• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on the f l ow control of micro-vanes on a supersonic spinning projectile

    2016-04-18 09:12:56JieMAZhihuaCHENZhenguiHUANGJianguoGAOQiangZHAO
    Defence Technology 2016年3期

    Jie MA*,Zhi-hua CHEN,Zhen-gui HUANG,Jian-guo GAO,Qiang ZHAO

    Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    Investigation on the f l ow control of micro-vanes on a supersonic spinning projectile

    Jie MA*,Zhi-hua CHEN,Zhen-gui HUANG,Jian-guo GAO,Qiang ZHAO

    Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    Studies have shown that micro-wedge vortex generators (MVG)can effectively control the f l ow separation of supersonic boundary layer.In order to improve the f l ight stability of spinning projectile,the original standard 155 mm projectile was taken as an example,and the micro-vanes were mounted at the projectile shoulder to investigate the separation control on the aerodynamic characteristics of projectile.Numerical simulations were performed with the use of DES method for the f l ow f i elds of projectiles with and without micro-vanes,and the characteristics of the boundary layer structures and aerodynamic data were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit separation of f l uid on projectile surface,and improve the f l ight stability and f i ring dispersion of projectile.

    Spinning projectile;Micro-vane;Stability;Aerodynamic characteristics;Fluid control

    1.Introduction

    Precision strike is a general trend in modern warfare,and many countries in the world improve the fl ight stability and fi ring dispersion of projectile mainly through the development of guided munitions and transformation of conventional ammunition [1].Supersonic spinning projectiles are greatly in fl uenced by boundary layer separation in the process of fl ight[1,2].The fl ight stability of a projectile is one of the basic requirements of the projectile design [3],which it means that its angle of attack between the axis of the projectile and velocity vector should be within a certain limit,and gradually decay[4-6].

    Micro-vanes are found to be able to suppress the separation of supersonic fl ow.In this paper,in order to further improve the fl ight stability of the standard 155 mm projectile [7],the microvanes were mounted at the projectile shoulder according to the Task Force fi ndings [8-10],so that the fl uid separation in the boundary layer of projectile can be suppressed,and the projectile has a stronger anti-interference ability during fl ight for improving its fl ight stability and fi ring accuracy.The supersonic fl ow structure around micro-vanes and the control mechanism of boundary layer separation were discussed in detail in Refs.[8-10].

    Numerical simulations were performed with the use of DES method for the f l ow f i elds of 155 mm standard projectiles for two cases with and without micro-vanes.The modif i cations of the boundary layer structures and aerodynamic data for two cases were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit the f l uid separation of projectile surface,improve the projectile lift and pitching moment,and eliminate the shaking of lift and pitching moment,as a result of improving the f l ight stability and f i ring dispersion,which can provide guidance for the improvement of supersonic projectiles.

    2.Investigation approach

    The fl uid fi eld of supersonic spinning projectile was simulated based on DES simulation method.Realizablek-εturbulence model is used for the near wall region,and the large eddy simulation (LES)is used for external fl ow fi eld,in which the spatial discrete are discretized using the fi nite volume method,the convection term is approached with the second orderAUSM format,and a central difference scheme is used for the viscosity term.

    The transport equations of turbulent kinetic energy and dissipation in realizablek-εturbulence model are

    The control equations of LES model can be obtained by fi ltering Navier-Stokes equations in wave number space or irrational space.The fi ltration process is to remove the small vortexes which are shorter than fi lter width or a given unreasonable width.The resulting control equations of maelstrom are

    whereτijis de fi ned as subgrid stress,τij=ρuiuj-ρuiuj.

    A sliding mesh needs to be used in order to simulate the fl ight state of spinning projectile.Sliding grid technology requires an external f i xed area and inner motion area round the projectile,with a pair of interfaces being between two areas,and the points of the interface grid do not need to overlap;they only need to do numerical interpolation on the slip boundary to ensure the f l ux conservation between two regions,and the deformation of grid cell in motion,do not occur.Therefore the sliding grid technology occupies less memory of computer,calculates fast and has high precision.

    Fig.1.M549 projectile [7].

    Fig.2.Grid around the projectile.

    155 mm M549 projectile,as shown in Fig.1(a),was used as an example in the present paper.The micro-vanes were mounted at the projectile shoulder to form a new physical model,as shown in Fig.1(b).Fig.2 shows the computationaldomain of M549 projectile.Fig.2(a)shows the grid distribution of symmetric surface,and Fig.2(b)and (c)show the sliding grid near the projectile and the grid near a vane,respectively. The computational domain is divided into an external f i xed area and an internal sliding area.The grids within boundary layer were ref i ned along the normal direction,and the grids near the head,shoulder and tail of projectile were ref i ned along the f l ow direction.After repeated calculations and convergence tests,the grid number of the whole area is about 2 million.

