• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on the f l ow control of micro-vanes on a supersonic spinning projectile

    2016-04-18 09:12:56JieMAZhihuaCHENZhenguiHUANGJianguoGAOQiangZHAO
    Defence Technology 2016年3期

    Jie MA*,Zhi-hua CHEN,Zhen-gui HUANG,Jian-guo GAO,Qiang ZHAO

    Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    Investigation on the f l ow control of micro-vanes on a supersonic spinning projectile

    Jie MA*,Zhi-hua CHEN,Zhen-gui HUANG,Jian-guo GAO,Qiang ZHAO

    Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094,China

    Studies have shown that micro-wedge vortex generators (MVG)can effectively control the f l ow separation of supersonic boundary layer.In order to improve the f l ight stability of spinning projectile,the original standard 155 mm projectile was taken as an example,and the micro-vanes were mounted at the projectile shoulder to investigate the separation control on the aerodynamic characteristics of projectile.Numerical simulations were performed with the use of DES method for the f l ow f i elds of projectiles with and without micro-vanes,and the characteristics of the boundary layer structures and aerodynamic data were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit separation of f l uid on projectile surface,and improve the f l ight stability and f i ring dispersion of projectile.

    Spinning projectile;Micro-vane;Stability;Aerodynamic characteristics;Fluid control

    1.Introduction

    Precision strike is a general trend in modern warfare,and many countries in the world improve the fl ight stability and fi ring dispersion of projectile mainly through the development of guided munitions and transformation of conventional ammunition [1].Supersonic spinning projectiles are greatly in fl uenced by boundary layer separation in the process of fl ight[1,2].The fl ight stability of a projectile is one of the basic requirements of the projectile design [3],which it means that its angle of attack between the axis of the projectile and velocity vector should be within a certain limit,and gradually decay[4-6].

    Micro-vanes are found to be able to suppress the separation of supersonic fl ow.In this paper,in order to further improve the fl ight stability of the standard 155 mm projectile [7],the microvanes were mounted at the projectile shoulder according to the Task Force fi ndings [8-10],so that the fl uid separation in the boundary layer of projectile can be suppressed,and the projectile has a stronger anti-interference ability during fl ight for improving its fl ight stability and fi ring accuracy.The supersonic fl ow structure around micro-vanes and the control mechanism of boundary layer separation were discussed in detail in Refs.[8-10].

    Numerical simulations were performed with the use of DES method for the f l ow f i elds of 155 mm standard projectiles for two cases with and without micro-vanes.The modif i cations of the boundary layer structures and aerodynamic data for two cases were compared and discussed.Numerical results show that the micro-vanes can be used to inhibit the f l uid separation of projectile surface,improve the projectile lift and pitching moment,and eliminate the shaking of lift and pitching moment,as a result of improving the f l ight stability and f i ring dispersion,which can provide guidance for the improvement of supersonic projectiles.

    2.Investigation approach

    The fl uid fi eld of supersonic spinning projectile was simulated based on DES simulation method.Realizablek-εturbulence model is used for the near wall region,and the large eddy simulation (LES)is used for external fl ow fi eld,in which the spatial discrete are discretized using the fi nite volume method,the convection term is approached with the second orderAUSM format,and a central difference scheme is used for the viscosity term.

    The transport equations of turbulent kinetic energy and dissipation in realizablek-εturbulence model are

    The control equations of LES model can be obtained by fi ltering Navier-Stokes equations in wave number space or irrational space.The fi ltration process is to remove the small vortexes which are shorter than fi lter width or a given unreasonable width.The resulting control equations of maelstrom are

    whereτijis de fi ned as subgrid stress,τij=ρuiuj-ρuiuj.

    A sliding mesh needs to be used in order to simulate the fl ight state of spinning projectile.Sliding grid technology requires an external f i xed area and inner motion area round the projectile,with a pair of interfaces being between two areas,and the points of the interface grid do not need to overlap;they only need to do numerical interpolation on the slip boundary to ensure the f l ux conservation between two regions,and the deformation of grid cell in motion,do not occur.Therefore the sliding grid technology occupies less memory of computer,calculates fast and has high precision.

    Fig.1.M549 projectile [7].

    Fig.2.Grid around the projectile.

    155 mm M549 projectile,as shown in Fig.1(a),was used as an example in the present paper.The micro-vanes were mounted at the projectile shoulder to form a new physical model,as shown in Fig.1(b).Fig.2 shows the computationaldomain of M549 projectile.Fig.2(a)shows the grid distribution of symmetric surface,and Fig.2(b)and (c)show the sliding grid near the projectile and the grid near a vane,respectively. The computational domain is divided into an external f i xed area and an internal sliding area.The grids within boundary layer were ref i ned along the normal direction,and the grids near the head,shoulder and tail of projectile were ref i ned along the f l ow direction.After repeated calculations and convergence tests,the grid number of the whole area is about 2 million.

