吳麗君,李林虎,張 勃,張軒碩,宋建宇,沈龍海
(沈陽理工大學(xué)理學(xué)院,沈陽 110159)
鋅摻雜包覆狀氮化鎵納米線的制備及表征
吳麗君,李林虎,張 勃,張軒碩,宋建宇,沈龍海
(沈陽理工大學(xué)理學(xué)院,沈陽 110159)
采用化學(xué)氣相沉積法在石英襯底上沉積出鋅摻雜的GaN納米線。利用X射線衍射(XRD)、掃描電子顯微鏡(SEM)、X射線能譜儀(EDS)和拉曼光譜(Raman)對(duì)鋅摻雜GaN納米線進(jìn)行了結(jié)構(gòu)和形貌的表征。結(jié)果表明:鋅摻雜后GaN納米線的XRD圖譜向低角度方向移動(dòng),衍射峰更加明顯。鋅摻雜GaN納米線存在一層包覆結(jié)構(gòu),納米線的直徑范圍約為300~500 nm,包覆層的厚度在150~200 nm。鋅摻雜GaN納米線的Raman光譜在E2(high)和A1(LO)出現(xiàn)了微小的紅移。最后對(duì)包覆結(jié)構(gòu)的可能形成機(jī)理進(jìn)行了探討。
化學(xué)氣相沉積;GaN納米線;包覆結(jié)構(gòu);鋅摻雜
作為重要的第3代半導(dǎo)體材料,GaN(3.4 eV)具有禁帶寬度大、擊穿場(chǎng)強(qiáng)大、介電常數(shù)小、電子漂移飽和速度高、襯底的絕緣性能和導(dǎo)熱性能良好等優(yōu)點(diǎn),已成為目前世界上最先進(jìn)的半導(dǎo)體材料之一[1-3]。其一維半導(dǎo)體納米結(jié)構(gòu)在微電子和光電子器件等領(lǐng)域具有廣泛的應(yīng)用前景[4-6]。隨著未來納米電子器件的不斷發(fā)展,一維GaN納米材料的摻雜已成為當(dāng)今研究者廣泛關(guān)注的熱點(diǎn)[7-9]。
因Zn原子與Ga原子半徑相近,Zn被認(rèn)為是較好的p型摻雜劑之一[10]。近年來,研究者又發(fā)現(xiàn)鋅摻雜的GaN納米線能夠有效調(diào)節(jié)GaN的禁帶寬度,使其能在可見光下光解水制取氫氣和氧氣,應(yīng)用前景巨大[11]。金屬有機(jī)物化學(xué)氣相沉積(MOCVD)[12]、分子束外延(MBE)[13]和氫化物氣相外延(HVPE)[14]等工藝被用于鋅摻雜GaN納米材料的制備與表征,但目前仍有許多問題需要解決,如摻雜后的生長機(jī)理、納米線形貌的控制等。筆者采用化學(xué)氣相沉積法,利用真空管式爐在石英襯底上直接制備出鋅摻雜包覆狀的GaN納米線,無需高真空或催化劑的參與,設(shè)備簡(jiǎn)單、易于操作。初步研究了其形貌和微觀結(jié)構(gòu),探討了可能的生長機(jī)理。
1.1 樣品制備
在自制真空管式爐中制備鋅摻雜GaN納米線(圖1)。鎵源和鋅源放置在超聲波清洗后的陶瓷舟中,石英襯底置于其正上方,把陶瓷舟置于石英小試管內(nèi),再將小試管放入水平石英管式爐中。封閉系統(tǒng),抽成真空并用高純氬氣反復(fù)清洗以排盡石英管中的空氣。在一定的氬氣流量(50 cm3/min)保護(hù)氣氛下升溫,達(dá)到950℃后,通入50 cm3/min高純NH3,維持2 h。關(guān)閉加熱系統(tǒng),關(guān)閉氬氣,再將氨氣流量設(shè)置成100 cm3/min,在氨氣流下自然冷卻,達(dá)到室溫時(shí),關(guān)閉氨氣,制得樣品。未摻雜GaN納米線的制備及表征在前期的工作中進(jìn)行了詳細(xì)的闡述和解釋,這里不再作討論[15]。
1.2 測(cè)試儀器
采用Hitachi D/max2500 PC型X射線衍射儀(輻射源為Cu Kα,λ=0.154 06 nm)和SEM Hitachi S-3400N型掃描電子顯微鏡對(duì)樣品的結(jié)構(gòu)和形貌進(jìn)行分析;樣品成分由能量散射X射線譜(EDS)確定。拉曼光譜測(cè)量在英國雷尼紹 (Renishaw)公司生產(chǎn)的inVia型拉曼光譜儀完成,光源為Ar離子激光器,激發(fā)波長為514.5 nm。
圖1 實(shí)驗(yàn)裝置圖Fig.1 Schematic diagram of the experimental apparatus
