• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Facet Dependence of Photochemistry of Methanol on Single Crystalline Rutile Titania?

    2016-04-08 06:35:58QunqingHoZhiqingWngXinchunMoChunyoZhouDongxuDiXuemingYngStteKeyLortoryofMoleculrRectionDynmicsDlinInstituteofChemiclPhysicsChineseAcdemyofScienceDlin116023ChinCenterofInterfceDynmicsforSustinilityInstituteofMter
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Qun-qing Ho,Zhi-qing Wng,Xin-chun Mo,Chun-yo Zhou?,Dong-xu Di,Xue-ming Yng?.Stte Key Lortory of Moleculr Rection Dynmics,Dlin Institute of Chemicl Physics,ChineseAcdemy of Science,Dlin 116023,Chin.Center of Interfce Dynmics for Sustinility,Institute of Mterils,Chin Acdemy of EngineeringPhysics,Chengdu 610200,Chin(Dted:Received on Jnury 11,2016;Accepted on Ferury 6,2016)

    ?

    ARTICLE Facet Dependence of Photochemistry of Methanol on Single Crystalline Rutile Titania?

    Qun-qing Haoa,Zhi-qiang Wanga,Xin-chun Maob,Chuan-yao Zhoua?,Dong-xu Daia,Xue-ming Yanga?a.State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics,Chinese
    Academy of Science,Dalian 116023,China
    b.Center of Interface Dynamics for Sustainability,Institute of Materials,China Academy of Engineering
    Physics,Chengdu 610200,China
    (Dated:Received on January 11,2016;Accepted on February 6,2016)

    The crystal phase,morphology and facet signi fi cantly in fl uence the catalytic and photocatalytic activity of TiO2.In view of optimizing the performance of catalysts,extensive e ff orts have been devoted to designing new sophisticate TiO2structures with desired facet exposure, necessitating the understanding of chemical properties of individual surface.In this work,we have examined the photooxidation of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1) by two-photon photoemission spectroscopy(2PPE).An excited state at 2.5 eV above the Fermi level(EF)on methanol covered(011)and(110)interface has been detected.The excited state is an indicator of reduction of TiO2interface.Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)is ascribed to the interface reduction by producing surface hydroxyls.The reaction rate of photooxidation of methanol on TiO2(110)-(1×1)is about 11.4 times faster than that on TiO2(011)-(2×1),which is tentatively explained by the di ff erence in the surface atomic con fi guration.This work not only provides a detailed characterization of the electronic structure of methanol/TiO2interface by 2PPE,but also shows the importance of the surface structure in the photoreactivity on TiO2.

    Key words:TiO2,Excited state,Two-photon photoemission spectroscopy,Reaction rate of photooxidation

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Authors to whom correspondence should be addressed.E-mail: chuanyaozhou@dicp.ac.cn,xmyang@dicp.ac.cn,Tel.:+86-411-84695174,FAX:+86-411-84675584

    I.INTRODUCTION

    Titanium dioxide(TiO2)is a versatile material in both scienti fi c and technological fi elds,ranging from surface science,catalysis and photocatalysis to paint, gas sensor and lithium batteries[1?3].The interaction between adsorbates(molecules or ions)and TiO2substrate is the core of the above mentioned scienti fi c issues and functional applications.To a large extent, such adsorbate-substrate interaction is determined by the electronic structure as well as the atomic structure of TiO2.Therefore,great e ff ort has been devoted to the investigation of the surface dependence of reactivity of TiO2[4?6].The anisotropic chemical reactivity of TiO2surfaces has stimulated the fabrication of di ff erent TiO2nanostructures with speci fi c facets to optimize the performance in the past few years[7,8].In surface science and catalysis,there is a conventional criterion for the reactivity,which says that surfaces with higher percentage of undercoordinated surface atoms are regarded more reactive.

