• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Photodissociation Dynamics of 2-Iodotoluene Investigated by Femtosecond Time-Resolved Mass Spectrometry?

    2016-04-08 06:35:42ZhimingLiuYanmeiWangChunlongHuJinyouLongBingZhangStateKeyLaboratoryofMagneticResonanceandAtomicandMolecularPhysicsWuhanInstituteofPhysicsandMathematicsChineseAcademyofSciencesWuhan430071ChinaDatedReceivedonNovember
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Zhi-ming Liu,Yan-mei Wang,Chun-long Hu,Jin-you Long,Bing Zhang?State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China(Dated:Received on November 15,2015;Accepted on January 14,2016)

    ?

    ARTICLE Photodissociation Dynamics of 2-Iodotoluene Investigated by Femtosecond Time-Resolved Mass Spectrometry?

    Zhi-ming Liu,Yan-mei Wang,Chun-long Hu,Jin-you Long,Bing Zhang?
    State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Wuhan Institute of Physics and Mathematics,Chinese Academy of Sciences,Wuhan 430071,China
    (Dated:Received on November 15,2015;Accepted on January 14,2016)

    The photodissociation dynamics of 2-iodotoluene following excitation at 266 nm have been investigated employing femtosecond time-resolved mass spectrometry.The photofragments are detected by multiphoton ionization using an intense laser fi eld centered at 800 nm.A dissociation time of 380±50 fs was measured from the rising time of the co-fragments of toluene radical(C7H7)and iodine atom(I),which is attributed to the averaged time needed for the C?I bond breaking for the simultaneously excited nσ?and ππ?states by 266 nm pump light.In addition,a probe light centered at 298.23 nm corresponding to resonance wavelength of ground-state iodine atom is used to selectively ionize ground-state iodine atoms generated from the dissociation of initially populated nσ?and ππ?states.And a rise time of 400±50 fs is extracted from the fi tting of time-dependent I+transient,which is in agreement with the dissociation time obtained by multiphoton ionization with 800 nm,suggesting that the main dissociative products are ground-state iodine atoms.

    Key words:2-Iodotoluene,Photodissociation,Dissociation time,Femtosecond timeresolved mass spectrometry

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: bzhang@wipm.ac.cn,Tel.:+86-27-87197441,FAX:+86-27-87198491

    I.INTRODUCTION

    The photodissociation dynamics of halogenated organic compounds has attracted historically great attention,not only due to its crucial role in highly detailed fundamental studies but also its harmfulness to environment[1?17].The principal goal of photodissociation studies is to obtain the clearest picture of the molecular dynamics in the excited state as the molecule leaves the Franck-Condon region such as what transient states to traverse,where the fragments are formed,what the lifetime of the upper state is and which bonds break and so on.Many experimental techniques have been developed to investigate photodissociation reaction process,for instance photofragment translation spectroscopy[4?6], velocity map imaging[7,8]and ultrafast time-resolved time-of- fl ight mass spectrometry[9?15],which are coupled with high level ab initio calculations[15?17]to provide a clear picture of the fragmentation mechanisms of molecules.

    The UV absorption spectra of aryl iodine are dominated by two contributions:one is the nσ?states resulting from the promotion of a nonbonding electron from the iodine atom valence shell to an antibonding σ?localized along the C?I bond,which leads to a rapid direct dissociation,and the other is due to the absorption to the bound ππ?states of the benzene ring which has predissociation character for the coupling with repulsive nσ?states.As a result of the overlap of these two di ff erent type states in the same energy region,the dynamics cannot be directly obtained from the absorption spectrum.Femtosecond time-resolved mass spectrometry coupled with state-selective resonance enhanced multiphoton ionization has been emerging as a powerful tool for investigating photodissciation dynamics process.It has two major advantages:the fi rst one is mass selectivity,which allows for the separate study of the reactant and fragment dynamics,the second one is the ability of selectively monitoring all fragments of di ff erent masses or same masses in di ff erent fi nal state as well as the parent ion simultaneously.

    2-Iodotoluene,which is formed by substitution of an iodine atom and a methyl group for two neighboring hydrogen atoms of the benzene,is a very interesting system for study.Using state-selective onedimensional photofragment translational spectroscopy, El-Sayed et al.investigated the photodissociation dynamics of 2-iodotoluene upon excitation at 266 nm[6]. The spatial and velocity distributions of ground-state iodine atom I and excited state iodine atom I?were determined.Two distinct ground-state iodine atoms velocity distributions were observed.One is a high velocity,narrow distribution with high anisotropy,whichis attributed to direct dissociation from the repulsive nσ?state.The other one is a low velocity,broader distribution appearing lower anisotropy,which is due to the predissociation from the bound ππ?state.The dissociation times for these two channels were estimated by calculating time-dependence of anisotropy parameter β.Fang et al.have calculated the potential energy curves for the ground and low-lying excited states of 2-iodotoluene along the assumed photolysis reaction coordinates and elucidated the dissociation mechanism and channels following excitation at 266 nm[17].

    Based on the previous studies on aryl halides,in this work,we identify the photodissociation dynamics of 2-iodotoluene and the processes that participate in the relaxation of the molecule after being initiated by excitation at 266 nm.Especially,the determination of time scales for the dissociation channels is the focus on. Although previous experiment has estimated the dissociation times through measurements of the anisotropy [6],the accuracy is low especially when reaction time is more or comparable to the average rotation time of the parent molecule.Femtosecond time-resolved mass spectrometry enables one to directly measure the dissociation time.To the best of our knowledge,this is the fi rst time-resolved study on the photoinduced C?I bond breaking of 2-iodotoluene at 266 nm.