    Projectile surface is applied with the no-slip wall boundary condition,and the meshes of the interior layers are designed to move with the projectile.The interfaces of external f i xed grid area and internal sliding area are adopted with the sliding boundary conditions.The mach number of incoming f l ow is assumed to be 2.05.The initial pressure P0is set to 1.014 × 105Pa,and the initial temperature T0is 278K.The spin rate of the projectile is chosen to be Ω =1112 rad/s,which equals a maximal dimensionless spin rate,pD2U∞= 0. 154. The rotation is anti-clockwise viewing from the base of the projectile.

    3.Results and discussion

    Fig.3 shows the comparison of previous measured and simulated side force coeff i cients of a generic 6.37 diameter long tangential-ogive-cylinder type projectile.The simulated results of unsteady DES method are compatible with the previous simulated and experimental results.It verif i es that the credibility of the numerical simulation results in this paper.

    Fig.4 shows the pressure distributions on the surfaces of the standard projectile and the projectile with micro vanes and around them with Ma of 2.05 and angle of attack (AOA)of 4°. The main shock wave structures are the same for both cases;there are oblique shock waves around the heads and expansion waves near the tails.But for the projectile with micro-vanes,the oblique shock wave also forms along the micro-vanes,and its strength is much weaker than that of head shock wave.In addition,the shock waves around micro-vanes are stronger at the area close to the windward side,which makes the surface pressure higher than that on the leeward side,and leads to a raise in the projectile lift.

    3.1.Control mechanism of micro-vanes

    Micro-vortex generator is considered to be one of the most applicable prospects in the f i eld of supersonic and hypersonic f l ow control.It can generate a strong vortex pair under the action of windward airf l ow.The vortex structures can inhale the high-speed gas of mainstream into the boundary layer,and push the original low speed gas of the boundary layer f l ow into the main f l ow,thus increasing the momentum boundary layer and turning an adverse pressure gradient of f l ow separation into a favorable pressure gradient.The f l ow separation of boundary layer can be suppressed [10].

    A series of studies about tail vortexes of micro-vane had been carried [10].The basic structure of micro-vane is shown in Fig.5,and the structure parameters of micro-vane are h=2 mm,a=7.5 mm,b=1.25 mm,c=13.05 mm.

    It can be seen from Fig.6 that the wake f l ow structures are simple;there is mainly a counter-rotating streamwise vortexpair which suggests the main mechanism of the boundary layer control.The streamwise vortex tube can also entrain high

    Fig.3.Comparison of the measured Magnus coeff i cient and the simulated results of a tangential-ogive-cylinder type projectile for Ma=3 [11,12].

    Fig.4.Pressure distributions of (a)the standard projectile and (b)the projectile with micro-vanes for Ma=2.05,

    Ω=1112 rad/s

    Fig.5.Computational model of micro-vane.

    and AOA=4°. momentum gas from the free stream into the boundary layer and redistribute the pressure distribution on the boundary layer.

    Fig.7 shows the vorticity distribution on the cross sections of the projectiles without and with micro-wedge for Ma=3,AOA=4°and spin rate Ω=157 rad/s.It can be seen from Fig.7 that the vorticity distribution behind vanes on the projectile with micro-vanes is different from that on the standard projectile.As shown in Fig.7(c),the counter-rotating streamwise vortex-pair attaches on the surface of projectile.Its effect is consistent with the details described in Ref. [4].The vortex structure can inhale the high-speed gas of mainstream into the boundary layer,and push the original low speed gas of the boundary layer into the outer main f l ow.So far,the energy exchange between them is completed,and the f l uid separation on the surface of projectile is inhibited.

    Fig.8 shows the density isosurfaces of projectiles without and with vanes for Ma=2.05 and AOA=0°,and the colors of the isosurface represents pressure value.It can be seen from Fig.8 that the typical streamwise vortex pair behind the microvanes is distributed along the body of projectile,and the trailing vortexes distribute spirally due to the rotation of projectile.The leeward pressure of projectile is slightly decreased after adding the micro-vanes;therefore the projectile lift is enhanced.It can also be seen from Fig.8 that the counter-rotating streamwise vortex pairs form the buffering zones.It is conducive to weakenthe interference encountered during f l ight so as to improve its f l ight stability.

    Fig.6.Vortex rings shown by iso-surface of λ2[10].

    Fig.7.The vorticity distributions on cross sections of the projectiles without and with micro-wedge for Ma=2.05,AOA=0°and spin rate,Ω=1112 rad/s.