    Rutile,the most stable and abundant structure of titania,has attracted tremendous attention in the past decades in surface science and catalysis fi elds.Rutile (110)surface(Fig.1(b)),one of the most extensively studied metal oxides,has become a prototype for surface chemistry and photochemistry research.The structure of TiO2(110)-(1×1)has been well understood[2]. On the surface, fi vefold coordinated Ti ions(Ti5c)and twofold coordinated bridge O ions(Ob)run alternatively along the[001]azimuth.Reduction leads to the creation of surface oxygen vacancies(Ov)and subsurface Ti interstitials(Tiint)which contribute to the band gap states[9,10].In addition to TiO2(110)-(1×1),the structure of TiO2(011)surface has also been investigated,though less extensively[11?15].The most stable phase of TiO2(011)is reconstructured by(2×1).The atomic structure of TiO2(011)-(2×1)as suggested by surface X-ray di ff raction(SXRD)and density functional theory(DFT)calculations[12,14]is shown in Fig.1(a). Di ff erent from TiO2(110)-(1×1),inequivalent types of undercoordinated Ti and O atoms exist,namely the valley Ti5c,ridge Ti5c,top Oband bridge Ob.The topObatoms display in a zig-zag style,which shade the ridge Ti5csites severely.Missing of the top Obatoms creates Ov.All of the Ti sites on TiO2(011)-(2×1)surface are undercoordinated,while on TiO2(110)-(1×1), only half of them are unsaturated.According to the conventional criterion,the former should be more reactive than the latter.

    FIG.1StructureofrutileTiO2(011)-(2×1)(a)and TiO2(110)-(1×1)(b)surfaces.Oxygen and Ti atoms are represented as red and gray spheres,respectively.Surface oxygen vacancies are created by removing the bridge bonded oxygen atoms labeled by dashed circles.Adsorption of methanol on Ti5csites of these two surfaces are also shown.

    The surface dependence of the photoreactivity of rutile has been extensively investigated,especially the low Miller index surfaces such as(110)and(011)[16?24]. Ohno and coworkers reported the selectively photoassisted deposition of nanoparticles on di ff erent surfaces of TiO2[20].Under ultraviolet(UV)irradiation,photooxidation of Pb2+into PbO2took place on(011)surface,while photoreduction of Pt2+into Pt occurred on(110)surface.Such a result suggests the rutile(011)surface is more reactive towards photocatalyzed oxidation reaction.Takahashi et al.also found(011)is about two times more e ffi cient than (110)in the photocatalyzed oxidation of methylene blue [23].From the percentage of undercoordinated surface metal ions point of view,these examples seem consistent with the conventional criterion.In fact,researchers have tried to explain the enhanced photocatalytic activity of rutile(011)based on the electronic structures[25].In this work,Tao and coworkers compared the valence electronic structure of TiO2(011)-(2×1)and TiO2(110)-(1×1)using ultraviolet photoelectron spectroscopy(UPS).Finding the binding energy of the band gap state on the(011)surface is 0.34 eV higher than that on(110),they expect the electron trapping and therefore the electro-hole separation of the former surface is more e ffi cient than the latter.

    Most recently,we have reassessed the photoactivity of TiO2(011)-(2×1)and TiO2(110)-(1×1)making use of the photocatalyzed oxidation of methanol[26].Temperature programmed desorption measurements showed the photocatalytic chemical reactions on these two surfaces are the same under identical experimental condition.Methanol molecules adsorbed on Ti5csites are converted into formaldehyde under ultraviolet(UV) irradiation;released hydroxyl and methyl hydrogen atoms,which transfer to the neighboring Obsites,generating bridging hydroxyls which experience recombinative desorption as water by abstracting lattice oxygen above 400 K;cross coupling of methoxy and formaldehyde produces methyl formate.Despite the same photocatalyzed oxidation reaction of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1),the reaction rate of the latter is 2.4 times of that of the former.The result suggests the reactivity of TiO2(011)-(2×1)is lower than TiO2(110)-(1×1)towards photoxidation reaction, in contrast with previous studies[20,23].The controdiction likely comes from the structure of the TiO2surface.In Refs.[20,23],the reactions took place in aqueous,while in our study,the measurements were carried out in ultrahigh vacuum(UHV)environment.