    II.EXPERIMENTAL SETUP

    The details of the experimental setup are described elsewhere[18].Brie fl y,it consists of a molecular beam machine coupled to a linear time of fl ight mass spectrometer and a 1 kHz-4 mJ/pulse Ti:Sapphire regenerative-ampli fi ed laser system(Coherent Inc.),delivering pulses with a central wavelength of~800 nm and a Fourier-transform-limited full width at halfmaximum(FWHM)duration of~100 fs.One part of the output light was used to produce the pump pulse at 266 nm by mixing the fundamental(800 nm)and the second harmonic beam(400 nm)in a 0.2 mm thick BBO crystal.One part was applied to pump an optical parametric ampli fi er(OPA,Coherent Inc.TOPAS-C) to generate probe wavelength centered at 298.23 nm, which is used for the resonance-enhanced multiphoton ionization(REMPI)probing of ground-state I atoms. Another part was used as probe light to track the relaxation processes of 2-iodotoluene.The energy intensity for pump light is 0.5μJ/pulse which keeps no ion signal occurring with it alone.For the probe light,the typical energy is 10 and 60μJ/pulse for the 298.23 and 800 nm respectively.The probe beam was temporally delayed relative to the pump beam by a computer-controlled linear translation stage(PI,M-126.CG1).The two laser beams were focused with fused silica lens of f=400 mm respectively and introduced into the vacuum chamber collinearly through a dichroic mirror.

    The employed apparatus[19]is similar to that designed by Eppink and Parker[20].It consists of a molecular-beam source chamber and an ionization- fl ight detection chamber.The detection chamber was kept below 0.5μPa with the molecular beam on.2-Iodotoluene (99.9%purity)seeded in He was expanded into the source chamber with a stagnation pressure of 2 atm through a pulsed nozzle(General Valve,with a 0.5 mm ori fi ce)with the repetition rate of 10 Hz.The supersonic molecular beam is collimated by a conical skimmer and intersects perpendicularly with the two laser beams in a two-stage ion lens region.Photoion is extracted into a 36 cm fi eld-free region,which is doubly shielded against stray magnetic fi elds byμ-metal tube.At the end of the time-of- fl ight tube,the ions strike a twostage microchannel plate detector backed by a phosphor screen.The emission from the phosphor screen is monitored by a photomultiplier connected to a 1 GS/s digital oscilloscope(Tektronix Inc.,TDS2012B)USB interfaced with a computer.The LabView software was used to track the parent ion and fragments signal as function of pump-probe delay time simultaneously.

    III.RESULTS AND DISCUSSION

    With the help of detailed theoretical calculation[17] and experimental investigation[6]on 2-iodotoluene,it is easy to determine that upon excitation at 266 nm,the dominant excited states are the ππ?state with a bound character and the nσ?state with a repulsive character along the C?I stretching coordinate,which leads to the production of ground-state iodine atoms.So,the parallel relaxation processes for those two excited states are monitored by probe pulse which ionized the excited molecules.

    Figure 1(a)displays the time-of- fl ight mass spectra obtained with the pump pulse at 266 nm alone,the probe pulse at 800 nm alone and in pump-probe con fi guration at?t=0(time-overlap).The power of the probe light is~26μJ/pulse.As observed in the mass spectra, there are many fragment ions generated other than parent ion C7H7I+,especially for toluene ion C7H7+which is the dominant signal in the mass spectra,indicating that the parent ion will to a large extent undergo photoinduced fragmentation[21,22],which is similar to the femtosecond pump-probe investigation on iodobenzene [10].Figure 1(b)shows the measured time transients of the total signals of,following excitation at 266 nm and probe with 800 nm(26μJ/pulse). The polarizations of pump and probe beam are parallel with each other.The decay time pro fi le for parent ioncan be best fi tted by one exponential with decay time constant τdof 92±10 and 129±15 fs respectively convoluted with a Gaussian that describes the pump-probe cross correlation.

    FIG.1(a)One color and two color(at time overlap)mass spectra of 2-iodotoluene at 266 and 800 nm.The typical energy was 0.5 and 26μJ/pulse for the 266 nm pump and 800 nm probe pulse respectively.(b)Time-resolved C7H7I+and C7H7+transients recorded under the same conditions as(a),the circles represent experimental data and the solid lines are fi tting results.

    It is not likely that those fragment ions shown in Fig.1(a)are produced from the ionization of the corresponding neutral radicals,which is generated from dissociation of neutral molecules or fragmentation of molecular ion,due to their high ionization potential under our low probe light intensity.For instance,ionization of neutral toluene radical would require absorption at least six probe photons(800 nm)since the ionization potential of the toluene radical is expected to be only slightly lower than the ionization potential of the phenyl radical,which is 9.13 eV[23,24].If the neutral radicals can be detected,the time-pro fi le of C7H7+should have a stable channel at longer pump-probe delay time, which is not observed on the fragment ion in Fig.1(b), indicating that the neutral radical C7H7generated from dissociation in electronically excited states induced by the pump pulse is not ionized by the probe pulse 800 nm with intensity of 26μJ/pulse.So,it is expected that all fragment ions observed here are originated from dissociative ionization of parent molecules.Since no ion signals were generated with pump pulse alone,the timedependent fragment ions signal should also re fl ect the neutral excited states dynamics of 2-iodotoluene.

