• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism of plasma ignition in electrothermal-chemical launcher

    2016-04-18 08:23:08YongJINYanjieNIHaiyuanLIBaomingLI
    Defence Technology 2016年2期

    Yong JIN,Yan-jie NI,Hai-yuan LI*,Bao-ming LI

    National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China

    Mechanism of plasma ignition in electrothermal-chemical launcher

    Yong JIN,Yan-jie NI,Hai-yuan LI*,Bao-ming LI

    National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing,Jiangsu 210094,China

    Plasma generator is a core component in an electrothermal-chemical(ETC)launcher.Its work state directly inf l uences the launch eff i ciency of a system.The interaction between plasma and propellants is a very important mechanism in ETC technology.Based on the transient radiation model and open air plasma jet experiment,the mechanism of plasma ignition process is analyzed.Results show that the surface temperature of local solid propellant grain can quickly achieve the ignition temperature under the action of early transient plasma radiation.But it needs enough time to maintain the high energy f l ow to make self-sustained combustion of solid propellant grains.Because of the limited space characteristics of transient radiation,the near-f i eld propellant grains can gain enough energy by the strong transient radiation to be ignited and achieve self-sustained combustion.The far-f i eld propellant grains mainly gain the energy by the activated particles in plasma jet to be ignited and self-sustained combustion.Experiments show that plasma jet always has a high f l ow velocity in the area of the cartridge.Compared with conventional ignition,the solid propellant grains can obtain more quick and uniform ignition and self-sustained combustion by this kind of ablation controlled arc (ACA)plasma via energy skin effect of propellant grains,pre-heat temperature mechanism and high eff i cient jet diffusion.

    Electrothermal-chemical launch;Plasma ignition;Transient radiation;Plasma jet

    1.Introduction

    Electrothermal-chemical(ETC)launch can be used to obtain more smooth interior ballistic process and improve the kinetic energy (KE)of the projectile relative to the conventional ballistics [1].Capillary structure is always designed and used as the ablation material to support the ablation controlled arc(ACA)plasma in ETC launchers [2].The features of an ACA hybrid plasma jet can be controlled and regulated accurately by the discharge parameters of a pulse power supply (PPS)[3]. This kind of high temperature transient plasma has a great advantage to improve the ignition and combustion of solid propellants compared with conventional ignition using energetic materials,such as black powder.Optimizing the structural design and work parameters of plasma generator is of considerable signif i cance in engineering applications.

    The previous calculations and experiments show that the plasma temperatures ranged from 0.35 eV (4000 K)to 3 eV(35,000 K)[4,5].At the moment when plasma is injected into a propellant bed,energy is transferred rapidly to the propellantgrains nearby the plasma generator via instantaneous radiation,which might lead to ignition.There must be a strong radiation that may be used to optimize the ignition and combustion processes.After ignition,the plasma radiation is damped quickly through the high pressure gas produced by propellant burning. Energy is transferred quickly to the propellant grains far from the plasma generator via plasma jet diffusion.

    Lots of works in theory and experiments have been done to investigate the plasma-propellant interaction,and the enhancement function of plasma has been proven by experiments.But the mechanisms of plasma ignition and enhancement in the ETC launch process have yet been understood clearly.In this paper,a transient radiation model and relevant plasma jet experiments are established to discuss and help to understand the mechanism of plasma ignition in the ETC launch process from the view of radiation and diffusion,respectively.

    2.Near-f i eld:radiation

    In our previous works [6,7],a Monte Carlo method was employed in an attempt to understand the characteristics of plasma and its interaction with propellant grains by the transient radiation at the moment of discharging.A threedimensional model was established to simulate the early transient radiation in cartridge based on the model in Ref.[6].Allpropellant grains are uniformly aligned around the serial arc plasma generator in the center of the cartridge,as shown in Fig.1,and are characterized by a porosityPand an average absorption coeff i cientα.HereP=Vp/V,whereVpis the volume of propellant andVis the volume of cartridge.

    Fig.1.Schematic diagram of 3D radiation model.

    The assumptions here are as the same as those in Ref. [6]. Plasma is a graybody radiator,and the radiant energyEbis

    whereεis the emissivity;σis the Stefan-Boltzmann constant;andTis the plasma temperature.The temperature inside the plasma generator is assumed to be fi nite and constant.In our calculations,Tis assumed as 30,000 K.The radiant energy consists ofnenergy beams,and each energy beam has an energyEgiven by

    We also assume that the radiation and absorption of propellant grains follow Kirchhoff’s law based on local thermodynamic equilibrium (LTE)conditions [8].The propellants are assumed to be spherical and have diffuse re fl ective surfaces. Their quantum absorption ΔEpis

    whereαis the average absorption coeff i cient.We also assume that the scattering direction of the energy beam is random.And the wall of cartridge is assumed to have the same absorption characteristics as the propellant grains.