    As an extension of our previous study[26],we have studied the photochemistry of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)using twophoton photoemission spectroscopy(2PPE).An excited state at 2.5 eV above the Fermi level(EF)of clean and methanol/TiO2interfaces,which serves as an indicator of surface reduction,has been detected.The properties of this state,for example,the energy level, angular distribution,lifetime and transition dipole moment,have been characterized.The excited resonance signal on both methanol/TiO2interfaces increase with UV light exposure,which corresponds to the reduction of the TiO2interface by depositing hydrogen atoms onto the surface during the photooxidation of methanol. Though the photocatalyzed reactions of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are the same,the reaction rate on the latter surface is 11.4 times of that on the former.This work implies the role of surface structure in the photoreactivity of photocatalysts.

    II.EXPERIMENTS

    All experiments were conducted in a UHV chamber(base pressure better than 5×10?11mbar),which has been described in detail previously[27].Brie fl y,a preparation and characterization together with an electron spectroscopy measurement chamber are included in the UHV system.Ar+ion source,home-made resistive heater,low energy electron di ff raction(LEED)and X-ray photoelectron spectroscopy(XPS)detectors are equipped for sample preparation and characterization respectively.The whole probing chamber is shieldedfrom the earth magnetism byμ-metal.The key element of this apparatus is the hemispherical electron energy analyzer(PHOIBOS 100,SPECS)for photoelectron detection.The energy and angular distribution of photoelectrons are recorded by a two-dimension(2D) CCD camera which facilitates the measurement of the whole photoelectrons within the energy range of interest simultaneously.Therefore,study of the kinetics of the surface reaction becomes feasible.The fundamental output of a tunable oscillator(MaiTai eHP,Spectra-Physics)is adjusted at about 800 nm with a pulse width of about 70 fs.It is converted to the second harmonic (around 400 nm,FWHM=4 nm)and then focused onto the sample(diameter≈100μm).The pulse width and average power of the 400 nm laser beam at the sample surface is about 90 fs and 150 mW,respectively.Polarization of the excitation light is rotated through a λ/2 plate before the lens.The experimental geometry is shown in Fig.2.For p-polarization(s-polarization),the electric fi eld of the laser lies in the horizontal(vertical) plane.In the case of the two-photon(ca.400 nm)excitation from the TiO2interface[28],the fi rst photon excites an electron from below the EFto above it,and the second photon excites the electron to the vacuum.The energy and angular distribution of the photoelectrons give rise to the 2PPE spectra.Both time-resolved 2PPE (TR-2PPE)and time-dependent 2PPE(TD-2PPE)experiments can be carried out on this instrument.In the TR-2PPE experiment,one can study the ultrafast dynamics of excited electronic states,while TD-2PPE can measure the photochemical kinetics of molecularly adsorbed surfaces.

    FIG.2(a)Unit cell of rutile TiO2.The(110)and(011) surfaces are outlined by the blue and green rectangles,respectively.(b)Schematic overview of the experimental geometry.The electric fi eld of the laser can be varied by a half waveplate.For p-polarization(s-polarization),the electric fi eld of the laser lies in the XZ(Y Z)plane.

    FIG.3 LEED pattern of rutile TiO2(011)-(2×1)(top)and TiO2(110)-(1×1)(bottom)surfaces.Azimuth directions are labeled by arrows.In the 2PPE measurements,the incident planes are the horizontal planes along the[01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and TiO2(110)-(1×1),respectively.