    The repulsive nσ?and the bound ππ?states can be excited simultaneously.So,it is expected that two decay components should be observed on the time pro fi le of parent ion or fragment ions.Such kinetics is observed on iodobenzene molecule[10].Unfortunately,only one decay component is observed for C7H7I+and C7H7+transients shown in Fig.1(b)and we tend to attribute this component to the decay dynamics of the initially populated nσ?state.There are two possible reasons for not observing the contribution from ππ?state:one is that the absorption cross-section of the ππ?state is much lower than the nσ?state and indeed the absorption coe ffi cient of the nσ?state is an order larger than that of the ππ?state according to the theoretical calculation[7];another one is that the ionization crosssection for the ππ?state is probable low with 800 nm as probe light.Thus,the ionization signal from the ππ?state would be faint,which is likely to be suppressed by strong ionization signal from the nσ?state.

    Now we turn to discuss the observed lifetime τd, which is assigned to the decay dynamics of the initial populated nσ?state as mentioned above.Indeed,a very fast relaxation will occur when excited to this state due to its repulsive character.Using state-selective photofragment translational spectroscopy Freitas and coworkers[6]studied the photodissociation dynamics of 2-iodotoluene upon excitation by 266 nm and observed a sharp high velocity distribution of ground-state iodine atoms,which was assigned to a direct dissociation occurring on the nσ?state.And they estimated the dissociation time(0.51 ps)of C?I bond on this state by calculating β variation as a function of time.According to the calculations[17],it has big possibility for the molecules to stay on this state during decay processes.Therefore,the observed lifetime for the decay of nσ?state should be shorter than the dissociation time which is associated with the time needed from the Franck-Condon region to the production of freedom iodine atoms.Thus,the fi tted τdis reasonable and not contradicted with the estimated dissociation time of 0.51 ps in Freitas’work.It is persuasive to assign the lifetime constant τdto the decay dynamics on the initially excited nσ?state.

    FIG.2 The mass spectra of 2-iodotoluene obtained with 266 nm pump light alone and 800 nm probe light alone and at time overlap between pump and probe light.The typical energy was 0.5 and 60μJ/pulse for the 266 nm pump and 800 nm probe pulse respectively.

    In order to get more insight to the dissociation dynamics of the excited states induced by 266 nm,we increase the power of probe pulse to try to detect the dissociative products.It is an ideal tool to detect molecular species with easily achieved multiphoton ionization using femtosecond lasers[25].By increasing the power of the probe beam from 26μJ/pulse to 60μJ/pulse, a time-of- fl ight mass spectrum recorded at pump-probe delay time zero is shown in Fig.2.More visible fragment ions signal intensity is observed compared with the mass spectrum obtained with probe intensity 26μJ/pulse. To follow the transient dynamics for these fragment ions,the signal intensities against the pump-probe delay time for these peaks were acquired,which is shown in Fig.3.The temporal behavior of all fragment ions can be well fi tted to one fast decay component and one rise component,convoluted with a Gaussian describing the pump-probe cross correlation.All decay and rise times measured for all cation transients are summarized in Table I.Those two components correspond to two di ff erent channels for the production of the fragment ions.For the fast decay time constant τd,it is reasonable to attribute this component to the dissociation of the parent ions after the pump-probe ionization, since it has similar trend to the parention time pro fi le shown in Fig.3.For the second rising component τr,it is a constant component without decay.Furthermore,this component depends greatly on the power of the probe beam.Thus this component is attributed to the ionization of the neutral fragments generated by the pump pulse.As mentioned above,the dissociative products are toluene radical C7H7and iodine atom I induced by the pump light.So,it is easy to assign the rise component fortransients to the ionization of neutral C7H7and I.It is very interesting to observe that thetransients also show the rise component.By closely inspecting the time pro fi le of these transients,it is discovered that the time constants τrare in agreement with that forThus,it is likely that the rise components intransients are from the dissociative ionization of neutral radical C7H7.Indeed,there are no dissociative channels from the parent molecules to product neutral radical C5H4,C4H2and C3H2after being excited by 266 nm,which further evidence our conclusion.So,the τrcomponents in these fragment ions transients re fl ect the same dynamics as in. It is worth noting that the rise time constant τrre fl ects the averaged time needed for all dissociative channels initialed by 266 nm,leading to generation of neutral radical C7H7and iodine atom I.

    FIG.3 Time-resolved cation transients recorded under the same conditions as Fig.2.The circles represent experimental data and the solid lines are fi tting results.All transients are normalized to their maxima value.

    TABLE I The time constants extracted from the fi ts of all cation transients shown in Fig.3.

    It is interesting that the decay times increase as the mass of the fragment ions decreases.As mentioned above,the decay components in all fragment ions transients are from the fragmentation after pump-probe ionization of parent molecule.These observations are similar to the ones obtained,for instance,on tetrathiafulvalene and Cr(CO)6probed with an intense probe pulse[26,27].Here as well,the degree of fragmentation is weaker at small pump-probe delays and becomes stronger at long pump-probe delays.As explained,when the molecule relaxes,the electronic energy is converted into vibrational energy,which remains in the ion upon ionization.Dissociative ionization is sensitive to vibrational relaxation since the bonds in the ion are generally weaker than those of the neutral molecules. Therefore,upon ionization,the internal energy of the ion will be more and more important and fragmentation to the smaller species will take place once intramolecular vibrational relaxation becomes e ff ective[26].