    Projectile surface is applied with the no-slip wall boundary condition,and the meshes of the interior layers are designed to move with the projectile.The interfaces of external f i xed grid area and internal sliding area are adopted with the sliding boundary conditions.The mach number of incoming f l ow is assumed to be 2.05.The initial pressure P0is set to 1.014 × 105Pa,and the initial temperature T0is 278K.The spin rate of the projectile is chosen to be Ω =1112 rad/s,which equals a maximal dimensionless spin rate,pD2U∞= 0. 154. The rotation is anti-clockwise viewing from the base of the projectile.

    3.Results and discussion

    Fig.3 shows the comparison of previous measured and simulated side force coeff i cients of a generic 6.37 diameter long tangential-ogive-cylinder type projectile.The simulated results of unsteady DES method are compatible with the previous simulated and experimental results.It verif i es that the credibility of the numerical simulation results in this paper.

    Fig.4 shows the pressure distributions on the surfaces of the standard projectile and the projectile with micro vanes and around them with Ma of 2.05 and angle of attack (AOA)of 4°. The main shock wave structures are the same for both cases;there are oblique shock waves around the heads and expansion waves near the tails.But for the projectile with micro-vanes,the oblique shock wave also forms along the micro-vanes,and its strength is much weaker than that of head shock wave.In addition,the shock waves around micro-vanes are stronger at the area close to the windward side,which makes the surface pressure higher than that on the leeward side,and leads to a raise in the projectile lift.

    3.1.Control mechanism of micro-vanes

    Micro-vortex generator is considered to be one of the most applicable prospects in the f i eld of supersonic and hypersonic f l ow control.It can generate a strong vortex pair under the action of windward airf l ow.The vortex structures can inhale the high-speed gas of mainstream into the boundary layer,and push the original low speed gas of the boundary layer f l ow into the main f l ow,thus increasing the momentum boundary layer and turning an adverse pressure gradient of f l ow separation into a favorable pressure gradient.The f l ow separation of boundary layer can be suppressed [10].

    A series of studies about tail vortexes of micro-vane had been carried [10].The basic structure of micro-vane is shown in Fig.5,and the structure parameters of micro-vane are h=2 mm,a=7.5 mm,b=1.25 mm,c=13.05 mm.

    It can be seen from Fig.6 that the wake f l ow structures are simple;there is mainly a counter-rotating streamwise vortexpair which suggests the main mechanism of the boundary layer control.The streamwise vortex tube can also entrain high

    Fig.3.Comparison of the measured Magnus coeff i cient and the simulated results of a tangential-ogive-cylinder type projectile for Ma=3 [11,12].

    Fig.4.Pressure distributions of (a)the standard projectile and (b)the projectile with micro-vanes for Ma=2.05,

    Ω=1112 rad/s

    Fig.5.Computational model of micro-vane.

    and AOA=4°. momentum gas from the free stream into the boundary layer and redistribute the pressure distribution on the boundary layer.

    Fig.7 shows the vorticity distribution on the cross sections of the projectiles without and with micro-wedge for Ma=3,AOA=4°and spin rate Ω=157 rad/s.It can be seen from Fig.7 that the vorticity distribution behind vanes on the projectile with micro-vanes is different from that on the standard projectile.As shown in Fig.7(c),the counter-rotating streamwise vortex-pair attaches on the surface of projectile.Its effect is consistent with the details described in Ref. [4].The vortex structure can inhale the high-speed gas of mainstream into the boundary layer,and push the original low speed gas of the boundary layer into the outer main f l ow.So far,the energy exchange between them is completed,and the f l uid separation on the surface of projectile is inhibited.

    Fig.8 shows the density isosurfaces of projectiles without and with vanes for Ma=2.05 and AOA=0°,and the colors of the isosurface represents pressure value.It can be seen from Fig.8 that the typical streamwise vortex pair behind the microvanes is distributed along the body of projectile,and the trailing vortexes distribute spirally due to the rotation of projectile.The leeward pressure of projectile is slightly decreased after adding the micro-vanes;therefore the projectile lift is enhanced.It can also be seen from Fig.8 that the counter-rotating streamwise vortex pairs form the buffering zones.It is conducive to weakenthe interference encountered during f l ight so as to improve its f l ight stability.

    Fig.6.Vortex rings shown by iso-surface of λ2[10].