    TiO2samples(PrincetonScienti fi cCorp., 10 mm×10 mm×1 mm)are mounted on a manipulator with four freedoms(translation along X,Y, Z axes and rotation around the polar axis)and are heated through resistive heating method and cooled by liquid nitrogen.K type thermocouples are glued directly to the TiO2surfaces using a ceramic adhesive (Ceramabond 503,Aremco Products,INC)to provide accurate temperature reading.The as received TiO2samples are polished on both sides to ensure maximum thermal contact.The samples were cleaned by cycles of Ar+sputtering(1 keV,15 min)and UHV annealing at 850 K(30 min).After this preparation procedure, no contamination could be detected in XPS,and sharp (2×1)and(1×1)LEED patterns were observed for (011)and(110)surface respectively(Fig.3).The preparation history of these two surface studied in the present work was similar.

    Methanol(Sigma-Aldridge)was puri fi ed by freezepump-thaw cycles and introduced onto the TiO2surfaces through a home-built,calibrated e ff usive molecular beam doser at 120 K.A mass spectrometer (SRS,RGA 200)which was shielded by a glass enclosure and di ff erentially pumped was chosen to measure the relative coverage of methanol via TPD method [29].Temperature was ramped at 2 K/s during all the TPD experiments.Methanol coverage was measured with respect to the corresponding density of Ti5csites.Here,monolayer(ML)corresponds to 5.2×1014molecules/cm2on(110)-(1×1)while,this value is 4.0×1014molecules/cm2on(011)-(2×1)[30].

    III.RESULTS AND DISCUSSION

    Beforetheadsorptionofmethanol,theelectronic structures of both clean TiO2(011)-(2×1)and TiO2(110)-(1×1)are characterized and compared by 2PPE(Fig.4).In the present work,the incident planes are the horizontal planes along the[01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and(110)-(1×1),respectively(Fig.2 and Fig.3).In accord with our previous studies[31], the work function(de fi ned as the half intensity point of the secondary electron edge)of the clean TiO2(110)-(1×1)is 5.1 eV,and an excited state at 2.5 eV above the EFis detected by the 2PPE spectra acquired by p-polarized(p-2PPE)rather than s-polarized light(s-2PPE).The net excited state signal was obtained by subtracting the normalized s-2PPE from the p-2PPE (P-NS in Fig.4(b)).Whereas the 2PPE measurements on TiO2(011)-(2×1)show some di ff erences compared with(110)-(1×1).First of all,the work function is about 0.1 eV higher,although the preparation history of these two surfaces is similar.As the work function re fl ect the reduction of the surfaces,this result indicates the(110)is easier to reduce than(011),which is consistent with the stronger band gap state signal on the former surface measured by UPS[25].The most prominent di ff erence comes from the polarization dependence of the excited state.For TiO2(110)-(1×1), when the incident plane is along[1ˉ10]azimuth,the excited state can only be detected by p-polarized,while the s-polarized light is totally“blind”to this state. However,on TiO2(011)-(2×1)(Fig.4(a)),when the incident plane is along[01ˉ1]azimuth,s-2PPE is much more pronounced at 5.6 eV( fi nal state energy)than p-2PPE.We have proven the resonance at 5.6 eV is from an excited state in both s-2PPE and p-2PPE.The varied polarization dependence of the excited state on TiO2(011)-(2×1)and TiO2(110)-(1×1)suggests di ff erent transition dipole moment relative to the distinct surface.The excited states on both surfaces show little angular dependence,suggesting the localized character. In addition,the lifetime of the excited states are too short to measure according to the TR-2PPE using 90 fs width pulse.

    The photochemistry of alcohol on TiO2(110)-(1×1) investigated by 2PPE has been reported by our group in the last several years[28,32?35].Figure 5 shows the 2PPE measurements of the 0.5 ML methanol covered TiO2(011)-(2×1)(a)and TiO2(110)-(1×1)(b),after the methanol/TiO2interfaces have been exposed to the 2PPE probe light for more than 200 and 2000 s in the case of(011)and(110)surface respectively.Compared with the bare surfaces,the 2PPE spectra on both methanol covered TiO2interfaces showed similar angular distribution,lifetime,decrease of work function and increase of the overall intensity[36].The excited states become much more pronounced,and moreover, no change in the light polarization dependence of the 2PPE has been detected.