    Fig.8.Density isosurfaces (ρ=0. 9 5 kg/m3)of projectiles without and with vanes for Ma=2.05 and AOA=0°.

    Fig.9.Comparison of aerodynamic coeff i cients of projectile with and without vanes for Ma=2.05 and AOA=4°.

    Fig.10.Comparison of Magnus coeff i cients of projectiles with and without vanes at Ma=2.05 and AOA=4°.

    3.2.The inf l uence of micro-vanes on aerodynamic coeff i cient Figs.9 and 10 show the comparison of aerodynamic coeff icients of the projectiles with and without vanes for Ma=2.05 and AOA=4°.The aerodynamic coeff i cients of projectile with micro-vanes increase slightly.However,the obvious slight cyclical f l uctuations can be observed from the curve of aerodynamic coeff i cient versus time,but the aerodynamic coeff i cient becomes stable after the addition of micro-vanes.And the normal coeff i cient of projectile with vanes increases and eliminates its oscillation so as to improve the stability,but decrease the lift-to-drag ratio.Generally,vibration of aerodynamic coeff i cients is mainly caused by f l uid separation on the projectile surface.Separation vortex shedding from the projectile surface will cause pressure pulsation on the projectile surface,leading to the vibration of the aerodynamic force coeff i cient.However,aerodynamic coeff i cient changed smoothly after adding the micro-vanes,and it also can illustrate that f l uid separation on the projectile surface has been suppressed.

    Fig.11 shows the comparison of aerodynamic moment coeff i cients of projectiles with and without vanes for Ma=2.05 and AOA=4°.It can be found from Fig.11 that Magnus moment coeff i cient changes little after adding the micro-vanes.Meanwhile,the rolling moment coeff i cient of the projectile with micro-vanes increases,but the increase in rolling moment coeff i cient is very small and close to zero.Pitching moment of the projectile with micro-vanes increases and becomes stable,which means the projectile can return to the equilibrium state more quickly.Therefore,the addition of micro-vanes can improve the f l ight stability and f i re dispersion of spinning projectiles.

    Fig.11.Comparison of aerodynamic moment coeff i cients of projectiles with and without vanes for Ma=2.05 and AOA=4°.

    In order to give a much broader scope of Mach numbers for a complete analysis,the normal force coeff i cient and pitching moment coeff i cient which are the typical parameters for AOA=4°and Ma=1.2 and Ma=4 in the present paper are shown in Figs.12 and 13.However,the obvious cyclical f l uctuations cab be observed from the curves of aerodynamic coef fi cient versus time in Figs.12 and 13,but the aerodynamic coef fi cient becomes stable after the addition of micro-vanes.As can be seen from Fig.13,there is a smaller vibration about the aerodynamic coef fi cients of projectile for Ma=4.It can be found by comparing Figs.12,13 and 9 that the vibration amplitude of aerodynamic force coef fi cient decreases and the vibration frequency increases gradually with the increase in Mach number.However,the control of micro-vanes can inhibit the fl uid separation on the surface of projectile and improve its fl ight stability and fi ring dispersion.

    The vibration of aerodynamic force and moment coeff i cients is mainly caused by the f l uid separation on the surface of projectile.The separation vortexes shed from the surface of projectile may cause the f l uctuation of pressure on the surface of projectile and the vibration of aerodynamic coeff i cients. However,the aerodynamic coeff i cients become smooth after mounting the micro-vanes on a projectile,and it illustrates that the f l uid separation on the surface of projectile is suppressed,which is benef i cial for improving the f l ight stability of spinning projectile.

    Fig.12.Comparison of aerodynamic coeff i cients of projectiles with and without vanes for Ma=1.2 and AOA=4°.

    Fig.13.Comparison of aerodynamic coeff i cients of projectiles with and without vanes for Ma=4 and AOA=4°.

    4.Conclusion

    Numerical simulations were performed with the use of DES method for the f l ow f i elds of 155 mm standard projectiles with and without micro vanes,and the modif i cations of the boundary layer structures and the aerodynamic data for two cases were compared and discussed.The numerical results show that a counter-rotating streamwise vortex pair behind each vane attaches on the surface of projectile and it can inhibit the f l ow separation along the body of projectile.In addition,Magnus force and roll moment increase slightly after adding the micro vanes,and have smaller impact on the f l ight stability of projectile than lift and pitching moment so that they can be neglected basically.Meanwhile,the normal force coeff i cient and pitching moment coeff i cient of the projectile become stable,obviously and virtually eliminating the f l uctuation term over time so that the projectile gains the ability of anti-interference,and the f l ight stability and f i re dispersion can be improved.