圖2是鋅摻雜GaN和未摻雜GaN的XRD圖。其中所有的衍射峰均可以指標(biāo)化為六方纖鋅礦結(jié)構(gòu)的GaN晶體。在XRD圖中沒有出現(xiàn)Zn或ZnO的衍射峰,說明樣品中Zn元素含量非常少。鋅摻雜GaN的晶格常數(shù)為a=0.321 5 nm和c=0.523 0 nm,未摻雜GaN的晶格常數(shù)為a=0.320 7 nm和c =0.521 2 nm,鋅摻雜GaN的晶格常數(shù)略微增大。插圖為鋅摻雜GaN和未摻雜GaN前3個(gè)衍射峰的局部放大圖,可以明顯看到鋅摻雜GaN的衍射峰向低角度移動(dòng),衍射峰更加明顯。
圖2 鋅摻雜GaN和未摻雜GaN的XRD圖Fig.2 XRD patterns of Zn-doped and undoped GaN
圖3是鋅摻雜GaN和未摻雜GaN的SEM圖:圖3a是用Zn作為摻雜源得到的鋅摻雜GaN的低倍率放大SEM圖;圖3b是圖3a局部高倍率放大SEM圖。可見在石英襯底上生長了高密度的無序排列的GaN納米線,長度達(dá)幾十微米,納米線的直徑約為300~500 nm,納米線存在一層包覆結(jié)構(gòu),包覆層的厚度大約在150~200 nm。圖3c是在相同實(shí)驗(yàn)條件下用ZnO作為摻雜源得到的鋅摻雜GaN的低倍率放大SEM圖,圖3d是圖3c局部高倍率放大SEM圖??梢钥吹紾aN納米線也存在一層包覆結(jié)構(gòu),包覆層的厚度大約在200 nm。未摻雜的GaN中沒有出現(xiàn)類似的包覆結(jié)構(gòu),如圖3e和3f。
圖3 鋅摻雜的GaN和未摻雜的GaN的SEM圖Fig.3 SEM image of Zn-doped and undoped GaN
圖4為圖3b標(biāo)記部位的EDS能譜圖,由EDS測(cè)試可知:產(chǎn)物中主要含有Ga、N、Zn元素,Zn元素的含量 (wB)為8.77%,說明得到了鋅摻雜的GaN納米線。氧元素和碳元素出現(xiàn)的原因可能是由于樣品吸附了空氣中的氧和碳。
圖5為鋅摻雜GaN納米線生長過程的示意圖。在最初的階段,隨著爐內(nèi)溫度緩慢升高,金屬鎵和金屬鋅逐漸融化蒸發(fā),形成鎵和鋅的混合蒸氣;當(dāng)溫度超過800℃時(shí),氨氣開始加速分解[16],產(chǎn)生大量的活性氮源,首先與Ga反應(yīng)在石英襯底上生長了GaN納米線,實(shí)驗(yàn)過程中沒有使用催化劑,且GaN納米線的末端沒有出現(xiàn)金屬顆粒,因此認(rèn)為鋅摻雜GaN納米線的生長遵循氣-固(VS)生長機(jī)制[17]。隨著反應(yīng)的進(jìn)行,Zn原子會(huì)取代GaN納米線中部分Ga原子的位置,形成Zn-Ga合金,提高了生長面上金屬吸附層的濃度,使Ga原子在GaN納米線外延生長面容易擴(kuò)散,在氮源充足的情況下,GaN納米線的表面形成了多個(gè)GaN的小晶核,同時(shí)GaN小晶核吸收Ga原子和N原子,達(dá)到過飽和狀態(tài),然后沿著納米線的徑向結(jié)晶生長,從而形成包覆結(jié)構(gòu)[18-19]。
圖4 鋅摻雜GaN的EDS圖譜Fig.4 EDS spectrum of GaN
圖5 包覆狀GaN納米線生長過程Fig.5 Schematic growth diagrams of coated GaN nanowire
圖6是鋅摻雜GaN納米線和未摻雜GaN納米線的拉曼散射譜,鋅摻雜GaN納米線和未摻雜GaN納米線的拉曼散射譜中均能觀察到E2(high)和A1(LO)兩個(gè)典型的Raman振動(dòng)模式,與文獻(xiàn)報(bào)道相一致[20]。圖6a是用Zn作為摻雜源得到的鋅摻雜GaN納米線的拉曼散射譜??梢杂^察到樣品的E2(high)模式的峰位564 cm-1相對(duì)于未摻雜GaN納米線(圖6c)中571 cm-1的峰位,出現(xiàn)了7 cm-1的紅移,A1(LO)模式的峰位723 cm-1相對(duì)于未摻雜GaN納米線中729 cm-1的峰位,出現(xiàn)了6 cm-1的紅移。相同實(shí)驗(yàn)條件下,用ZnO進(jìn)行GaN的鋅摻雜,如圖6b所示。鋅摻雜GaN納米線的E2(high)模式的峰位566 cm-1和A1(LO)模式的峰位724 cm-1相對(duì)于未摻雜GaN納米線的571和729 cm-1兩個(gè)模式分別出現(xiàn)了5 cm-1的紅移,紅移的原因可能是鋅摻雜造成的。在GaN納米線生長的過程中,Zn原子的參與會(huì)使GaN納米線中的晶格擴(kuò)張,Ga原子和N原子之間的原子間距變大,從而使拉曼振動(dòng)頻率向低頻方向移動(dòng),與XRD測(cè)試結(jié)果相符合。除上述2個(gè)峰位外,鋅摻雜GaN納米線和未摻雜GaN納米線在255和420 cm-1附近均出現(xiàn)了2個(gè)較弱的不屬于六方纖鋅礦氮化鎵的低頻振動(dòng)模式,這里將其歸結(jié)于納米材料的尺寸效應(yīng),在研究GaN納米線和納米晶時(shí)也得到了類似的振動(dòng)模式[21-22]。
