国美女看黄片| 中文亚洲av片在线观看爽| 丝袜人妻中文字幕| 少妇 在线观看| 18美女黄网站色大片免费观看| 手机成人av网站| 一边摸一边抽搐一进一小说| 亚洲专区国产一区二区| 中亚洲国语对白在线视频| 老熟妇乱子伦视频在线观看| 免费女性裸体啪啪无遮挡网站| 女人爽到高潮嗷嗷叫在线视频| 天天添夜夜摸| 日韩免费高清中文字幕av| 欧美激情高清一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲狠狠婷婷综合久久图片| 精品卡一卡二卡四卡免费| 日韩视频一区二区在线观看| 99久久99久久久精品蜜桃| 一个人免费在线观看的高清视频| 国产成人免费无遮挡视频| 国产精品九九99| 亚洲国产欧美网| 亚洲九九香蕉| 亚洲一区二区三区不卡视频| 香蕉丝袜av| 久久精品亚洲熟妇少妇任你| 人成视频在线观看免费观看| av免费在线观看网站| 51午夜福利影视在线观看| 亚洲av五月六月丁香网| 久久天躁狠狠躁夜夜2o2o| 激情视频va一区二区三区| 亚洲人成电影免费在线| 日韩欧美国产一区二区入口| 精品一区二区三区四区五区乱码| 亚洲精品在线观看二区| 在线av久久热| 国产不卡一卡二| 国产精品一区二区在线不卡| 日本精品一区二区三区蜜桃| 最新美女视频免费是黄的| 国产精品二区激情视频| 亚洲 欧美一区二区三区| 视频区欧美日本亚洲| 搡老熟女国产l中国老女人| 久久精品国产亚洲av高清一级| 久久久久国产精品人妻aⅴ院| 一个人观看的视频www高清免费观看 | 免费在线观看影片大全网站| 女警被强在线播放| 亚洲自拍偷在线| 午夜成年电影在线免费观看| 国产精品免费一区二区三区在线| 高潮久久久久久久久久久不卡| 在线天堂中文资源库| 咕卡用的链子| 人成视频在线观看免费观看| 中文亚洲av片在线观看爽| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区蜜桃| 少妇的丰满在线观看| 精品人妻在线不人妻| 精品一区二区三区av网在线观看| 美女高潮到喷水免费观看| 一本综合久久免费|