    [1]Rausch JR,Roberts BB.Reaction control system plume f l ow f i eld interaction effects on the space shuttle orbiter.San Diego:Proceedings of 10th AIAA and SAE Propulsion Conference;1974.

    [2]Srivastava B.Aerodynamic performance of supersonic missile body and wing tip mounted lateral jets.J Spacecr Rockets 1998;35(3):278-86.

    [3]Wu X,Wang J,Wu X,Geng G.The numerical computational for external fl ow fi eld of artillery projectile with side jet fl ow.J Propuls Technol 1998;19(3):57-60.

    [4]Margason RJ Fifty years of jet in CROSS fl ow research in AGARD Symposium:on a Jet in Cross Flow;AGARD CP-534.

    [5]Selby GV,Lin JC,Howard EG.Control of low-speed turbulent separated lf ow using jet vortex generators.Exp Fluids 1992;12:394-400.

    [6]Han Z.External ballistic of projectiles and missiles,vol.7.Beijing Institute of Technology Press;2008.p.150-3.

    [7]Nietubicr CJ,LaFarge RA.Aerodynamic coef fi cient predictions for a projectile con fi guration at transonic speeds.22nd Aerospace Sciences Meeting,Aerospace Sciences Meetings 1984;AIAA-84-0326.

    [8]Xue D,Chen Z,Sun X.Investigations on the fl ow characteristics of supersonic fl ow past a micro-ramp.Eng Mech 2013;30(4):455-9,[in Chinese].

    [9]Xue D,Chen Z,Sun X.Micro-ramp control of the boundary separation induced by the fl ow past an airfoil.Eng Mech 2014;31(8):217-22,[in Chinese].

    [10]Xue D,Chen Z,Jiang X.Numerical investigations on the wake structures of micro ramp and vanes.Fluid Dyn Res 2014;46:015505.

    [11]Kalatt D,Hruschka R,Leopold F.Numerical and experimental investigation of the magnus effect in supersonic fl ows.New Orleans,Louisiana:Aerodynamics Conference;2012.p.AIAA-2012-3230.

    [12]Ma J,Chen Z.Effects of the boattail of a spinning projectile on its aerodynamics characteristics.5TH ICMEM,2014;89-94.

    Received 5 July 2015;revised 8 January 2016;accepted 21 January 2016 Available online 26 February 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.

    E-mail address:majie19910@163.com (J.MA).