    To gain more information on the photodissociation dynamics of 2-iodotoluene upon excitation by 266 nm, the probe light at 298.23 nm,corresponding to the ground-state iodine atom resonance wavelength[28],is used to track the appearance of ground state iodine atoms product generated by cleavage of C?I bond in this molecule.There are no excited state I atom resonance wavelengths within the bandwidth of the probe light(450 cm?1),which enables us to probe the ground state iodine atoms only.Figure 4 displays the I+transient obtained following excitation at 266 nm and probe with 298.23 nm.It can be fi tted with a single rising exponential convoluted with the Gaussian pumpprobe cross correlation,yielding a rising time constant of 400±50 fs,which re fl ects the average time for all dissociative channels leading to ground state I atoms. Two distinct ground-state I atom spatial and velocity distributions were observed by El-Sayed’s group[6] using nanosecond lasers.One is a high velocity,narrow distribution that exhibits a high anisotropy,which is assigned to the direct dissociation from nσ?state. The other one is a low velocity,broader distribution accompanied by a lower averaged anisotropy,which is attributed to the predissociation dynamics of ππ?state. And they speculated that the dominant products of ground-state I atoms resulted from direct dissociation process.The dissociation time of this process is estimated to be 0.51 ps.The value 400±50 fs extracted from the time transients of ground-state I atom in our experiment is in agreement with the estimated value 0.51 ps[6].Therefore,it is reasonable to conclude that the measured rise time 400±50 fs dominantly re fl ects the dissociation time needed for C?I fi ssion on the nσ?state populated by 266 nm,though we cannot rule out the contribution from the predissociation dynamics of initially excited ππ?state.

    IV.CONCLUSION

    FIG.4 The I+transient obtained following excitation at 266 nm and probing at 298.23 nm corresponding to the resonance wavelength of ground state iodine atom.The circles are experimental data and the solid line is the fi tting result.

    The ultrafast relaxation of 2-iodotoluene has been studied after excitation at 266 nm with the goal of determining the time scales of the dissociation channels.In this excitation wavelength,a repulsive nσ?state and a bound ππ?state are populated simultaneously.The obtained time-pro fi le of parent ion(C7H7I+)with 800 nm as probe light(26 or 60μJ/pulse)can be best fi tted by one decay exponential convoluted with a Gaussian describing the pump-probe cross correlation.However, a decay component and a rise component are needed to fi t the temporal behavior of all fragment ionsobtained with strong intensity of 800 nm probe light(60μJ/pulse).The decay time constant τd(105?245 fs)for all ions re fl ects the decay dynamics of the initially populated repulsive nσ?state.While the rise time constant τr(380?405 fs)is attributed to the averaged dissociation time for all the dissociation channels induced by pump light 266 nm.In addition,we selectively tracked the dissociation channels leading to ground-state iodine atoms using groundstate iodine atom resonance wavelength of 298.23 nm as probe light.The measured appearance time 400±50 fs for I+transient is in agreement with the dissociation time obtained with multiphoton ionization with 800 nm as probe light,which indicates that the main products of dissociation induced by 266 nm are ground-state iodine atoms.

    V.ACKNOWLEDGMENTS

    This work was supported by the National BasicResearchProgramofChina(973Program) (No.2013CB922200)and the National Natural Science Foundation of China(No.91121006,No.21273274, No.21173256,and No.21303255).

    [1]R.S.Mulliken,J.Chem.Phys.8,382(1940).

    [2]R.K.Sparks,K.L.Shobatake,R.Carlson,and Y.T. Lee,J.Chem.Phys.75,3838(1981).

    [3]J.L.Knee,L.R.Khundkar,and A.H.Zewail,J.Chem. Phys.83,1996(1985).

    [4]H.J.Hwang and M.A.El-Sayed,J.Chem.Phys.94, 4877(1991).

    [5]H.J.Hwang and M.A.El-Sayed,J.Phys.Chem.6, 8725(1992).

    [6]J.E.Freitas,H.J.Hwang,and M.A.El-Sayed,J.Phys. Chem.98,3322(1994).

    [7]X.B.Zhang,Z.R.Wei,Y.Tang,T.J.Chao,B.Zhang, and K.C.Lin,ChemPhysChem.9,1130(2008).

    [8]Y.Tang,W.B.Lee,B.Zhang,and K.C.Lin,J.Phys. Chem.A 112,1421(2008).

    [9]P.Y.Cheng,D.Zhong,and A.H.Zewail,Chem.Phys. Lett.237,399(1995).

    [10]M.Kadi,J.Davidsson,A.N.Tarnovsky,M.Rasmusson,and E.?Akesson,Chem.Phys.Lett.350,93(2001).

    [11]M.Kadi and J.Davidsson,J.Chem.Phys.Lett.378, 172(2003).

    [12]M.Kadi,E.Ivasson,and J.Davidsson,Chem.Phys. Lett.384,35(2004).

    [13]R.Montero,A.P.Conde,A.Longarte,F.Casta?no,M. E.Corrales,R.de Nalda,and L.Ba?nares,Phys.Chem. Chem.Phys.12,7988(2010).

    [14]G.Gitzinger,M.E.Corrales,V.Loriot,G.A.Amaral,R.de Nalda,and L.Ba?nares,J.Chem.Phys.132, 24313(2010).

    [15]O.A.Brog,Y.J.Liu,P.Persson,S.Lunell,D.Karlsson,M.Kadi,and M.Davidsson,J.Phys.Chem.A 110,7045(2006).