    The gases in the cartridge are assumed to behave as optical f i lm and also are supposed to be in thermodynamic equilibrium(TE)with the attenuation to the energy beamE’described as

    wheresis the length of the path andβis the attenuation coeff i cient of the gases in cartridge.βis assumed to be 0.01 in the calculations.

    We also assume that all of the energy absorbed by the propellant grains is used to increase their surface temperatures.

    The three-dimensional radiation model is coupled with a thermal model shown in Fig.2 to predict the surface temperature of propellant grains and the distribution of temperature in the cartridge.It is reasonable to assume that the radiative heat transfer from the plasma source to the surfaces of propellant grains is extremely eff i cient in a strong instantaneous radiation. Hence,the heat transfer from the surface of propellant grain to its interior is relatively slow.

    The surface layer of propellant grains can be def i ned as the area in the dashed boundary in Fig.2,and the boundary of its surface layer is approximated as an adiabatic boundary.

    The surface temperature of theith propellant grain can be written as

    whereqiis the energy fl ux reaching the surface of the propellant grain,as calculated by the radiation model;T0is the initial temperature of propellant grains (288.15 K);Cpandλare the speci fi c heat at constant pressure and the thermal conductivity of propellant grain,respectively;mis the mass of propellant grain,m=5.149 g;Δtis the actual time of radiation;andkis the volume ratio of surface layer to propellant grain.Based on the parameters of JA2 [9],Cpandλof propellant grains are selected as 1520.45 J/(kg K)and 0.28 W/(m K),respectively. For a spherical particle,we have

    Fig.2.Schematic diagram of propellant thermal model.

    Fig.3.Distribution of radiation energy f l ux in cartridge forT=30,000 K,α=0.1,andP=0.717257.

    whereRis the ratio of the surface layer thickness to the radius of propellant grain.The radius of propellant grain is on the order of 10-3m,and the molecular structure of large organic molecule is usually on the order of 10-7m.Hence,Ris assumed as 10,000 in our calculations withk≈ 0.0003.

    It is anticipated that the heat transfer from the surface of propellant grain to its interior is minimal.The main function of radiation is the instantaneous heating to the surface layer of propellant grain,and the surface layer temperature can maintain a constant increasing trend as a result of the radiation.

    2.1.Radiation distribution in cartridge

    The distribution of radiant energy in the cartridge forT=30,000 K,α=0.1,andP=0.717257 is shown in Fig.3,whereαis the average absorption coeff i cient andPis the porosity in cartridge.The radiation distributions in axial and radial sections are shown in Fig.3(a)and (b),respectively.It clearly shows that the radiant energy peak f l ux is nearly 320 MW/m2in an area next to the plasma source.The effect of radiation energy is conf i ned to a small f i eld around the plasma generator in the propellant bed [10].

    More calculations of different porosities are used to conf i rm the effective range of radiation in the cartridge.The radial distributions of radiant energy f l ux at different porosities are shown in Fig.4.Here the horizontal axis is propellant grains’position (normalized by the diameter of propellant grain).As shown in Fig.4,the farther the radial distance is,the less the radiation energy in the cartridge.The radiation energy becomes zero as the radial distance becomes more than 10 times of the propellant grain’s diameter.In the actual propellant bed,a high loading density (low porosity case)caused the penetration depth of radiation to be nearly 5 times the propellant grain’s diameter.Hence,we def i ne the near-f i eld propellant grains are those in 5 times the propellant grain’s diameter away with the plasma source,and the far-f i eld propellant grains are those far away with the plasma source more than 5 times of the propellant grain’s diameter.

    2.2.Energy skin effect of propellant grains

    Fig.5 shows the change of radiation intensity in the surface layer of propellant grains at 10 ps,100 ps,and 1 ns,where a,b,and c are spherical propellant grains shown in Fig.1,respectively.

    Stronger radiation is shown as bright white color in Fig.5.It can be intuitively seen from Fig.5 that the radiation intensity decreases from a to c at different times as a result of the rapid attenuation of radiation intensity along the radial direction.The radiation intensity on the surface layer of propellant grains increases rapidly,suggesting that the surface layer of propellant particles has a high amount of absorbed radiation on it.Because the plasma generator is on the left side of propellant,the radiation energy intensity on the left side is stronger than that on the right side.It shows that the propellant grains can be ignited simply by radiation.The responses of the energy f l ux and surface temperature of propellant grains to radiation are both in picoseconds.The main cause for the fast response must be the high eff i cient local radiation near the plasma generator.

    Fig.4.Radial distribution of radiation energy f l ux forT=30,000 K andα=0.1.

    Fig.5.Radiation intensity on surface layerofpropellantgrain forT=30,000 K,α=0.1,andP=0.717257.