    Fig.7.The vorticity distributions on cross sections of the projectiles without and with micro-wedge for Ma=2.05,AOA=0°and spin rate,Ω=1112 rad/s.

    Fig.8.Density isosurfaces (ρ=0. 9 5 kg/m3)of projectiles without and with vanes for Ma=2.05 and AOA=0°.

    Fig.9.Comparison of aerodynamic coeff i cients of projectile with and without vanes for Ma=2.05 and AOA=4°.

    Fig.10.Comparison of Magnus coeff i cients of projectiles with and without vanes at Ma=2.05 and AOA=4°.

    3.2.The inf l uence of micro-vanes on aerodynamic coeff i cient Figs.9 and 10 show the comparison of aerodynamic coeff icients of the projectiles with and without vanes for Ma=2.05 and AOA=4°.The aerodynamic coeff i cients of projectile with micro-vanes increase slightly.However,the obvious slight cyclical f l uctuations can be observed from the curve of aerodynamic coeff i cient versus time,but the aerodynamic coeff i cient becomes stable after the addition of micro-vanes.And the normal coeff i cient of projectile with vanes increases and eliminates its oscillation so as to improve the stability,but decrease the lift-to-drag ratio.Generally,vibration of aerodynamic coeff i cients is mainly caused by f l uid separation on the projectile surface.Separation vortex shedding from the projectile surface will cause pressure pulsation on the projectile surface,leading to the vibration of the aerodynamic force coeff i cient.However,aerodynamic coeff i cient changed smoothly after adding the micro-vanes,and it also can illustrate that f l uid separation on the projectile surface has been suppressed.

    Fig.11 shows the comparison of aerodynamic moment coeff i cients of projectiles with and without vanes for Ma=2.05 and AOA=4°.It can be found from Fig.11 that Magnus moment coeff i cient changes little after adding the micro-vanes.Meanwhile,the rolling moment coeff i cient of the projectile with micro-vanes increases,but the increase in rolling moment coeff i cient is very small and close to zero.Pitching moment of the projectile with micro-vanes increases and becomes stable,which means the projectile can return to the equilibrium state more quickly.Therefore,the addition of micro-vanes can improve the f l ight stability and f i re dispersion of spinning projectiles.

    Fig.11.Comparison of aerodynamic moment coeff i cients of projectiles with and without vanes for Ma=2.05 and AOA=4°.

    In order to give a much broader scope of Mach numbers for a complete analysis,the normal force coeff i cient and pitching moment coeff i cient which are the typical parameters for AOA=4°and Ma=1.2 and Ma=4 in the present paper are shown in Figs.12 and 13.However,the obvious cyclical f l uctuations cab be observed from the curves of aerodynamic coef fi cient versus time in Figs.12 and 13,but the aerodynamic coef fi cient becomes stable after the addition of micro-vanes.As can be seen from Fig.13,there is a smaller vibration about the aerodynamic coef fi cients of projectile for Ma=4.It can be found by comparing Figs.12,13 and 9 that the vibration amplitude of aerodynamic force coef fi cient decreases and the vibration frequency increases gradually with the increase in Mach number.However,the control of micro-vanes can inhibit the fl uid separation on the surface of projectile and improve its fl ight stability and fi ring dispersion.

    The vibration of aerodynamic force and moment coeff i cients is mainly caused by the f l uid separation on the surface of projectile.The separation vortexes shed from the surface of projectile may cause the f l uctuation of pressure on the surface of projectile and the vibration of aerodynamic coeff i cients. However,the aerodynamic coeff i cients become smooth after mounting the micro-vanes on a projectile,and it illustrates that the f l uid separation on the surface of projectile is suppressed,which is benef i cial for improving the f l ight stability of spinning projectile.

    Fig.12.Comparison of aerodynamic coeff i cients of projectiles with and without vanes for Ma=1.2 and AOA=4°.

    Fig.13.Comparison of aerodynamic coeff i cients of projectiles with and without vanes for Ma=4 and AOA=4°.

    4.Conclusion

    Numerical simulations were performed with the use of DES method for the f l ow f i elds of 155 mm standard projectiles with and without micro vanes,and the modif i cations of the boundary layer structures and the aerodynamic data for two cases were compared and discussed.The numerical results show that a counter-rotating streamwise vortex pair behind each vane attaches on the surface of projectile and it can inhibit the f l ow separation along the body of projectile.In addition,Magnus force and roll moment increase slightly after adding the micro vanes,and have smaller impact on the f l ight stability of projectile than lift and pitching moment so that they can be neglected basically.Meanwhile,the normal force coeff i cient and pitching moment coeff i cient of the projectile become stable,obviously and virtually eliminating the f l uctuation term over time so that the projectile gains the ability of anti-interference,and the f l ight stability and f i re dispersion can be improved.