    [16]Y.J.Liu,P.Persson,H.O.Karlsson,and S.Lunell,J. Chem.Phys.120,6502(2004).

    [17]Y.J.Liu,Y.C.Tian,and W.H.Fang,J.Chem.Phys. 132,014306(2010).

    [18]Y.Z.Liu,B.F.Tang,H.Shen,S.Zhang,and B.Zhang, Opt.Express.18,5791(2010).

    [19]C.C.Qin,Y.Z.Liu,S.Zhang,Y.M.Wang,Y.Tang, and B.Zhang,Phys.Rev.A 83,033423(2011).

    [20]A.T.J.B.Eppink and D.H.Parker,Rev.Sci.Instrum. 68,3477(1997).

    [21]J.C.Lorquet and B.Leyh,Org.Mass Spectrum.28, 1225(1993).

    [22]B.D.Koplitz and J.K.McVey,J.Chem.Phys.81, 4963(1984).

    [23]C.F.Logan,J.C.Ma,and P.Chen,J.Am.Chem.Soc. 116,2137(1994).

    [24]A.Nicolaides,D.M.Smith,F.Jensen,and L.Radom, J.Am.Chem.Soc.119,8083(1997).

    [25]J.Peng,N.Puskas,P.B.Corkum,D.M.Rayner,and A.V.Loboda,Anal.Chem.84,5633(2012).

    [26]D.Staedter,N.Thir′e,L.Polizzi,Y.Mairesse,P.Mayer, and V.Blanchet,J.Chem.Phys.142,194306(2015).

    [27]S.A.Trushin,W.Fuss,W.E.Schmid,and K.L. Kompa,J.Phys.Chem.A 102,4129(1998).

    [28]Y.J.Jung,Y.S.Kim,W.K.Kang,and K.H.Jung, J.Chem.Phys.107,7187(1997).