    In the process of plasma ignition,the high eff i cient heat transfer causes the radiation energy to aggregate in the surface layer of propellant grain rapidly during early plasma radiation. There is not suff i cient time to transfer the energy from the surface of propellant grain to its interior.The energy absorbed is used to increase quickly the temperature in the surface layer of the propellant grains.Hence,the surface layer can reach the ignition temperature almost instantly.The energy skin effect on the propellant grain surface is the main cause of plasma ignition.

    2.3.Pre-heat temperature mechanism

    A statistical combustion model was used to simulate the changes of average temperature and pressure in the cartridge at the moment of initial burning.The time-dependent changes of average temperature and pressure in the cartridge were obtained by statistically analyzing the combustion situation of propellant grain inside the cartridge allowed.

    As the same as above assumption,the ignition sequence is determined when plasma temperature is 30,000 K.The ignition criterion is introduced as follows:if the temperature on the surface layer of a propellant grain reaches the ignition temperatureTc(600 K),the propellant grain absorbs enough energy generated by the plasma radiation to begin burning instantaneously.

    The statistical average temperature and pressure in the cartridge within the initial several microseconds are shown in Fig.6.The experimental pressure at forcing cone,which can be approximated to the average pressure in the cartridge,is shown as the experimental pressure curve in Fig.6 when the loading density is 0.5 kg/L with porosityPof nearly 0.7 in a 105 mm ETC launcher.The pressure was measured using a KISTLER 6215 quartz high-pressure sensor.It is shown that the calculated pressure curve is in good agreement with the experimental one. The average pressure in the cartridge began to increase sharply from 1 μs.But the average temperature increased rapidly from zerotime,andthegradientofaveragetemperaturef i rstincreased and then decreased.Thus,the establishment of the temperature f i eld in the cartridge is prior to that of the pressure f i eld.

    Fig.6.Statistical average temperature and pressure in the cartridge forT=30,000 K,α=0.1,andP=0.717 257.

    Itissupposedthattheplasmaradiationcantransfertheenergy eff i ciently and causes an initial transient temperature f i eld near the plasma source.The pre-heat temperature f i eld caused by plasma radiation is benef i cial to ignition and combustion in the propellant bed.In conventional ignition,the main mode of energy transfer is convective conduction rather than radiation. Obviously,theuseofplasmainignitionensuresahighereff i cient and more precise ignition time.The pre-heat temperature mechanism cannot be obtained in conventional launch.

    3.Far-f i eld:diffusion

    The research above indicates that the propellant bed has a screening effect on the arc plasma radiation.Some local solid propellant grains around the plasma generator can quickly achieve the ignition point under the action of early strong instantaneous plasma radiation.But it needs enough time to maintain the high energy f l ow to achieve the self-sustained combustion of solid propellant grains.After these local propellant grains begin to burn,the combustion products,such as high temperature gas,change the optical properties of radiation in the cartridge,and the radiation is attenuated rapidly.Thus,the far-f i eld propellant grains mainly gain the energy from the activated particles in plasma jet.Plasma diffusion becomes the main way to transfer the energy.

    Open air tests offered visualization of undisturbed plasma jet f l ows.The test results may help to understand the complex f l ow f i elds presenting in the propellant bed.An open air f i ring experimental system was designed and constructed to identify the diffusion characteristics of ACA plasma jet [11].The experimental system is shown in Fig.7.A Phantom V710 high-speed camera was used to collect the real-time images which were compared with background scale to determine the location of plasma jet boundary and the diffusion velocity of plasma.

    Fig.7.Open air f i ring experimental system for ACA plasma generator.

    A matched PPS device was used to supply a pulse current for the plasma generator,for which the peak current and full width at half maximum (FWHM)are nearly 160 kA and 3 ms,respectively.The electrical explosion time was about 147 μs.Fig.8 shows the high-speed images of ACA plasma diffusion in the early 330 μs of pulse discharging process.

    It is shown that the arc plasma has a controllable boundary with the pulse current waveform.Both axial and radial diffusions occur under normal pressure at the same time.The calculated result shows that the radial diffusion velocity is nearly 333 m/s,similar to the local speed of sound.The axial diffusion velocity is higher than the radial one,which can reach approximately Mach 5.Hence,the plasma can f i ll the whole chamber quickly after transient radiation.Plasma diffusion brings the activated particles and energy to the propellant grains which are far away from the plasma generator.

    4.Conclusion

    In order to discuss and analyze the mechanism of plasma ignition in electrothermal-chemical (ETC)launch process,a 3-D transient radiation model and plasma jet air f i ring experiment were established to investigate the main energy transfer ways of the ablation controlled arc (ACA)plasma from the consideration of theory and experiment.