    http://dx.doi.org/10.1016/j.dt.2016.01.008

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    最近中文字幕2019免费版| 欧美人与善性xxx| 久久久精品区二区三区| 欧美 亚洲 国产 日韩一| 亚洲婷婷狠狠爱综合网| 9热在线视频观看99| 国产亚洲精品第一综合不卡| 午夜福利在线免费观看网站| 性少妇av在线| 久久久久久久精品精品| 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人国产av品久久久| 97精品久久久久久久久久精品| 一级爰片在线观看| 欧美精品人与动牲交sv欧美| 亚洲精品国产色婷婷电影| 久久国内精品自在自线图片| 熟妇人妻不卡中文字幕| 成人亚洲精品一区在线观看| 国产成人91sexporn| 一二三四中文在线观看免费高清| 日韩成人av中文字幕在线观看| 天天躁日日躁夜夜躁夜夜| 久久久精品区二区三区| 在线天堂中文资源库| 国产精品成人在线| 人人澡人人妻人| 麻豆乱淫一区二区| 欧美人与善性xxx| 国产黄频视频在线观看| 日日爽夜夜爽网站| 久久久久久免费高清国产稀缺| 久久毛片免费看一区二区三区| 国产精品 国内视频| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 午夜影院在线不卡| 一级片免费观看大全| 一级片'在线观看视频| 国产av国产精品国产| 97精品久久久久久久久久精品| 国产国语露脸激情在线看| 18+在线观看网站| 建设人人有责人人尽责人人享有的| 日韩成人av中文字幕在线观看| 欧美日本中文国产一区发布| 十八禁网站网址无遮挡| 成年美女黄网站色视频大全免费| 国产熟女午夜一区二区三区| 日韩中字成人| 日产精品乱码卡一卡2卡三| 欧美最新免费一区二区三区| 岛国毛片在线播放| 90打野战视频偷拍视频| 日本黄色日本黄色录像| 国产一区二区三区综合在线观看| 人人妻人人爽人人添夜夜欢视频| 午夜福利,免费看| 久久久久精品人妻al黑| 久久毛片免费看一区二区三区| 18禁国产床啪视频网站| 亚洲在久久综合| 黄频高清免费视频| 国产成人91sexporn| 亚洲国产最新在线播放| 美女中出高潮动态图| 最近最新中文字幕大全免费视频 | 国产女主播在线喷水免费视频网站| 国产男人的电影天堂91| 亚洲五月色婷婷综合| 少妇的逼水好多| 日韩av在线免费看完整版不卡| 日本猛色少妇xxxxx猛交久久| 最近2019中文字幕mv第一页| 国产探花极品一区二区| 日韩制服骚丝袜av| 一本大道久久a久久精品| 亚洲欧美色中文字幕在线| 亚洲国产精品一区二区三区在线| 久久午夜综合久久蜜桃| 免费黄网站久久成人精品| 老司机影院毛片| 亚洲av.av天堂| 国产在视频线精品| 国产成人精品一,二区| 国产免费福利视频在线观看| 激情五月婷婷亚洲| 国产精品久久久久久久久免| 一级毛片黄色毛片免费观看视频| 男女边吃奶边做爰视频| 美女视频免费永久观看网站| 大陆偷拍与自拍| 亚洲国产av影院在线观看| 午夜福利影视在线免费观看| 欧美变态另类bdsm刘玥| 久久久久精品久久久久真实原创| 热99国产精品久久久久久7| 日韩一区二区视频免费看| av网站免费在线观看视频| 男女边吃奶边做爰视频| 少妇熟女欧美另类| 99国产精品免费福利视频| 99热国产这里只有精品6| 大片免费播放器 马上看| 国产亚洲av片在线观看秒播厂| 国产av精品麻豆| 国产一区亚洲一区在线观看| 9热在线视频观看99| 少妇的逼水好多| 青草久久国产| 中文字幕精品免费在线观看视频| 一区二区日韩欧美中文字幕| 美女主播在线视频| 亚洲精品日本国产第一区| 午夜福利一区二区在线看| 国产黄频视频在线观看| 精品久久久精品久久久| 热99久久久久精品小说推荐| 亚洲欧洲国产日韩| 777久久人妻少妇嫩草av网站| 久久久欧美国产精品| 欧美精品一区二区免费开放| 亚洲综合精品二区| 国产精品香港三级国产av潘金莲 | 寂寞人妻少妇视频99o| 国产精品三级大全| 亚洲国产成人一精品久久久| 午夜福利在线观看免费完整高清在| www.精华液| 久久久久久免费高清国产稀缺| 国产精品.