    美女高潮到喷水免费观看| 精品国产乱码久久久久久小说| 美女主播在线视频| 久久影院123| av电影中文网址| 欧美日韩黄片免| 久久天堂一区二区三区四区| 男女之事视频高清在线观看 | 欧美国产精品一级二级三级| 99国产精品一区二区三区| 国产爽快片一区二区三区| 考比视频在线观看| 母亲3免费完整高清在线观看| bbb黄色大片| av天堂久久9| 免费日韩欧美在线观看| 欧美精品高潮呻吟av久久| 国产精品一区二区在线观看99| 观看av在线不卡| 精品一区在线观看国产| 欧美精品亚洲一区二区| 国产淫语在线视频| 天天操日日干夜夜撸| 一本—道久久a久久精品蜜桃钙片| 丝袜美足系列| 久久久久久人人人人人| 日本黄色日本黄色录像| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品久久精品一区二区三区| 亚洲国产欧美日韩在线播放| 国产在线视频一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久 成人 亚洲| 黄色 视频免费看| 国产又色又爽无遮挡免| 国产黄色免费在线视频| 国产视频首页在线观看| 麻豆乱淫一区二区| a级片在线免费高清观看视频| 一级,二级,三级黄色视频| 各种免费的搞黄视频| 欧美乱码精品一区二区三区| 新久久久久国产一级毛片| 波野结衣二区三区在线| 免费不卡黄色视频| 欧美日韩国产mv在线观看视频| 好男人电影高清在线观看| 捣出白浆h1v1| 国产欧美日韩综合在线一区二区| 丝袜美足系列| 国产日韩欧美亚洲二区| 中文字幕人妻丝袜制服| 在线av久久热| 日本欧美国产在线视频| 日韩视频在线欧美| 国产精品久久久久久人妻精品电影 | 女人被躁到高潮嗷嗷叫费观| 91精品三级在线观看| 成年人黄色毛片网站| 亚洲情色 制服丝袜| 日韩一区二区三区影片| 国产伦理片在线播放av一区| 波多野结衣一区麻豆| 国产成人av激情在线播放| 日韩中文字幕欧美一区二区 | 久久国产亚洲av麻豆专区| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美在线一区二区| 日本vs欧美在线观看视频| 亚洲av片天天在线观看| 日本五十路高清| 免费高清在线观看日韩| 可以免费在线观看a视频的电影网站| 美国免费a级毛片| 精品亚洲乱码少妇综合久久| 美女脱内裤让男人舔精品视频| 亚洲免费av在线视频| 亚洲精品国产av成人精品| 免费黄频网站在线观看国产| 大型av网站在线播放| 国产精品免费大片| a 毛片基地| 亚洲精品一区蜜桃| av欧美777| 啦啦啦 在线观看视频| 黄频高清免费视频| 日韩一本色道免费dvd| 精品一区二区三区四区五区乱码 | 国产亚洲精品第一综合不卡| 免费观看av网站的网址| 一边亲一边摸免费视频| 亚洲国产最新在线播放| 侵犯人妻中文字幕一二三四区| 考比视频在线观看| 免费观看人在逋| 国产一区亚洲一区在线观看| 国产精品99久久99久久久不卡| 精品人妻在线不人妻| 1024视频免费在线观看| 我的亚洲天堂| 日韩制服丝袜自拍偷拍| 免费观看人在逋| 又粗又硬又长又爽又黄的视频| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 亚洲一卡2卡3卡4卡5卡精品中文| 咕卡用的链子| 精品一区二区三卡| 国产成人影院久久av| 9色porny在线观看| 亚洲 国产 在线| 丝袜美腿诱惑在线| 一边亲一边摸免费视频| 激情视频va一区二区三区| 亚洲精品一二三| 亚洲美女黄色视频免费看| 亚洲,一卡二卡三卡| av天堂在线播放| 免费观看人在逋| 亚洲国产中文字幕在线视频| 日韩一区二区三区影片| 国产免费现黄频在线看| 国产男人的电影天堂91| 久久人人爽人人片av| 久久精品国产亚洲av涩爱| 免费在线观看黄色视频的| 女人爽到高潮嗷嗷叫在线视频| 搡老岳熟女国产| 欧美精品人与动牲交sv欧美| 天堂8中文在线网| 飞空精品影院首页| 狠狠婷婷综合久久久久久88av| av网站在线播放免费| 一级a爱视频在线免费观看| 人妻一区二区av| 中文字幕人妻熟女乱码| 夜夜骑夜夜射夜夜干| 午夜福利乱码中文字幕| 麻豆国产av国片精品| 99国产精品99久久久久| 日韩 欧美 亚洲 中文字幕| 视频在线观看一区二区三区| 一级毛片女人18水好多 | av网站在线播放免费| 国产视频一区二区在线看| 亚洲精品美女久久av网站| 精品一区二区三区四区五区乱码 | 久久久国产精品麻豆| 在线av久久热| 亚洲成人免费电影在线观看 | 欧美国产精品va在线观看不卡| 久久亚洲精品不卡| 别揉我奶头~嗯~啊~动态视频 | 午夜免费成人在线视频| 亚洲欧美精品自产自拍| 亚洲av电影在线观看一区二区三区| 老司机靠b影院| 午夜福利在线免费观看网站| √禁漫天堂资源中文www| 久久久久久免费高清国产稀缺| 国产精品一区二区在线观看99| 啦啦啦在线观看免费高清www| 亚洲五月色婷婷综合| 国产在线视频一区二区| 午夜激情久久久久久久| 婷婷色av中文字幕| 天堂中文最新版在线下载| 久久久精品94久久精品| 丝瓜视频免费看黄片| 亚洲一码二码三码区别大吗| 免费在线观看日本一区| 美女午夜性视频免费| 免费看十八禁软件| netflix在线观看网站| avwww免费| 欧美精品一区二区免费开放| 我要看黄色一级片免费的| 国产欧美日韩一区二区三 | 日韩大片免费观看网站| 一边摸一边做爽爽视频免费| 亚洲av电影在线进入| 国产精品免费大片| 嫩草影视91久久| 男的添女的下面高潮视频| 50天的宝宝边吃奶边哭怎么回事| 无遮挡黄片免费观看| 国产成人影院久久av| 大片免费播放器 马上看| av欧美777| 日本午夜av视频| 日韩免费高清中文字幕av| 国产精品久久久人人做人人爽| 美女主播在线视频| 欧美精品亚洲一区二区| 久久女婷五月综合色啪小说| 中文字幕最新亚洲高清| 人人妻,人人澡人人爽秒播 | 超碰成人久久| 国产精品二区激情视频| 婷婷丁香在线五月| 亚洲精品国产av蜜桃| 亚洲欧美一区二区三区黑人| av国产精品久久久久影院| 美女午夜性视频免费| 欧美人与性动交α欧美精品济南到| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 少妇人妻 视频| 亚洲精品久久午夜乱码| 超碰97精品在线观看| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 午夜精品国产一区二区电影| 日韩人妻精品一区2区三区| 高清不卡的av网站| 蜜桃在线观看..