    Fig.8.High-speedimagesofACAplasmageneratoropenairf i ringexperiment.

    Theresultsshowthatthiskindoftransientplasmahasagreat advantage to improve the ignition and combustion of solid propellants.Becausethepropellantbedhasascreeningeffecton theACA plasma radiation,near-f i eld propellant grains can gain enough energy from the early strong transient radiation to be ignited and achieveself-sustained combustion.Far-f i eld propellant grains mainly gain the energy from the activated particlesintheplasmajettobeignitedandachieveself-sustained combustion.Experiments show that this plasma jet always has a higher axial diffusion velocity.Far-f i eld solid propellant grains can obtain more quick and uniform ignition and self-sustained combustion by the high velocity plasma jet.The ignition time in the cartridge is greatly shortened by using the high-eff i ciency energy transfer way:radiation and diffusion ofACA plasma.

    Both radiation and diffusion characteristics of plasma should be considered in engineering design and experiments to optimize the ignition and combustion of propellant grain in order to improve the interior ballistic performance of ETC launcher.

    Our future work will be to optimize the plasma generator structures to obtain better quality plasma.The ACA plasma diffusion details will be discussed both in theory and experiment.A series of experiments will be executed to explore the relationship among plasma temperature distribution,diffusion velocity and input pulse current parameters and help in building theACA plasma diffusion calculation model.The radiation and diffusion characteristics ofACA plasma in a real propellant bed will also be considered and conf i rmed in our future simulations and experiments.

    [1]Woodley CR.A parametric study for an electrothermal-chemical artillery weapon.IEEE Trans Magn 1993;29(1):625-30.

    [2]Dyvik J,Herbig J,Appleton R,O’Reilly J,Shin J.Recent activities in electrothermal chemical launcher technologies at BAE systems.IEEE Trans Magn 2007;43(1):303-7.

    [3]Porwitzky AJ,Keidar M,Boyd ID.Progress towards an end-to-end model of an electrothermal chemical gun.IEEETrans Magn 2009;45(1):412-16.

    [4]Zoler D,Shaf i r N,F(xiàn)orte D,Kot E,Ravid A,Wald S,et al.Study of plasma jet capabilities to produce uniform ignition of propellants,ballistic gain,and signif i cant decrease of the “temperature gradient”.IEEE Trans Magn 2007;43(1):322-8.

    [5]Winfrey AL,Abd Al-Halim MA,Mittal S,Bourham MA.Study of high-enthalpy electrothermal energetic plasma source concept.IEEE Trans Plasma Sci 2015;43(7):2195-2200.

    [6]Jin Y,Li B.Energy skin effect of propellant particles in electrothermalchemical launcher.IEEE Trans Plasma Sci 2013;41(5):1112-16.

    [7]Jin Y,Li B.Calculation of plasma radiation in electrothermal-chemical launcher.Plasma Sci Technol 2014;16(1):50-3.

    [8]Kappen K,Bauder U.Calculation of plasma radiation transport for description of propellant ignition and simulation of interior ballistics in ETC guns.IEEE Trans Magn 2001;37(1):169-72.

    [9]Porwitzky AJ,Keidar M,Boyd ID.Modeling of the plasma-propellant interaction.IEEE Trans Magn 2007;43(1):313-17.

    [10]Porwitzky AJ,Keidar M,Boyd ID.Numerical parametric study of the capillary plasma source for electrothermal-chemical guns.IEEE Trans Magn 2009;45(1):574-7.

    [11]Kim S-H,Yang K-S,Lee S-W,Jung J-W.Capillary discharge in the open air.IEEE Trans Magn 2003;39(1):244-7.

    Received 29 September 2015;revised 28 December 2015;accepted 28 December 2015 Available online 28 January 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.Tel.:+8602584315938806.

    E-mail address:li_haiyuan@163.com (H.Y.LI).