    FIG.4 Typical 2PPE spectra for the clean(a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)surfaces respectively.The spectra were measured with both p-polarized(P)and spolarized(S)light with a photon energy of 3.10 eV.For comparison,S was normalized to P at the secondary electron signal edge.NS-P or P-NS denotes the di ff erence spectra.The signal was integrated from?5?to+5?.Energies are measured with respect to EF;those in the bottom axis represent fi nal state,after absorption of two photons,while those in the top X-axis refer to the intermediate state,before absorption of the second photon.Work function(WF)is labeled by the arrow at the middle of the secondary electron edge.The incident planes are the horizontal planes along the [01ˉ1]and[1ˉ10]for TiO2(011)-(2×1)and TiO2(110)-(1×1), respectively.

    TD-2PPEshowedtheevolutionoftheelectronicstructureasafunctionoflightirradiation on both methanol covered TiO2(011)-(2×1)and TiO2TiO2(110)-(1×1)(Fig.6).During the TD-2PPE measurements,the probe light was directed to the methanol/TiO2interface without any interruption,and the 2PPE spectra were collected every second.The irradiation dependence of the excited resonance signal suggests the occurrence of photoinduced chemistry on the methanol/TiO2interfaces.The excited resonance signal on methanol/TiO2(110)-(1×1)(Fig.6(b))increased by 68%when the light exposure time was increased from zero to 200 s.While on methanol/TiO2(011)-(2×1) (Fig.6(a)),this signal was doubled when the irradiation time reached 2000 s.It should be noted in Fig.6, the 2PPE spectra were acquired by p-polarized and s-polarized light on TiO2(110)-(1×1)and TiO2(011)-(2×1)interface respectively to maximize the excited resonance signal.

    FIG.5 Typical 2PPE spectra for the 0.5 ML methanol covered(a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)surfaces respectively.The signal was integrated from?5?to +5?.Energies are measured with respect to EF.Before the acquisition of these spectra,the TiO2(011)-(2×1)and TiO2(110)-(1×1)interfaces has been exposed to the 2PPE light for more than 2000 and 200 s respectively.

    Since the energy level,angular distribution,lifetime and the light polarization dependence of the excited state are similar,it is natural for one to think the origins of the excited states on both clean and adsorbated covered TiO2are the same.In our most recently combined 2PPE and density functions theory(DFT)calculations study[31],we have demonstrated the band gap state and the excited state at about 2.5 eV above the EFof TiO2(110)-(1×1)result from the splitting of the d orbitals of Ti3+in the distorted octahedral fi eld.This means both the band gap state and the excited state we discuss here are indicators for reduction of TiO2surface.And on TiO2(011)-(2×1),we have proven this conclusion is still correct(data are not shown).The irradiation dependence of the electronic structure on methanol/TiO2interfaces is consistent with our interpretation to the excited state on clean TiO2surfaces.As revealed by TPD studies,methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)experienced photocatalyzed oxidation under UV exposure, releasing hydrogen atoms onto the surface bridge oxygen atoms to produce hydroxyls.Similar to the creation of surface Ovand subsurface Ti interstitials,hydroxylation is another way to reduce the TiO2surface[29].Therefore,as methanol molecules are split by UV light,more and more hydrogen atoms are deposited onto the TiO2interface where more and more Ti3+ions are generated.Consequently,the density of states(DOS)of both the band gap state and the excited state become intensi fi ed.As demonstrated,the 2PPE measured excited resonance signal scales linearly with the coverage of surface hydroxyls on clean TiO2surface [31].Furthermore,on adsorbate(methanol or water) covered TiO2,the excited resonance signal is also proportional to the density of coadsorbed hydroxyls(data not shown).Therefore,the increase of the excited resonance signal during the photochemistry of methanol in fact re fl ects the accumulation of surface hydroxyls on TiO2interface.