圖6 鋅摻雜GaN和未摻雜GaN的拉曼散射譜Fig.6 Raman spectra of Zn-doped and undoped GaN
(1)使用Zn和ZnO作為摻雜源,都在石英襯底上直接沉積了具有包覆結(jié)構(gòu)的GaN納米線。
(2)XRD圖譜表明鋅摻雜的GaN納米線的峰位向低角度移動(dòng),衍射峰更加明顯。納米線的直徑約為300~500 nm,包覆層的厚度大約為150~200 nm,包覆結(jié)構(gòu)的形成可能是由于鋅摻雜提高了Ga的蒸氣壓濃度所致。
(3)Raman光譜表明鋅摻雜的GaN納米線的E2(high)和A1(LO)振動(dòng)模式出現(xiàn)了紅移現(xiàn)象。
[1]Shin M J,Kim M J,Jeon H S,et al.Evolution of GaN nanoflowers from AlN-SiO2grains on a silicon substrate by chemical vapor reaction[J].Vacuum,2011,86(2):201-205.
[2]Nguyen H P T,Cui K,Zhang SF,et al.Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes[J].Nano Letters,2012,12(3):1317-1323.
[3]Dai S,Zhao J,He M,et al.New twin structures in GaN nanowires[J].The Journal of Physical Chemistry C,2013,117(24):12895-12901.
[4]Kuykendall T,Pauzauskie P J,Zhang Y F,et al.Crystallographic alignment of high-density gallium nitride nanowire arrays[J].Nature Materials,2004,3(8):524-528.
[5]Wang D F,Pierre A,Kibria M G,et al.Wafer-level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy[J].Nano Letters,2011,11(6): 2353-2357.
[6]Deb P,Kim H,Rawat V,etal.Faceted and vertically aligned GaN nanorod arrays fabricated without catalysts or lithography[J].Nano Letters,2005,5(9):1847-1851.
[7]Hou W C,Chen L Y,Tang W C,et al.Control of seed detachment in Au-assisted GaN nanowire growths[J].Crystal Growth&Design,2011,11(4):990-994.
[8]Ryu B D,Han N,Han M,et al.Stimulated N-doping of re
duced graphene oxide on GaN under excimer laser reduction process[J].Materials Letters,2014,116:412-415.
[9]Das SN,Patra S,Kar JP,etal.Growth and characterization ofMg-doped GaN nanowire synthesized by the thermal evaporation method[J].Materials Letters,2013,106:352-355.