    http://dx.doi.org/10.1016/j.dt.2015.12.009

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲精品日韩av片在线观看| 成人三级黄色视频| av福利片在线观看| 欧美日韩综合久久久久久| 欧美人与善性xxx| 大又大粗又爽又黄少妇毛片口| 国产亚洲一区二区精品| 狠狠狠狠99中文字幕| 亚洲怡红院男人天堂| 亚洲一级一片aⅴ在线观看| 日韩大片免费观看网站 | 丰满人妻一区二区三区视频av| 99热网站在线观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲综合色惰| 3wmmmm亚洲av在线观看| 国产成人精品久久久久久| 精品99又大又爽又粗少妇毛片| 亚洲av熟女| 欧美成人精品欧美一级黄| 成人特级av手机在线观看| 精品一区二区免费观看| 长腿黑丝高跟| 最近最新中文字幕免费大全7| 五月伊人婷婷丁香| 2022亚洲国产成人精品| 日韩人妻高清精品专区| 汤姆久久久久久久影院中文字幕 | 国产v大片淫在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕制服av| 精品久久久久久成人av| 欧美97在线视频| 人人妻人人看人人澡| 亚洲av二区三区四区| 久久久久久九九精品二区国产| 少妇被粗大猛烈的视频| 国产亚洲91精品色在线| 丝袜美腿在线中文| 国产成人aa在线观看| 中文字幕亚洲精品专区| 精品国内亚洲2022精品成人| 内射极品少妇av片p| 亚洲国产高清在线一区二区三| 久久热精品热| 22中文网久久字幕| 神马国产精品三级电影在线观看| 午夜日本视频在线| 欧美精品国产亚洲| 熟女人妻精品中文字幕| 中文字幕av在线有码专区| 中文天堂在线官网| 国国产精品蜜臀av免费| 日韩一区二区三区影片| 国产探花极品一区二区| 久久精品夜夜夜夜夜久久蜜豆| av视频在线观看入口| 男人狂女人下面高潮的视频| 国产毛片a区久久久久| 日本色播在线视频| 亚洲高清免费不卡视频| 最近最新中文字幕大全电影3| 精品国产一区二区三区久久久樱花 | 国产乱人视频| 一级毛片久久久久久久久女| 久久久国产成人精品二区| 国产成人午夜福利电影在线观看| av国产免费在线观看| 久久精品久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美成人综合另类久久久 | 国产免费一级a男人的天堂| 亚洲18禁久久av| 日韩亚洲欧美综合| 亚洲成av人片在线播放无| 婷婷色麻豆天堂久久 | 三级经典国产精品| 亚洲18禁久久av| 国产片特级美女逼逼视频| 欧美97在线视频| 成人毛片a级毛片在线播放| 日韩三级伦理在线观看| 欧美xxxx性猛交bbbb| kizo精华| 国产一区二区三区av在线| 我要搜黄色片| 天堂影院成人在线观看| 天天躁夜夜躁狠狠久久av| a级毛片免费高清观看在线播放| 亚洲人与动物交配视频| 日本熟妇午夜| 免费播放大片免费观看视频在线观看 | 国产单亲对白刺激| 亚洲欧美日韩东京热| 男女下面进入的视频免费午夜| 美女内射精品一级片tv| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 视频中文字幕在线观看| 国产av一区在线观看免费| 在线a可以看的网站| 国产成人免费观看mmmm| 丝袜美腿在线中文| 男人狂女人下面高潮的视频| 婷婷色av中文字幕| 国产黄片视频在线免费观看| 男插女下体视频免费在线播放| 亚洲一区高清亚洲精品| 99久久成人亚洲精品观看| 成人一区二区视频在线观看| 国产在线男女| 夜夜看夜夜爽夜夜摸| 国产精品无大码| 亚洲精品乱久久久久久| 日韩成人av中文字幕在线观看| 99久久精品国产国产毛片| 99久国产av精品| 免费一级毛片在线播放高清视频| 欧美日韩综合久久久久久| 精品人妻视频免费看| 国产精品日韩av在线免费观看| 国产亚洲精品久久久com| 亚洲国产成人一精品久久久| 久久这里有精品视频免费| 永久网站在线| 我要搜黄色片| 99热这里只有是精品50| 日韩人妻高清精品专区| 嫩草影院入口| 一级毛片aaaaaa免费看小| 久久欧美精品欧美久久欧美| 69人妻影院| 99久久人妻综合| 夜夜看夜夜爽夜夜摸| 国产亚洲午夜精品一区二区久久 | 中国国产av一级| 超碰97精品在线观看| 看十八女毛片水多多多| 久久久久久国产a免费观看| 建设人人有责人人尽责人人享有的 | 日本五十路高清| 青春草亚洲视频在线观看| 晚上一个人看的免费电影| 欧美区成人在线视频| 