| 少妇人妻 视频| 久热爱精品视频在线9| 成人亚洲精品一区在线观看| 国产人伦9x9x在线观看| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 国产精品免费视频内射| av有码第一页| 久久这里只有精品19| 久久 成人 亚洲| 精品国产超薄肉色丝袜足j| 久久久欧美国产精品| 老鸭窝网址在线观看| 黑人欧美特级aaaaaa片| avwww免费| 一区二区av电影网| 一区二区三区激情视频| 中文字幕另类日韩欧美亚洲嫩草| 看免费av毛片| 欧美变态另类bdsm刘玥| 少妇的丰满在线观看| 在线观看www视频免费| 日本a在线网址| 青春草亚洲视频在线观看| 男女午夜视频在线观看| 日本av免费视频播放| 亚洲国产最新在线播放| 看免费成人av毛片| 亚洲欧洲精品一区二区精品久久久| 十八禁高潮呻吟视频| 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 国产精品.久久久| 熟女少妇亚洲综合色aaa.| 国产欧美日韩一区二区三区在线| 亚洲人成电影观看| 亚洲精品日本国产第一区| 19禁男女啪啪无遮挡网站| 欧美国产精品一级二级三级| 欧美精品高潮呻吟av久久| 中文字幕人妻熟女乱码| 日韩中文字幕欧美一区二区 | 一级黄色大片毛片| 人体艺术视频欧美日本| 亚洲精品av麻豆狂野| 国产午夜精品一二区理论片| 成人三级做爰电影| 亚洲成人免费av在线播放| 欧美成狂野欧美在线观看| a级毛片黄视频| 午夜福利在线免费观看网站| 久久热在线av| 精品人妻在线不人妻| 十分钟在线观看高清视频www| 悠悠久久av| 一级,二级,三级黄色视频| 最近手机中文字幕大全| 国产男女超爽视频在线观看| 精品一区二区三区av网在线观看 | 女性被躁到高潮视频| 亚洲中文av在线| 国产人伦9x9x在线观看| 午夜免费观看性视频| 桃花免费在线播放| 美女视频免费永久观看网站| 亚洲人成电影观看| 亚洲专区国产一区二区| 满18在线观看网站| 一本综合久久免费| 午夜福利免费观看在线| 中文字幕av电影在线播放| 亚洲成人国产一区在线观看 | 精品少妇黑人巨大在线播放| 亚洲国产中文字幕在线视频| 国产真人三级小视频在线观看| 国产成人av教育| 热re99久久精品国产66热6| 亚洲一码二码三码区别大吗| 亚洲自偷自拍图片 自拍| 亚洲av日韩精品久久久久久密 | 精品一品国产午夜福利视频| av又黄又爽大尺度在线免费看| 嫩草影视91久久| 亚洲色图 男人天堂 中文字幕| 老司机在亚洲福利影院| 亚洲av日韩在线播放| 热re99久久国产66热| 国产伦理片在线播放av一区| 搡老乐熟女国产| 美女中出高潮动态图| 国产成人免费观看mmmm| 亚洲精品国产av蜜桃| 91国产中文字幕| 老司机在亚洲福利影院| 亚洲黑人精品在线| 国产精品熟女久久久久浪| 亚洲人成77777在线视频| 一区二区三区四区激情视频| 国产精品二区激情视频| 各种免费的搞黄视频| 久久久久国产精品人妻一区二区| 亚洲一码二码三码区别大吗| 少妇猛男粗大的猛烈进出视频| 日韩制服丝袜自拍偷拍| 国产成人av教育| 欧美 日韩 精品 国产| 嫁个100分男人电影在线观看 | 国产熟女午夜一区二区三区| 啦啦啦啦在线视频资源| 香蕉国产在线看| 一级黄片播放器| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| av网站免费在线观看视频| 高清欧美精品videossex| 老司机影院毛片| 美女福利国产在线| videosex国产| 国产成人精品久久二区二区免费| 波野结衣二区三区在线| 9191精品国产免费久久| 叶爱在线成人免费视频播放| 咕卡用的链子| 免费观看人在逋| 女人爽到高潮嗷嗷叫在线视频| videosex国产| 在线观看免费高清a一片| 老汉色av国产亚洲站长工具| 久久精品久久精品一区二区三区| 欧美激情极品国产一区二区三区| 在线观看免费高清a一片| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| www.av在线官网国产| 亚洲精品久久午夜乱码| 岛国毛片在线播放| 国产免费视频播放在线视频| 女人久久www免费人成看片| 日日夜夜操网爽| 亚洲精品美女久久av网站| 色视频在线一区二区三区| 亚洲男人天堂网一区| 久久热在线av| 亚洲精品美女久久久久99蜜臀 | 亚洲av电影在线进入| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区| 男男h啪啪无遮挡| www.av在线官网国产| 亚洲,一卡二卡三卡| 看免费成人av毛片| 99久久综合免费| 波野结衣二区三区在线| 无限看片的www在线观看| 国产有黄有色有爽视频| 老司机影院成人| 永久免费av网站大全| 国产片特级美女逼逼视频| 性色av乱码一区二区三区2| 一本大道久久a久久精品| 香蕉丝袜av| 天天躁日日躁夜夜躁夜夜| 精品国产一区二区三区久久久樱花| 午夜日韩欧美国产| 99国产综合亚洲精品| 一本久久精品| 男女下面插进去视频免费观看| 亚洲一区中文字幕在线| 在线看a的网站| 久久精品亚洲熟妇少妇任你| 电影成人av| 亚洲欧美日韩另类电影网站| 国产黄频视频在线观看| 一进一出抽搐gif免费好疼| 可以在线观看的亚洲视频| 好男人电影高清在线观看| 一进一出抽搐动态| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 久久天堂一区二区三区四区| 日韩大尺度精品在线看网址| 亚洲中文av在线| 亚洲av片天天在线观看| 亚洲av第一区精品v没综合| 亚洲一区中文字幕在线| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲| 久久国产精品男人的天堂亚洲| 久久精品人妻少妇| 欧美性猛交╳xxx乱大交人| 熟女少妇亚洲综合色aaa.