久久久| 日韩大片免费观看网站| 99热全是精品| 叶爱在线成人免费视频播放| 国产高清国产精品国产三级| 伊人久久国产一区二区| 丝袜人妻中文字幕| 久久 成人 亚洲| av在线老鸭窝| 波多野结衣一区麻豆| 亚洲国产欧美网| 美女午夜性视频免费| 汤姆久久久久久久影院中文字幕| 色播在线永久视频| 久久久欧美国产精品| 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 国产在线免费精品| 免费久久久久久久精品成人欧美视频| 中文字幕亚洲精品专区| 久久久久精品国产欧美久久久| 老汉色∧v一级毛片| 久久久精品欧美日韩精品| 人妻久久中文字幕网| 亚洲熟女毛片儿| 女性生殖器流出的白浆| 亚洲精品国产一区二区精华液| 一区二区三区激情视频| 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 无遮挡黄片免费观看| 国产精品久久视频播放| 亚洲av成人一区二区三| 日韩精品免费视频一区二区三区| 女警被强在线播放| 黑人巨大精品欧美一区二区mp4| 国产一区二区激情短视频| 精品久久蜜臀av无| 999久久久精品免费观看国产| 国产成人精品在线电影| 91大片在线观看| 欧美+亚洲+日韩+国产| 亚洲aⅴ乱码一区二区在线播放 | 夜夜爽天天搞| 中文字幕高清在线视频| 国产不卡一卡二| 国产欧美日韩一区二区精品| 美女国产高潮福利片在线看| 国产一区二区三区在线臀色熟女 | 欧美激情极品国产一区二区三区| 美女扒开内裤让男人捅视频| 神马国产精品三级电影在线观看 | 亚洲全国av大片| 在线看a的网站| 91老司机精品| 成人三级黄色视频| 国产欧美日韩综合在线一区二区| 曰老女人黄片| 日韩视频一区二区在线观看| 人人澡人人妻人| 精品久久久久久,| 18禁裸乳无遮挡免费网站照片 | 久久精品国产99精品国产亚洲性色 | 久久久国产一区二区| 亚洲中文字幕日韩| 免费女性裸体啪啪无遮挡网站| 制服人妻中文乱码| 国产成人系列免费观看| 国产国语露脸激情在线看| 水蜜桃什么品种好| 午夜亚洲福利在线播放| 黄色毛片三级朝国网站| 国产91精品成人一区二区三区| 久久久精品国产亚洲av高清涩受| 亚洲三区欧美一区| 久久久久久久精品吃奶| 精品卡一卡二卡四卡免费| 日本 av在线| 无人区码免费观看不卡| 热re99久久精品国产66热6| 日本免费a在线| 欧美久久黑人一区二区| 午夜福利欧美成人| 夜夜夜夜夜久久久久| 成人特级黄色片久久久久久久| 黑丝袜美女国产一区| 亚洲欧洲精品一区二区精品久久久| 99久久人妻综合| 亚洲精华国产精华精| 在线国产一区二区在线| 国产成年人精品一区二区 | 欧美午夜高清在线| 亚洲欧美激情综合另类| 老熟妇仑乱视频hdxx| av网站免费在线观看视频| 美女福利国产在线| 亚洲成av片中文字幕在线观看| 99在线视频只有这里精品首页| 校园春色视频在线观看| 亚洲狠狠婷婷综合久久图片| 免费在线观看黄色视频的| 99精品在免费线老司机午夜| 成人特级黄色片久久久久久久| 日韩精品免费视频一区二区三区| 国产一区二区激情短视频| 久久香蕉激情| 欧美久久黑人一区二区| 免费在线观看影片大全网站| 一区福利在线观看| 叶爱在线成人免费视频播放| 美女 人体艺术 gogo| 我的亚洲天堂| 夜夜看夜夜爽夜夜摸 | 欧美日韩亚洲综合一区二区三区_| 操出白浆在线播放| 91大片在线观看| 日韩中文字幕欧美一区二区| 亚洲,欧美精品.| 成人黄色视频免费在线看| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区视频了| 亚洲av美国av| 欧美日韩视频精品一区| 免费久久久久久久精品成人欧美视频| 99国产精品一区二区三区| 免费看a级黄色片| 俄罗斯特黄特色一大片| av片东京热男人的天堂| netflix在线观看网站| 嫩草影视91久久| 成在线人永久免费视频| 国产欧美日韩综合在线一区二区| 一区二区三区国产精品乱码| 欧美+亚洲+日韩+国产| 午夜亚洲福利在线播放| 黑人猛操日本美女一级片| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 欧美日韩精品网址| 男女之事视频高清在线观看| 日韩免费高清中文字幕av| 99在线人妻在线中文字幕| 黄色丝袜av网址大全| 亚洲国产毛片av蜜桃av| 老司机午夜十八禁免费视频| 97碰自拍视频| 日韩有码中文字幕| 悠悠久久av| 1024视频免费在线观看| 国产乱人伦免费视频| 欧美日韩亚洲综合一区二区三区_| 亚洲色图综合在线观看| 日本黄色日本黄色录像| 91大片在线观看| 男女下面进入的视频免费午夜 | 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 国产av精品麻豆| 国产精品电影一区二区三区| 天堂动漫精品| 人人妻人人添人人爽欧美一区卜| 叶爱在线成人免费视频播放| 咕卡用的链子| 国产一区二区三区在线臀色熟女 | 亚洲av第一区精品v没综合| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 