日韩欧美三级三区| 免费看av在线观看网站| 久久精品91蜜桃| 久久久久久国产a免费观看| 久久草成人影院| 夫妻性生交免费视频一级片| 舔av片在线| 晚上一个人看的免费电影| 最近中文字幕2019免费版| 变态另类丝袜制服| 国产精品蜜桃在线观看| 精品不卡国产一区二区三区| 精华霜和精华液先用哪个| 国产黄a三级三级三级人| 久久久久久久午夜电影| 国产黄色视频一区二区在线观看 | 高清日韩中文字幕在线| 国产亚洲av嫩草精品影院| 成人一区二区视频在线观看| 亚洲精品久久久久久婷婷小说 | 亚洲国产精品国产精品| 国产免费男女视频| 午夜日本视频在线| 精品一区二区免费观看| 久久6这里有精品| 欧美3d第一页| 亚洲成av人片在线播放无| 亚洲精品aⅴ在线观看| 国产精品国产三级国产av玫瑰| 亚洲高清免费不卡视频| 亚洲国产成人一精品久久久| 久久久久久久久久成人| 亚洲精品日韩在线中文字幕| 色综合站精品国产| 在线免费十八禁| 久久久精品大字幕| 日本黄大片高清| 有码 亚洲区| 水蜜桃什么品种好| 国产精品1区2区在线观看.| 一边亲一边摸免费视频| 欧美高清性xxxxhd video| 身体一侧抽搐| 国产精品久久视频播放| 97超碰精品成人国产| 久久久久精品久久久久真实原创| 欧美xxxx性猛交bbbb| 免费无遮挡裸体视频| 日本猛色少妇xxxxx猛交久久| 麻豆av噜噜一区二区三区| 国产老妇女一区| 国产视频首页在线观看| 国产精品麻豆人妻色哟哟久久 | 视频中文字幕在线观看| 日本一本二区三区精品| eeuss影院久久| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久| 91久久精品国产一区二区三区| 亚洲美女搞黄在线观看| 日本五十路高清| 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看| 亚州av有码| 成人二区视频| 成人毛片a级毛片在线播放| 久久久精品94久久精品| 亚州av有码| 村上凉子中文字幕在线| 婷婷六月久久综合丁香| 偷拍熟女少妇极品色| 欧美xxxx性猛交bbbb| 欧美97在线视频| 国产免费一级a男人的天堂| 国产av不卡久久| 国产亚洲av嫩草精品影院| 精品久久久噜噜| 天堂中文最新版在线下载 | 热99re8久久精品国产| 国产在线男女| 午夜福利在线在线| 中文字幕熟女人妻在线| 国产亚洲一区二区精品| 免费看光身美女| 久久久久精品久久久久真实原创| 搡老妇女老女人老熟妇| 国产免费又黄又爽又色| 九九久久精品国产亚洲av麻豆| 久久人人爽人人片av| 在线天堂最新版资源| a级毛片免费高清观看在线播放| 韩国av在线不卡| 看免费成人av毛片| 天天躁夜夜躁狠狠久久av| 亚洲怡红院男人天堂| 国产真实乱freesex| av在线亚洲专区| 天天躁夜夜躁狠狠久久av| 男女边吃奶边做爰视频| 毛片女人毛片| 午夜久久久久精精品| 伊人久久精品亚洲午夜| 国产一区二区三区av在线| 两个人视频免费观看高清| 国产精品久久电影中文字幕| h日本视频在线播放| www.色视频.com| 大香蕉97超碰在线| 成人综合一区亚洲| 男人舔奶头视频| 18禁在线播放成人免费| 国产单亲对白刺激| 国产精品一区二区三区四区免费观看| 日韩精品有码人妻一区| 一区二区三区免费毛片| 真实男女啪啪啪动态图| 永久免费av网站大全| or卡值多少钱| 久久精品国产亚洲网站| 免费观看在线日韩| 18禁裸乳无遮挡免费网站照片| 麻豆成人av视频| 国产国拍精品亚洲av在线观看| 久久韩国三级中文字幕| 国产成人午夜福利电影在线观看| 精品久久久久久久久av| 国产日韩欧美在线精品| 99久久精品热视频| 精品久久久久久成人av| av播播在线观看一区| 老司机影院成人| 成人高潮视频无遮挡免费网站| 久久人人爽人人爽人人片va| 99热这里只有是精品50| 国产精品国产三级国产av玫瑰| 中文字幕制服av| 2022亚洲国产成人精品| 免费黄色在线免费观看| 日韩人妻高清精品专区| 国产精品一区www在线观看| 免费av不卡在线播放| 天美传媒精品一区二区| 精品久久久久久久人妻蜜臀av| 国产精品,欧美在线| 如何舔出高潮| 成人三级黄色视频| 干丝袜人妻中文字幕| 日韩av不卡免费在线播放| 禁无遮挡网站| 高清午夜精品一区二区三区| 性色avwww在线观看| 少妇高潮的动态图| 一级毛片久久久久久久久女| 91狼人影院| 色综合站精品国产| 波多野结衣巨乳人妻| 爱豆传媒免费全集在线观看| av黄色大香蕉| www.