| 久久久久久人人人人人| 日韩av在线大香蕉| 欧美日本视频| 国产精品二区激情视频| 法律面前人人平等表现在哪些方面| www.自偷自拍.com| 午夜福利视频1000在线观看| 欧美日韩瑟瑟在线播放| 91成年电影在线观看| 怎么达到女性高潮| 午夜福利一区二区在线看| 欧美黄色淫秽网站| 日本免费一区二区三区高清不卡| 12—13女人毛片做爰片一| 欧美在线一区亚洲| 国产熟女xx| 久久久久久久午夜电影| 亚洲人成网站高清观看| 国产主播在线观看一区二区| av片东京热男人的天堂| 国产一级毛片七仙女欲春2 | 女性被躁到高潮视频| 男女视频在线观看网站免费 | 丰满的人妻完整版| 黄片播放在线免费| 久久久水蜜桃国产精品网| 国产99久久九九免费精品| 成人亚洲精品一区在线观看| 日本熟妇午夜| 18禁裸乳无遮挡免费网站照片 | 欧美成人一区二区免费高清观看 | 婷婷亚洲欧美| 青草久久国产| 自线自在国产av| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 日韩大尺度精品在线看网址| av在线天堂中文字幕| 亚洲一区中文字幕在线| 青草久久国产| 国产精品久久久久久亚洲av鲁大| tocl精华| 日韩精品青青久久久久久| 久久精品国产99精品国产亚洲性色| 一区福利在线观看| 日韩大尺度精品在线看网址| 叶爱在线成人免费视频播放| 亚洲欧美精品综合一区二区三区| 好男人在线观看高清免费视频 | 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 99久久99久久久精品蜜桃| 亚洲一码二码三码区别大吗| 亚洲精品在线美女| 两人在一起打扑克的视频| 久久国产精品男人的天堂亚洲| 国产人伦9x9x在线观看| 国产一区二区激情短视频| 国产成+人综合+亚洲专区| av超薄肉色丝袜交足视频| 亚洲精品国产区一区二| 最新在线观看一区二区三区| 久久99热这里只有精品18| 国内精品久久久久精免费| 黑丝袜美女国产一区| www日本在线高清视频| 亚洲精品久久国产高清桃花| 亚洲全国av大片| 亚洲第一欧美日韩一区二区三区| 国产一卡二卡三卡精品| 精品卡一卡二卡四卡免费| 日日干狠狠操夜夜爽| 熟女电影av网| 99久久国产精品久久久| 国产又色又爽无遮挡免费看| 91老司机精品| 国产精品精品国产色婷婷| 白带黄色成豆腐渣| 午夜精品在线福利| 色在线成人网| 久久热在线av| 久久中文字幕人妻熟女| 在线观看免费视频日本深夜| 中文字幕精品亚洲无线码一区 | 欧美色欧美亚洲另类二区| 精品国产一区二区三区四区第35| 久久国产精品人妻蜜桃| 欧美性猛交╳xxx乱大交人| av免费在线观看网站| 男人操女人黄网站| 美女大奶头视频| 久久国产精品人妻蜜桃| 叶爱在线成人免费视频播放| 国产亚洲精品久久久久久毛片| 午夜老司机福利片| 人人妻人人澡欧美一区二区| 老司机午夜十八禁免费视频| 日韩欧美在线二视频| 老汉色∧v一级毛片| 视频在线观看一区二区三区| 女同久久另类99精品国产91| 男人的好看免费观看在线视频 | 亚洲国产日韩欧美精品在线观看 | 国产真实乱freesex| 国产精华一区二区三区| 婷婷精品国产亚洲av| 最近最新免费中文字幕在线| 天天一区二区日本电影三级| 波多野结衣高清作品| 在线国产一区二区在线| 搡老妇女老女人老熟妇| 久热爱精品视频在线9| 69av精品久久久久久| 成人国产综合亚洲| 免费人成视频x8x8入口观看| 老熟妇乱子伦视频在线观看| 18美女黄网站色大片免费观看| 国产亚洲av高清不卡| 最近在线观看免费完整版| 男人舔奶头视频| 老司机午夜福利在线观看视频| 黄色女人牲交| 亚洲在线自拍视频| 亚洲无线在线观看| 欧美性长视频在线观看| 欧美黑人巨大hd| 又紧又爽又黄一区二区| 在线观看免费日韩欧美大片| 精品一区二区三区视频在线观看免费| 制服诱惑二区| av天堂在线播放| 亚洲av电影不卡..在线观看| 一区福利在线观看| www.精华液| 国产精品久久久av美女十八| 午夜久久久在线观看| 美女高潮喷水抽搐中文字幕| 成人欧美大片| 叶爱在线成人免费视频播放| 又黄又爽又免费观看的视频| 日本a在线网址| 日韩精品中文字幕看吧| 少妇裸体淫交视频免费看高清 | 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 国产激情欧美一区二区| 亚洲无线在线观看| 国产精品亚洲美女久久久| 国产高清有码在线观看视频 | 黄色a级毛片大全视频| 变态另类丝袜制服| 色综合婷婷激情| 午夜亚洲福利在线播放| 精品福利观看| 一区二区三区精品91| 少妇粗大呻吟视频| x7x7x7水蜜桃| 美女免费视频网站| www.精华液| 日韩欧美三级三区| 久久国产亚洲av麻豆专区| 91av网站免费观看| 又黄又爽又免费观看的视频| 亚洲精华国产精华精| 成人特级黄色片久久久久久久| 精品欧美国产一区二区三| 女人被狂操c到高潮| 日本黄色视频三级网站网址| 国产av又大| 身体一侧抽搐| 啪啪无遮挡十八禁网站| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 天天一区二区日本电影三级| 天天添夜夜摸| 一区二区三区国产精品乱码| 少妇裸体淫交视频免费看高清 | 久久精品国产99精品国产亚洲性色| avwww免费| 久久人妻av系列| 美女高潮到喷水免费观看| 无限看片的www在线观看| 一级片免费观看大全| 亚洲精品在线美女| 免费在线观看亚洲国产| 精品国产一区二区三区四区第35| 欧美大码av| 久久香蕉国产精品| 国产伦一二天堂av在线观看| av超薄肉色丝袜交足视频| 麻豆久久精品国产亚洲av| 免费在线观看成人毛片| 国产精品久久久av美女十八| 久久午夜综合久久蜜桃| 亚洲最大成人中文| 99久久国产精品久久久| 岛国视频午夜一区免费看| 成人国产综合亚洲| 日本撒尿小便嘘嘘汇集6| 亚洲精品美女久久久久99蜜臀| 国产精品99久久99久久久不卡| 十分钟在线观看高清视频www| 啦啦啦 在线观看视频| 欧美成人午夜精品|