    [1]Rausch JR,Roberts BB.Reaction control system plume f l ow f i eld interaction effects on the space shuttle orbiter.San Diego:Proceedings of 10th AIAA and SAE Propulsion Conference;1974.

    [2]Srivastava B.Aerodynamic performance of supersonic missile body and wing tip mounted lateral jets.J Spacecr Rockets 1998;35(3):278-86.

    [3]Wu X,Wang J,Wu X,Geng G.The numerical computational for external fl ow fi eld of artillery projectile with side jet fl ow.J Propuls Technol 1998;19(3):57-60.

    [4]Margason RJ Fifty years of jet in CROSS fl ow research in AGARD Symposium:on a Jet in Cross Flow;AGARD CP-534.

    [5]Selby GV,Lin JC,Howard EG.Control of low-speed turbulent separated lf ow using jet vortex generators.Exp Fluids 1992;12:394-400.

    [6]Han Z.External ballistic of projectiles and missiles,vol.7.Beijing Institute of Technology Press;2008.p.150-3.

    [7]Nietubicr CJ,LaFarge RA.Aerodynamic coef fi cient predictions for a projectile con fi guration at transonic speeds.22nd Aerospace Sciences Meeting,Aerospace Sciences Meetings 1984;AIAA-84-0326.

    [8]Xue D,Chen Z,Sun X.Investigations on the fl ow characteristics of supersonic fl ow past a micro-ramp.Eng Mech 2013;30(4):455-9,[in Chinese].

    [9]Xue D,Chen Z,Sun X.Micro-ramp control of the boundary separation induced by the fl ow past an airfoil.Eng Mech 2014;31(8):217-22,[in Chinese].

    [10]Xue D,Chen Z,Jiang X.Numerical investigations on the wake structures of micro ramp and vanes.Fluid Dyn Res 2014;46:015505.

    [11]Kalatt D,Hruschka R,Leopold F.Numerical and experimental investigation of the magnus effect in supersonic fl ows.New Orleans,Louisiana:Aerodynamics Conference;2012.p.AIAA-2012-3230.

    [12]Ma J,Chen Z.Effects of the boattail of a spinning projectile on its aerodynamics characteristics.5TH ICMEM,2014;89-94.

    Received 5 July 2015;revised 8 January 2016;accepted 21 January 2016 Available online 26 February 2016

    Peer review under responsibility of China Ordnance Society.

    *Corresponding author.

    E-mail address:majie19910@163.com (J.MA).