色视频.com| 中文字幕制服av| 亚洲乱码一区二区免费版| 亚洲欧美一区二区三区国产| 国产免费一级a男人的天堂| 性色avwww在线观看| 内射极品少妇av片p| 久久人人爽人人爽人人片va| 国产色婷婷99| 五月玫瑰六月丁香| 精品久久久噜噜| 国产成人免费观看mmmm| 国产乱人偷精品视频| 日本色播在线视频| 亚洲欧美精品综合久久99| 蜜臀久久99精品久久宅男| 水蜜桃什么品种好| 永久免费av网站大全| 国产亚洲av嫩草精品影院| 国产精品国产高清国产av| 亚洲av男天堂| 日本黄色片子视频| 汤姆久久久久久久影院中文字幕 | 少妇丰满av| 国产成人a∨麻豆精品| 级片在线观看| 中文天堂在线官网| 欧美性猛交黑人性爽| 美女高潮的动态| 亚洲色图av天堂| 国产成人福利小说| 久久精品国产99精品国产亚洲性色| 欧美人与善性xxx| 日韩三级伦理在线观看| 色视频www国产| 色网站视频免费| 久久久久久大精品| 精品99又大又爽又粗少妇毛片| 亚洲av日韩在线播放| 狠狠狠狠99中文字幕| 黄色欧美视频在线观看| 亚洲成人精品中文字幕电影| 亚洲综合精品二区| 欧美+日韩+精品| 国产成人精品婷婷| 国产精品一区www在线观看| 69av精品久久久久久| 亚洲久久久久久中文字幕| 亚洲国产高清在线一区二区三| 亚洲av成人av| 韩国av在线不卡| 伦理电影大哥的女人| 日日撸夜夜添| 在线免费观看不下载黄p国产| 国产免费男女视频| 五月玫瑰六月丁香| 一级av片app| 永久免费av网站大全| 69人妻影院| 精品久久久噜噜| av免费观看日本| 99久久精品国产国产毛片| 可以在线观看毛片的网站| 黄片无遮挡物在线观看| 丰满少妇做爰视频| 亚洲国产日韩欧美精品在线观看| 亚洲精品乱久久久久久| 国产精品蜜桃在线观看| 在线观看av片永久免费下载| 午夜老司机福利剧场| 亚洲成av人片在线播放无| 国产成人免费观看mmmm| 色视频www国产| 国产成人精品久久久久久| 欧美精品国产亚洲| 国产中年淑女户外野战色| www.av在线官网国产| 国产成人a区在线观看| 99久久九九国产精品国产免费| www.色视频.com| 欧美xxxx性猛交bbbb| av天堂中文字幕网| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| h日本视频在线播放| 综合色av麻豆| 又黄又爽又刺激的免费视频.| 国产午夜精品久久久久久一区二区三区| 毛片女人毛片| 少妇熟女aⅴ在线视频| 国产国拍精品亚洲av在线观看| 亚洲av不卡在线观看| 亚洲精品乱码久久久久久按摩| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜添av毛片| 国产精品人妻久久久影院| 欧美极品一区二区三区四区| 精品人妻偷拍中文字幕| 18禁在线无遮挡免费观看视频| 三级男女做爰猛烈吃奶摸视频| 最近手机中文字幕大全| 国产女主播在线喷水免费视频网站 | 一二三四中文在线观看免费高清| 国产高清不卡午夜福利| 日韩亚洲欧美综合| 在线观看av片永久免费下载| 美女高潮的动态| 91av网一区二区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲怡红院男人天堂| 最近最新中文字幕大全电影3| av又黄又爽大尺度在线免费看 | 亚洲欧美成人综合另类久久久 | 淫秽高清视频在线观看| 国产精品不卡视频一区二区| 岛国在线免费视频观看| av福利片在线观看| 好男人在线观看高清免费视频| 久久久久久九九精品二区国产| 国产中年淑女户外野战色| 国产午夜精品久久久久久一区二区三区| 欧美成人精品欧美一级黄| 亚洲av成人精品一二三区| 乱码一卡2卡4卡精品| 精品午夜福利在线看| 天堂av国产一区二区熟女人妻| 听说在线观看完整版免费高清| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频 | 白带黄色成豆腐渣| 国产91av在线免费观看| 国产成人91sexporn| 国产综合懂色| 色综合站精品国产| 亚洲欧美日韩东京热| 亚洲五月天丁香| 成年女人看的毛片在线观看| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 久久久国产成人精品二区| 免费播放大片免费观看视频在线观看 | 三级经典国产精品| 男人和女人高潮做爰伦理| 亚洲激情五月婷婷啪啪| 免费看日本二区| 久久婷婷人人爽人人干人人爱| 99热这里只有是精品50| 舔av片在线| 国产毛片a区久久久久| 久久久久九九精品影院| 国产乱人视频| 亚洲av不卡在线观看| 国产私拍福利视频在线观看| 