男女高潮啪啪啪动态图| 国产主播在线观看一区二区| 亚洲男人的天堂狠狠| 亚洲美女黄片视频| 欧美黄色淫秽网站| 97碰自拍视频| 很黄的视频免费| 老熟妇仑乱视频hdxx| 国产精品偷伦视频观看了| av免费在线观看网站| 亚洲av第一区精品v没综合| 9191精品国产免费久久| 色综合站精品国产| 色尼玛亚洲综合影院| 18禁观看日本| 亚洲狠狠婷婷综合久久图片| 大码成人一级视频| 国产精品免费视频内射| 国产欧美日韩精品亚洲av| 操美女的视频在线观看| 成年版毛片免费区| 十八禁网站免费在线| 国产区一区二久久| 一级黄色大片毛片| 美女高潮到喷水免费观看| 成年女人毛片免费观看观看9| 国产精品免费视频内射| 欧美激情极品国产一区二区三区| 久久草成人影院| 亚洲精品在线美女| 欧美日韩亚洲综合一区二区三区_| 国产aⅴ精品一区二区三区波| 精品一品国产午夜福利视频| 久久伊人香网站| 久久人人精品亚洲av| 很黄的视频免费| 亚洲全国av大片| 在线观看日韩欧美| 自线自在国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 在线观看免费午夜福利视频| 纯流量卡能插随身wifi吗| 欧美色视频一区免费| 精品一区二区三区视频在线观看免费 | 成熟少妇高潮喷水视频| 国产xxxxx性猛交| 中文字幕色久视频| 美女午夜性视频免费| 精品午夜福利视频在线观看一区| 久久国产精品男人的天堂亚洲| 国产精品亚洲av一区麻豆| 国产三级在线视频| 女人被狂操c到高潮| 国产男靠女视频免费网站| 久久久精品国产亚洲av高清涩受| 亚洲少妇的诱惑av| 久久久国产成人精品二区 | 高清在线国产一区| 欧美激情 高清一区二区三区| 国产高清国产精品国产三级| 欧美黑人欧美精品刺激| 国产激情欧美一区二区| 亚洲av电影在线进入| 亚洲av片天天在线观看| 一个人免费在线观看的高清视频| 在线国产一区二区在线| 欧美激情高清一区二区三区| 又黄又爽又免费观看的视频| 最近最新免费中文字幕在线| 亚洲成人免费电影在线观看| 久久午夜亚洲精品久久| 日韩免费av在线播放| 久久久国产成人免费| 亚洲精品国产区一区二| 亚洲人成电影免费在线| av天堂在线播放| 99久久精品国产亚洲精品| 最好的美女福利视频网| 成人国语在线视频| 国产又色又爽无遮挡免费看| 黄色丝袜av网址大全| 亚洲精品一二三| 男女高潮啪啪啪动态图| 美女大奶头视频| 久久久久久久久久久久大奶| 少妇被粗大的猛进出69影院| 免费在线观看黄色视频的| 老司机深夜福利视频在线观看| 中文字幕人妻丝袜一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产男靠女视频免费网站| 亚洲五月婷婷丁香| 欧美日韩国产mv在线观看视频| 另类亚洲欧美激情| 美女 人体艺术 gogo| 97人妻天天添夜夜摸| 久久久久久久午夜电影 | 热re99久久精品国产66热6| 久久精品国产亚洲av高清一级| xxxhd国产人妻xxx| 亚洲成人国产一区在线观看| 久久草成人影院| 午夜视频精品福利| 18禁美女被吸乳视频| 我的亚洲天堂| 80岁老熟妇乱子伦牲交| 97超级碰碰碰精品色视频在线观看| 老司机深夜福利视频在线观看| 啦啦啦免费观看视频1| 在线观看免费午夜福利视频| 精品高清国产在线一区| 亚洲国产毛片av蜜桃av| 亚洲人成电影免费在线| 亚洲 欧美 日韩 在线 免费| 男女下面插进去视频免费观看| 成人精品一区二区免费| 午夜福利,免费看| 国产av一区在线观看免费| 啦啦啦免费观看视频1| 极品人妻少妇av视频| 精品国产超薄肉色丝袜足j| 一级片免费观看大全| 激情在线观看视频在线高清| 18禁美女被吸乳视频| 热re99久久国产66热| 99热只有精品国产| 多毛熟女@视频| 亚洲自拍偷在线| 99热国产这里只有精品6| 动漫黄色视频在线观看| 亚洲黑人精品在线| 香蕉久久夜色| 久久久久久久午夜电影 | 黄色视频,在线免费观看| 中文字幕高清在线视频| 亚洲av日韩精品久久久久久密| 啦啦啦在线免费观看视频4| 亚洲第一青青草原| 日韩欧美在线二视频| 成人三级黄色视频| e午夜精品久久久久久久| 日本免费一区二区三区高清不卡 | 香蕉国产在线看| 手机成人av网站| av在线天堂中文字幕 | 自线自在国产av| 真人一进一出gif抽搐免费| 国产高清视频在线播放一区| 视频区图区小说| 成人三级黄色视频| 亚洲国产中文字幕在线视频| 国产精品香港三级国产av潘金莲| 一边摸一边抽搐一进一小说| 精品第一国产精品| 巨乳人妻的诱惑在线观看| 少妇的丰满在线观看| 无遮挡黄片免费观看| 免费不卡黄色视频| 