[10]Shimada S,Otani H,Miura A,et al.Synthesis and characterization of Zn-doped GaN crystals by simultaneous carbothermal reduction and nitridation of Ga2O3and ZnO[J].Journal of Crystal Growth,2010,312(3):452-456.
[11]Maeda K,Domen K.Solid solution of GaN and ZnO as a stable photocatalyst for overallwater splitting under visible light[J].Chemistry of Materials,2009,22(3):612-623.
[12]Feng Z C,Yang T R,Liu R,et al.Phase separation in Zndoped InGaN grown by metalorganic chemical vapor deposition[J].Materials Science in Semiconductor Processing,2002,5(1):39-43.
[13]Monemar B,Paskov P P,Paskova T,et al.Optical characterization of III-nitrides[J].Materials Science and Engineering:B,2002,93(1):112-122.
[14]Polyakov A Y,Govorkov A V,Smirnov N B,et al.Studies of deep centers in high-resistivity p-GaN films doped with Zn and grown on SiC by hydride vapor phase epitaxy[J].Solid-State Electronics,2001,45(2):249-253.
[15]李林虎,張勃,沈龍海.基于無催化劑化學(xué)氣相沉積法的氮化鎵納米線制備和表征[J].井岡山大學(xué)學(xué)報(bào):自然科學(xué)版,2015,36(1):81-84.
[16]He M Q,Minus I,Zhou PZ,etal.Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3[J].Applied Physics Letters,2000,77(23):3731-3733.
[17]Sahoo P,Dhara S,Amirthapandian S,et al.Role of surface polarity in self-catalyzed nucleation and evolution of GaN nanostructures[J].Crystal Growth&Design,2012,12 (5):2375-2381.
[18]梁建,王曉寧,張華,等.Zn摻雜Z形GaN納米線的制備及表征[J].人工晶體學(xué)報(bào),2012,41(1):36-41.
[19]Xu GW,Li Z Z,Baca J,et al.Probing nucleation mechanism of self-catalyzed InN nanostructures[J].Nanoscale Research Letters,2010,5(1):7-13.
[20]Yang Y G,Ma H L,Xue CS,etal.Preparation and properties of GaN nanostructures by post-nitridation technique[J].Physica B,2003,334(3-4):287-291.
[21]Liu H L,Chen C C,Chia C T,et al.Infrared and Ramanscattering studies in single-crystalline GaN nanowires[J].Chemical Physics Letters,2001,345(3):245-251.
[22]Chen CC,Yeh C C,Chen C H,et al.Catalytic growth and characterization of gallium nitride nanowires[J].Journal of the American Chemical Society,2001,123(12):2791-2798.
Synthesis and characterization of coated Zn-doped GaN nanow ires
WU Li-jun,LILin-hu,ZHANG Bo,ZHANG Xuan-shuo,SONG Jian-yu,SHEN Long-hai
(School of Science,Shenyang Ligong University,Shenyang 110159,China)
Zn-doped GaN nanowireswere deposited on quartz substrate by the CVD method.The structure and themorphology of GaN nanowireswere characterized by X-ray diffraction(XRD),scanning electronmicroscopy (SEM),Energy Dispersive X-ray spectroscopy(EDS)and Raman spectra(Raman).The results show that XRD patterns of Zn-doped GaN nanowires produce small shift to the the low-angle value and diffraction peaks become more obvious.Zn-doped GaN nanowireswere coated with a layer of nano structure.The diameter of the nanowire is about300-500 nm and the thickness of the layer is about150-200 nm.In Raman spectra of Zn-doped GaN nanowires,E2(high)and A1(LO)model produced a small red shift.The possible growth mechanism of coated Zn-doped GaN nanowires is also discussed.
chemical vapor deposition;GaN nanowires;coated structure;Zn-doped
TB383
:A
2015-09-09
國家自然科學(xué)基金項(xiàng)目 (11004138);遼寧省優(yōu)秀人才支持計(jì)劃項(xiàng)目 (LJQ2011020);沈陽市科技局應(yīng)用基礎(chǔ)專項(xiàng)(F16-205-1-16)
吳麗君 (1979—),女,碩士,材料物理與化學(xué)專業(yè),wulijun20070915@163.com。
沈龍海,博士,教授,shenlonghai@163.com。
吳麗君,李林虎,張勃,等.鋅摻雜包覆狀氮化鎵納米線的制備及表征[J].桂林理工大學(xué)學(xué)報(bào),2016,36 (4):804-807.
1674-9057(2016)04-0804-04
10.3969/j.issn.1674-9057.2016.04.026