    http://dx.doi.org/10.1016/j.dt.2016.01.008

    2214-9147/? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    ? 2016 China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    亚洲av免费在线观看| 久久精品久久久久久久性| 日韩av在线免费看完整版不卡| av专区在线播放| 久久精品国产亚洲网站| 国产亚洲精品久久久com| 免费观看性生交大片5| 中国国产av一级| 国产精品日韩av在线免费观看| av又黄又爽大尺度在线免费看 | 久久99精品国语久久久| 美女脱内裤让男人舔精品视频| a级一级毛片免费在线观看| 久久久a久久爽久久v久久| 欧美高清性xxxxhd video| 久久久久久久国产电影| 91精品国产九色| 久久精品国产99精品国产亚洲性色| 国产精品国产三级国产专区5o | 精品少妇黑人巨大在线播放 | 国产不卡一卡二| 国产女主播在线喷水免费视频网站 | 国产亚洲最大av| 亚洲怡红院男人天堂| 国产极品天堂在线| 女人久久www免费人成看片 | 久久精品综合一区二区三区| 日日撸夜夜添| 丰满人妻一区二区三区视频av| 美女黄网站色视频| 国产精品人妻久久久影院| 高清av免费在线| 色哟哟·www| 91久久精品国产一区二区三区| 天堂√8在线中文| 国产欧美另类精品又又久久亚洲欧美| 国产一区亚洲一区在线观看| 久久精品久久久久久噜噜老黄 | 国产真实乱freesex| 国产精品一区www在线观看| 午夜爱爱视频在线播放| 热99re8久久精品国产| 精品一区二区三区视频在线| 水蜜桃什么品种好| 美女高潮的动态| 男人狂女人下面高潮的视频| 老司机福利观看| 午夜福利成人在线免费观看| 亚洲成人久久爱视频| 国产在视频线精品| 一区二区三区乱码不卡18| 一区二区三区乱码不卡18| 中文乱码字字幕精品一区二区三区 | 成人三级黄色视频| 日韩精品青青久久久久久| 国产免费福利视频在线观看| 国内精品美女久久久久久| 一个人看的www免费观看视频| 日本欧美国产在线视频| 亚洲怡红院男人天堂| 国产伦精品一区二区三区视频9| 七月丁香在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 噜噜噜噜噜久久久久久91| 国产不卡一卡二| 久久久成人免费电影| 五月伊人婷婷丁香| 村上凉子中文字幕在线| 人人妻人人澡欧美一区二区| 22中文网久久字幕| 国产女主播在线喷水免费视频网站 | 国产在视频线在精品| 观看免费一级毛片| 午夜福利成人在线免费观看| 色尼玛亚洲综合影院| 男女那种视频在线观看| 中文字幕av在线有码专区| 91狼人影院| 久久精品国产亚洲av涩爱| 亚洲成色77777| 亚洲电影在线观看av| 波野结衣二区三区在线| 国产精品一区二区在线观看99 | 一卡2卡三卡四卡精品乱码亚洲| 日韩一区二区三区影片| 三级国产精品片| 99热6这里只有精品| 国产黄色视频一区二区在线观看 | 波野结衣二区三区在线| 大话2 男鬼变身卡| 三级国产精品欧美在线观看| 欧美一区二区精品小视频在线| 国产极品精品免费视频能看的| 一区二区三区高清视频在线| 久久欧美精品欧美久久欧美| 午夜福利在线在线| 22中文网久久字幕| 91aial.com中文字幕在线观看| www日本黄色视频网| 久久久成人免费电影| 在线免费观看的www视频| 有码 亚洲区| 亚洲欧美日韩卡通动漫| 六月丁香七月| 18禁裸乳无遮挡免费网站照片| 男插女下体视频免费在线播放| 精品欧美国产一区二区三| 国产人妻一区二区三区在| 国产精品国产三级国产专区5o | 免费看a级黄色片| av免费观看日本| 美女国产视频在线观看| 亚洲精品乱久久久久久| 综合色av麻豆| 国产免费视频播放在线视频 | 午夜福利在线观看吧| 亚洲最大成人手机在线| 国产亚洲精品久久久com| 久久久久性生活片| 高清毛片免费看| 18+在线观看网站| 日韩,欧美,国产一区二区三区 | 嫩草影院入口| av女优亚洲男人天堂| 三级国产精品片| 尤物成人国产欧美一区二区三区| 一级爰片在线观看| 欧美一级a爱片免费观看看| 亚洲成av人片在线播放无| 精品酒店卫生间| 22中文网久久字幕| 亚洲乱码一区二区免费版| 国产一区二区三区av在线| 成人国产麻豆网| 国产亚洲午夜精品一区二区久久 | 波多野结衣巨乳人妻| 国产伦一二天堂av在线观看| 亚洲中文字幕日韩| 免费看a级黄色片| 七月丁香在线播放| 男女国产视频网站| 激情 狠狠 欧美| 免费搜索国产男女视频| 人妻少妇偷人精品九色| 亚洲国产精品国产精品| 日韩欧美在线乱码| 夜夜看夜夜爽夜夜摸| 亚洲精品久久久久久婷婷小说 | 午夜免费激情av| 久久精品国产99精品国产亚洲性色| 国产成人a区在线观看| 日韩国内少妇激情av| 久久热精品热| 成人特级av手机在线观看| 91久久精品国产一区二区三区| 免费观看的影片在线观看| 精品无人区乱码1区二区| 国产精品久久电影中文字幕| 国产色爽女视频免费观看| 岛国毛片在线播放| av.