国产深夜福利视频在线观看| 香蕉国产在线看| 在线观看免费视频日本深夜| 69av精品久久久久久| 亚洲一区二区三区不卡视频| 亚洲精品国产精品久久久不卡| 中文字幕最新亚洲高清| 国产又爽黄色视频| 欧美中文日本在线观看视频| 99国产极品粉嫩在线观看| 99热国产这里只有精品6| 国产无遮挡羞羞视频在线观看| 又大又爽又粗| 午夜91福利影院| 一区福利在线观看| 久久草成人影院| 乱人伦中国视频| 国产成人一区二区三区免费视频网站| 欧美亚洲日本最大视频资源| 久久中文字幕人妻熟女| 国内久久婷婷六月综合欲色啪| 亚洲国产看品久久| 别揉我奶头~嗯~啊~动态视频| 91在线观看av| 亚洲av日韩精品久久久久久密| xxxhd国产人妻xxx| 宅男免费午夜| 在线播放国产精品三级| 久久国产乱子伦精品免费另类| 亚洲人成伊人成综合网2020| 18禁观看日本| 欧美日韩福利视频一区二区| 国产99白浆流出| 青草久久国产| 日本黄色视频三级网站网址| 国产黄色免费在线视频| 久热爱精品视频在线9| 久久亚洲真实| 亚洲色图av天堂| cao死你这个sao货| 又黄又爽又免费观看的视频| 亚洲七黄色美女视频| 免费在线观看视频国产中文字幕亚洲| 国产精品av久久久久免费| 黑人操中国人逼视频| 国产免费现黄频在线看| 99精品在免费线老司机午夜| 国产av精品麻豆| 久久国产精品影院| bbb黄色大片| 男女下面进入的视频免费午夜 | 中文亚洲av片在线观看爽| 男女下面插进去视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产乱子伦精品免费另类| e午夜精品久久久久久久| 新久久久久国产一级毛片| 性少妇av在线| 涩涩av久久男人的天堂| 桃色一区二区三区在线观看| 亚洲伊人色综图| 99久久精品国产亚洲精品| 国产男靠女视频免费网站| 日本vs欧美在线观看视频| 97碰自拍视频| 日本wwww免费看| 97碰自拍视频| 国产97色在线日韩免费| 亚洲国产毛片av蜜桃av| 少妇的丰满在线观看| 国产又爽黄色视频| 高清av免费在线| 久久精品aⅴ一区二区三区四区| 国产av一区在线观看免费| a级片在线免费高清观看视频| 国产片内射在线| 亚洲视频免费观看视频| 成人影院久久| 欧美黄色片欧美黄色片| 免费在线观看日本一区| 五月开心婷婷网| 精品高清国产在线一区| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 久久人妻熟女aⅴ| 激情在线观看视频在线高清| a级毛片在线看网站| 亚洲人成网站在线播放欧美日韩| 久久久久国内视频| 亚洲精品在线美女| av福利片在线| 精品人妻1区二区| 国产单亲对白刺激| 久久狼人影院| 亚洲精品国产色婷婷电影| 欧美黄色片欧美黄色片| 久久青草综合色| 琪琪午夜伦伦电影理论片6080| 久久精品国产综合久久久| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 欧美在线一区亚洲| 九色亚洲精品在线播放| 这个男人来自地球电影免费观看| 丰满饥渴人妻一区二区三| 午夜精品久久久久久毛片777| 999久久久国产精品视频| 免费不卡黄色视频| 亚洲第一av免费看| 日韩欧美在线二视频| 亚洲第一青青草原| 国产精品电影一区二区三区| 一个人免费在线观看的高清视频| 日韩免费高清中文字幕av| 久久99一区二区三区| 亚洲欧美日韩另类电影网站| 十八禁人妻一区二区| 久久久久久人人人人人| 国产成人一区二区三区免费视频网站| 欧美日本亚洲视频在线播放| 亚洲欧美精品综合久久99| 国产精品国产av在线观看| 亚洲精品久久午夜乱码| 大陆偷拍与自拍| 激情在线观看视频在线高清| 亚洲五月天丁香| 动漫黄色视频在线观看| 国产欧美日韩综合在线一区二区| 国产三级在线视频| 亚洲精品国产一区二区精华液| 18禁国产床啪视频网站| 日日夜夜操网爽| 精品久久久久久久毛片微露脸| 热99国产精品久久久久久7| 午夜福利在线观看吧| 久久婷婷成人综合色麻豆| 亚洲人成伊人成综合网2020| 日本欧美视频一区| av天堂久久9| 久久久水蜜桃国产精品网| 国产亚洲精品综合一区在线观看 | 精品欧美一区二区三区在线| 久热这里只有精品99| av天堂久久9| 十八禁网站免费在线| 午夜日韩欧美国产| 51午夜福利影视在线观看| 国产精品一区二区精品视频观看| 久久精品成人免费网站| 精品国产超薄肉色丝袜足j| 精品熟女少妇八av免费久了| 国产野战对白在线观看| 人妻久久中文字幕网| 18禁国产床啪视频网站| 国产1区2区3区精品| 欧美日韩亚洲综合一区二区三区_| 国产精品1区2区在线观看.| 别揉我奶头~嗯~啊~动态视频|