精品久久久久久久人妻蜜臀av| 综合色丁香网| 美女脱内裤让男人舔精品视频| 国产真实乱freesex| 欧美日本亚洲视频在线播放| 国产精华一区二区三区| 永久网站在线| 久久99热6这里只有精品| 日韩中字成人| av在线老鸭窝| 亚洲av电影在线观看一区二区三区 | 国产精品蜜桃在线观看| 在线免费观看的www视频| 夜夜爽夜夜爽视频| 中文精品一卡2卡3卡4更新| 直男gayav资源| 日韩三级伦理在线观看| kizo精华| av在线天堂中文字幕| kizo精华| 久久6这里有精品| 免费观看在线日韩| 建设人人有责人人尽责人人享有的 | 毛片一级片免费看久久久久| 国产成人精品久久久久久| 三级国产精品片| 男女下面进入的视频免费午夜| 亚洲在线自拍视频| 一级毛片久久久久久久久女| 国产av码专区亚洲av| 国产黄色视频一区二区在线观看 | 国产成人精品一,二区| 九九热线精品视视频播放| 不卡视频在线观看欧美| 18禁在线无遮挡免费观看视频| 一区二区三区高清视频在线| 99久国产av精品| 久久久久久久久久黄片| 中国美白少妇内射xxxbb| 亚洲高清免费不卡视频| 日韩一本色道免费dvd| 老司机福利观看| 亚州av有码| 亚洲人成网站在线观看播放| 国产成人a∨麻豆精品| 午夜福利网站1000一区二区三区| 91精品国产九色| 亚州av有码| 夜夜爽夜夜爽视频| 国产高清国产精品国产三级 | av女优亚洲男人天堂| 国产一区二区三区av在线| 最近最新中文字幕大全电影3| 亚洲精品国产成人久久av| 看十八女毛片水多多多| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 亚洲三级黄色毛片| av在线播放精品| 精品一区二区三区人妻视频| 国产一级毛片在线| 亚洲av成人av| www.av在线官网国产| 欧美色视频一区免费| av免费观看日本| 国产色婷婷99| 久久精品久久精品一区二区三区| 三级国产精品欧美在线观看| 特大巨黑吊av在线直播| 99在线人妻在线中文字幕| 久久鲁丝午夜福利片| 国产精品熟女久久久久浪| 精品人妻视频免费看| 国产精品麻豆人妻色哟哟久久 | 如何舔出高潮| 变态另类丝袜制服| 亚洲色图av天堂| 日韩 亚洲 欧美在线| 色噜噜av男人的天堂激情| 亚洲丝袜综合中文字幕| 99久久无色码亚洲精品果冻| 久久精品人妻少妇| 高清毛片免费看| 九九热线精品视视频播放| 黄色日韩在线| 午夜激情福利司机影院| 亚洲av男天堂| 伦精品一区二区三区| 亚洲四区av| 精品人妻视频免费看| 国产免费又黄又爽又色| 亚洲av熟女| 22中文网久久字幕| 国产精品永久免费网站| or卡值多少钱| 欧美日韩一区二区视频在线观看视频在线 | av免费观看日本| 国产探花在线观看一区二区| 卡戴珊不雅视频在线播放| 国内少妇人妻偷人精品xxx网站| 欧美高清性xxxxhd video| 国产一区二区亚洲精品在线观看| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品国产精品| 青春草亚洲视频在线观看| 亚洲电影在线观看av| 干丝袜人妻中文字幕| 亚洲国产欧美在线一区| 国内精品一区二区在线观看| 熟女人妻精品中文字幕| 精品久久久久久电影网 | 丝袜美腿在线中文| 亚洲av中文av极速乱| 尤物成人国产欧美一区二区三区| 18禁在线播放成人免费| 身体一侧抽搐| 亚洲不卡免费看| 淫秽高清视频在线观看| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久久久免| 床上黄色一级片| 国产黄片美女视频| 国产视频内射| 国产亚洲91精品色在线| 国产黄片美女视频| 韩国高清视频一区二区三区| 日韩三级伦理在线观看| 欧美激情久久久久久爽电影| 熟女人妻精品中文字幕| 日日撸夜夜添| 免费看光身美女| 国产麻豆成人av免费视频| av免费在线看不卡| 搞女人的毛片| 国产精品一区www在线观看| 亚洲美女视频黄频| 国产亚洲精品av在线| 男人和女人高潮做爰伦理| 国内揄拍国产精品人妻在线| 欧美日本视频| 日本欧美国产在线视频| 日本午夜av视频| 99久久精品一区二区三区| 丰满少妇做爰视频| 哪个播放器可以免费观看大片| 看片在线看免费视频| 午夜免费激情av| 26uuu在线亚洲综合色| 97超碰精品成人国产| 久久久色成人| 精品久久久久久电影网 | 日本一二三区视频观看| 少妇被粗大猛烈的视频| 亚洲欧美成人精品一区二区| 2021少妇久久久久久久久久久| 午夜a级毛片| 高清视频免费观看一区二区 | 中文字幕av在线有码专区| 亚洲四区av|