在线天堂| 婷婷色麻豆天堂久久 | 精品久久久久久久末码| 亚洲四区av| 欧美成人精品欧美一级黄| 精品久久久噜噜| 白带黄色成豆腐渣| 亚洲精品亚洲一区二区| 亚洲欧美成人综合另类久久久 | a级一级毛片免费在线观看| 欧美激情久久久久久爽电影| 成人毛片a级毛片在线播放| 欧美日本亚洲视频在线播放| 日韩制服骚丝袜av| 乱人视频在线观看| 麻豆成人午夜福利视频| 级片在线观看| 国产精品人妻久久久久久| .国产精品久久| 少妇人妻一区二区三区视频| 麻豆国产97在线/欧美| 嫩草影院入口| 99热这里只有精品一区| 久久久久久久久中文| 大话2 男鬼变身卡| 国内揄拍国产精品人妻在线| av视频在线观看入口| 最近的中文字幕免费完整| 色尼玛亚洲综合影院| 两性午夜刺激爽爽歪歪视频在线观看| 22中文网久久字幕| av免费在线看不卡| 嫩草影院新地址| a级毛色黄片| 99热精品在线国产| av天堂中文字幕网| 深夜a级毛片| 丰满乱子伦码专区| 好男人视频免费观看在线| 免费看av在线观看网站| 国产精品人妻久久久久久| 中文字幕av成人在线电影| 久久久久久久久久黄片| 欧美zozozo另类| 乱系列少妇在线播放| 亚洲在线自拍视频| 一个人看的www免费观看视频| 人人妻人人澡欧美一区二区| 高清av免费在线| 男插女下体视频免费在线播放| 精品人妻一区二区三区麻豆| 熟妇人妻久久中文字幕3abv| 国产爱豆传媒在线观看| 亚洲av男天堂| 能在线免费看毛片的网站| 内地一区二区视频在线| 亚洲精华国产精华液的使用体验| av.在线天堂| 欧美bdsm另类| 嫩草影院新地址| 日本黄色片子视频| 中国美白少妇内射xxxbb| 大话2 男鬼变身卡| 亚洲av成人av| 能在线免费看毛片的网站| 成人鲁丝片一二三区免费| 免费一级毛片在线播放高清视频| 人体艺术视频欧美日本| 日韩精品有码人妻一区| 日本免费a在线| 欧美丝袜亚洲另类| 99热这里只有精品一区| 久久久久免费精品人妻一区二区| 亚洲av日韩在线播放| 99久久中文字幕三级久久日本| 一个人免费在线观看电影| 免费在线观看成人毛片| 波多野结衣巨乳人妻| 精品人妻偷拍中文字幕| 亚洲国产欧美在线一区| 亚洲四区av| 真实男女啪啪啪动态图| 精品酒店卫生间| 亚洲欧美日韩无卡精品| 日韩成人av中文字幕在线观看| 久久99热6这里只有精品| 日韩欧美在线乱码| 边亲边吃奶的免费视频| 国产私拍福利视频在线观看| 91久久精品国产一区二区成人| 中文字幕亚洲精品专区| 91狼人影院| 深夜a级毛片| av视频在线观看入口| 青春草国产在线视频| 小蜜桃在线观看免费完整版高清| 午夜福利高清视频| 国产高清视频在线观看网站| 床上黄色一级片| 中文亚洲av片在线观看爽| 99久久成人亚洲精品观看| 午夜福利在线在线| 激情 狠狠 欧美| 你懂的网址亚洲精品在线观看 | 日韩高清综合在线| 特大巨黑吊av在线直播| 亚洲国产精品合色在线| 亚洲精品成人久久久久久| 狂野欧美激情性xxxx在线观看| 麻豆久久精品国产亚洲av| 两个人的视频大全免费| 国产男人的电影天堂91| 在现免费观看毛片| 丝袜喷水一区| 欧美日韩综合久久久久久| 久久久久久久久大av| 99久久精品国产国产毛片| 国产淫语在线视频| 汤姆久久久久久久影院中文字幕 | 美女脱内裤让男人舔精品视频| 色噜噜av男人的天堂激情| 国产精品久久久久久av不卡| 精品人妻一区二区三区麻豆| 亚洲国产高清在线一区二区三| 国产成人免费观看mmmm| 免费看美女性在线毛片视频| 成人鲁丝片一二三区免费| 国产成人一区二区在线| av在线观看视频网站免费| 岛国在线免费视频观看| 如何舔出高潮| 伊人久久精品亚洲午夜| www日本黄色视频网| 欧美zozozo另类| 久热久热在线精品观看| 岛国毛片在线播放| 日本色播在线视频| 国产高清有码在线观看视频| 一级av片app| 美女脱内裤让男人舔精品视频| 国产精品人妻久久久影院| 一级毛片我不卡| 国产高清三级在线| 国产精品综合久久久久久久免费| 欧美性猛交黑人性爽| 一级黄片播放器| 欧美高清成人免费视频www| 亚洲欧美精品专区久久| 午夜亚洲福利在线播放| 人妻少妇偷人精品九色| 在线播放无遮挡| 身体一侧抽搐| 日本wwww免费看| 亚洲国产最新在线播放| 午夜激情福利司机影院| 日韩欧美在线乱码| 黄片wwwwww| 97热精品久久久久久| 尤物成人国产欧美一区二区三区| 人人妻人人澡人人爽人人夜夜 | 久久久久国产网址| 日韩精品有码人妻一区| 嫩草影院入口| 国产综合懂色| 国产免费一级a男人的天堂| 欧美精品国产亚洲| 精品无人区乱码1区二区| 亚洲精华国产精华液的使用体验| 午夜福利在线在线| 最近视频中文字幕2019在线8| 久久精品久久久久久久性| 亚洲无线观看免费| 日本五十路高清| 日韩av在线大香蕉| 老师上课跳d突然被开到最大视频| 国产精品.久久久| 免费播放大片免费观看视频在线观看 | 亚洲国产欧美在线一区| 午夜福利视频1000在线观看| 亚洲在线观看片| 久久精品91蜜桃| 久久久久久久久久黄片| 非洲黑人性xxxx精品又粗又长| 熟妇人妻久久中文字幕3abv| 91av网一区二区| 日本av手机在线免费观看| 精品久久久久久成人av| 久久鲁丝午夜福利片| 99久久精品热视频| 老司机影院成人| 久久久久国产网址| 亚洲精品色激情综合| 亚洲成人久久爱视频| 久久久久久久久久成人| 亚洲av成人精品一二三区| 美女cb高潮喷水在线观看| 日韩一区二区视频免费看| 中文欧美无线码| 免费搜索国产男女视频| 久久久a久久爽久久v久久| 两个人的视频大全免费| 国产精品女同一区二区软件| 国产v大片淫在线免费观看| 精品熟女少妇av免费看| 亚洲熟妇中文字幕五十中出| 国产精品一二三区在线看| 亚洲国产精品合色在线| 免费不卡的大黄色大毛片视频在线观看 | 99热网站在线观看| 国产中年淑女户外野战色| 成人高潮视频无遮挡免费网站| 成人国产麻豆网| 免费观看的影片在线观看| 国产又色又爽无遮挡免| 欧美bdsm另类| 亚洲欧美日韩高清专用| 欧美人与善性xxx| 久久亚洲精品不卡| 男人的好看免费观看在线视频| 久久久久久久久中文| 久久精品国产自在天天线| 1024手机看黄色片| 日韩成人伦理影院| 久久久成人免费电影| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 国产精品日韩av在线免费观看| 国产单亲对白刺激| 日日摸夜夜添夜夜添av毛片| 汤姆久久久久久久影院中文字幕 | 亚洲综合色惰| 国产视频内射| 欧美日韩一区二区视频在线观看视频在线 | 最近视频中文字幕2019在线8| 久热久热在线精品观看| 亚洲成人av在线免费| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 在线免费观看不下载黄p国产| 老女人水多毛片| 亚洲乱码一区二区免费版| 午夜免费激情av| 特级一级黄色大片| 我的女老师完整版在线观看| 干丝袜人妻中文字幕| 日韩成人伦理影院| 日日撸夜夜添| 狂野欧美白嫩少妇大欣赏| av福利片在线观看| 综合色丁香网| 欧美3d第一页| 精品国产露脸久久av麻豆 | 91aial.com中文字幕在线观看| 欧美成人a在线观看| 亚洲成av人片在线播放无| 国内揄拍国产精品人妻在线| 日韩 亚洲 欧美在线| 亚洲最大成人中文| 一级毛片电影观看 | 熟女电影av网| 免费大片18禁| 日韩视频在线欧美| 男女下面进入的视频免费午夜| 亚洲国产精品成人久久小说| 久久精品国产亚洲av涩爱| 国产一区亚洲一区在线观看| 久久精品久久久久久久性| 在线a可以看的网站| 舔av片在线| 天堂影院成人在线观看| 国产午夜精品久久久久久一区二区三区| 99久国产av精品国产电影| 日韩欧美在线乱码| 日韩制服骚丝袜av| 色视频www国产| 免费观看在线日韩| 两个人视频免费观看高清| av专区在线播放| www.色视频.com| 女人被狂操c到高潮| 亚洲欧美精品自产自拍| 嫩草影院新地址| 成人午夜精彩视频在线观看| 国产伦精品一区二区三区视频9| 色视频www国产| 午夜福利高清视频| 最后的刺客免费高清国语| 欧美人与善性xxx| 国产一区亚洲一区在线观看| 中文字幕免费在线视频6| 2022亚洲国产成人精品| 插阴视频在线观看视频| 高清视频免费观看一区二区 | 亚洲av.av天堂| 久久草成人影院| 久久久久久九九精品二区国产| 色播亚洲综合网| 中国美白少妇内射xxxbb| 亚洲av福利一区| 级片在线观看| 日本午夜av视频| 美女xxoo啪啪120秒动态图| 又爽又黄无遮挡网站| 我的老师免费观看完整版| 一二三四中文在线观看免费高清| 欧美日本视频| 天堂√8在线中文| 亚洲图色成人| 日本与韩国留学比较| 亚洲国产最新在线播放| 内射极品少妇av片p| 日韩强制内射视频| 免费人成在线观看视频色| 久久99热这里只有精品18| 欧美丝袜亚洲另类| 欧美一区二区精品小视频在线| 亚洲欧美清纯卡通| 白带黄色成豆腐渣| 综合色丁香网| 国产精品野战在线观看| 五月玫瑰六月丁香| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 天天躁夜夜躁狠狠久久av| 精品欧美国产一区二区三| av天堂中文字幕网| 狠狠狠狠99中文字幕| 人人妻人人看人人澡| 国产黄a三级三级三级人| 久久久a久久爽久久v久久| 久久亚洲精品不卡| 欧美成人精品欧美一级黄| 国产亚洲5aaaaa淫片| 亚洲国产色片| 日本黄大片高清| 一边摸一边抽搐一进一小说| 岛国毛片在线播放| 天美传媒精品一区二区| 久久久欧美国产精品| 少妇的逼好多水| 男女那种视频在线观看| 精品一区二区免费观看| 中文字幕免费在线视频6| 日韩欧美精品v在线| 秋霞在线观看毛片| 日韩欧美 国产精品| 男插女下体视频免费在线播放| 精品酒店卫生间| 搡老妇女老女人老熟妇| 欧美激情国产日韩精品一区| 男女国产视频网站| 国产在线男女| 日本猛色少妇xxxxx猛交久久| 国产 一区 欧美 日韩| 日韩制服骚丝袜av| 欧美成人免费av一区二区三区| av在线观看视频网站免费| 午夜激情福利司机影院| 我的老师免费观看完整版| 亚洲最大成人手机在线| 亚洲成人av在线免费| 少妇猛男粗大的猛烈进出视频 | 69av精品久久久久久| 伊人久久精品亚洲午夜| 免费大片18禁| 91狼人影院| 嫩草影院精品99| kizo精华| 我要看日韩黄色一级片| 高清视频免费观看一区二区 | 天美传媒精品一区二区| 91狼人影院| 欧美一区二区亚洲| 内射极品少妇av片p| 少妇裸体淫交视频免费看高清| 小蜜桃在线观看免费完整版高清| 有码 亚洲区| 啦啦啦观看免费观看视频高清| 床上黄色一级片| 成人欧美大片| 男女边吃奶边做爰视频| 一级爰片在线观看| 五月玫瑰六月丁香| 国产探花在线观看一区二区| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| av又黄又爽大尺度在线免费看 | 人体艺术视频欧美日本| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区 | 国产探花极品一区二区| 我要搜黄色片| 欧美激情国产日韩精品一区| 超碰av人人做人人爽久久| 国产精品99久久久久久久久| 九九热线精品视视频播放| 免费观看精品视频网站| 久久精品影院6| 黄色欧美视频在线观看| 天堂√8在线中文| 男女那种视频在线观看| 床上黄色一级片| 亚洲天堂国产精品一区在线| 99热网站在线观看| 久久人妻av系列| 亚洲熟妇中文字幕五十中出| 亚洲在线观看片| 少妇的逼好多水| 国产在线男女| 久久久久久大精品| 伦精品一区二区三区| 岛国在线免费视频观看| 网址你懂的国产日韩在线| 欧美成人a在线观看| 高清午夜精品一区二区三区| 大香蕉97超碰在线| 日韩欧美 国产精品| 亚洲欧美一区二区三区国产| 自拍偷自拍亚洲精品老妇| 晚上一个人看的免费电影| 国产精品av视频在线免费观看| 又爽又黄a免费视频| 亚洲精品色激情综合| 夜夜爽夜夜爽视频| 精品久久国产蜜桃| 97超碰精品成人国产| 青青草视频在线视频观看| 大香蕉久久网| 午夜福利在线观看吧| 亚洲中文字幕一区二区三区有码在线看| 久99久视频精品免费| 国产三级在线视频| 久热久热在线精品观看| 亚洲美女视频黄频| 国产色爽女视频免费观看| 国产精品,欧美在线| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美人成| 国产亚洲精品av在线| 天美传媒精品一区二区| 色综合色国产| 亚洲五月天丁香| 国产免费福利视频在线观看| 51国产日韩欧美| 国产精品无大码| 别揉我奶头 嗯啊视频| 亚洲精品乱久久久久久| 国产精品电影一区二区三区| 丰满乱子伦码专区| 欧美人与善性xxx| av卡一久久| 我的老师免费观看完整版| 最近2019中文字幕mv第一页| 美女大奶头视频|