    FIG.6 2PPE spectra for the 0.5 ML methanol covered (a)TiO2(011)-(2×1)and(b)TiO2(110)-(1×1)as a function of the probe laser irradiation time.Most of the laser parameters(center wavelength,band width and power)in the two experimental measurements were exactly the same except the polarization.On TiO2(110)-(1×1)and TiO2(011)-(2×1) interfaces,2PPE spectra were acquired by p-polarized and s-polarized light respectively to maximize the excited resonance signal.The signal in these spectra was integrated from?5?to+5?.The energies were measured with respect to the Fermi level.

    Since the 2PPE measured excited resonance signal is an indicator of the density of hydroxyls on TiO2interface,it provides a fi ngerprint to trace the kinetics of the photocatalyzed oxidation of methanol on TiO2. Figure 7 displays the time-dependent excited resonance together with the fi tting by a fractal-like model[28, 32,33].On TiO2(011)-(2×1),the signal was integrated between 5.25 and 6.20 eV from s-2PPE(Fig.6(a)), whereas on TiO2(110)-(1×1),the excited resonance was accumulated in a span of 5.00?6.25 eV from p-2PPE(Fig.6(b)).Although the photocatalytic chemical reactions of methanol on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are similar,the reaction rate,however,di ff ers dramatically from each other.From Fig.7,one can see that it takes 61.3 s for the excited resonance signal on TiO2(110)-(1×1)to rise to 90%of the maximum signal level,while on TiO2(011)-(2×1),it costs 698.3 s,showing a 11.4 times di ff erence from the reaction rate.The photocatalyzed oxidation of methanol on TiO2(011)-(2×1)is less e ffi cient than on TiO2(110)-(1×1),in accord with our previous TPD investigation [26].In the same work,our DFT calculations provided some interpretation to the di ff erence of the photocatalyzed oxidation of methanol on these two TiO2surfaces.Methanol molecules are converted into methoxy before further photoxidation to formaldehyde,and the cleavage of C?H bond on both TiO2(011)-(2×1)and TiO2(110)-(1×1)are the rate determining step during the photoxidation of methanol.Nevertheless,due to the corrugated structure,the distance between the nearest surface oxygen atoms and the methyl hydrogen of methoxy intermediate on TiO2(011)-(2×1)is 0.3?A larger than that on TiO2(110)-(1×1),leading to the 0.2 eV higher reaction barrier of break of the C?H bond.Anisotropic bulk charge transportation along different directions might also be a factor which a ff ects the surface dependence of photochemistry[24].

    TABLE I Comparison of the light source parameters in the 2PPE and TPD studies.

    FIG.7 Normalized time dependent signal of the excited resonance feature of 0.5 ML methanol covered TiO2(011)-(2×1)(blue circle)and TiO2(110)-(1×1)(olive circle)and the fractal-like kinetics model fi tting(red line). On TiO2(011)-(2×1),the signal was integrated between 5.25 and 6.20 eV from s-2PPE(Fig.6(a)),whereas on TiO2(110)-(1×1),the excited resonance was accumulated in a span of 5.00?6.25 eV from p-2PPE(Fig.6(b)).

    Thoughbothour2PPEandTPD[26]measurements suggest TiO2(011)-(2×1)is less e ffi cient than TiO2(110)-(1×1)towards the photooxidation of methanol,the relative photoreactivity obtained in these two studies are di ff erent.In the present 2PPE work,the reaction rate on TiO2(110)-(1×1)is 11.4 times faster, while the TPD results show a 2.4 times of di ff erence. The discrepancy possibly originates from the di ff erent light source chosen in these two studies(Table I).The fl ux(number of photons per unit area per second)in the TPD experiments is about 60 times of that in the 2PPE measurements.It is well known the light fl ux a ff ects the dynamics of the charge carriers signi fi cantly [37].It has also been proven the charge carrier transportation in TiO2is anisotropic[38].Therefore,it is possible the dependence of the charge carrier kinetics and dynamics on the light fl ux along[110]and[011] direction are di ff erent,which might lead to the discrepancy in the relative photoreactivity under di ff erent light irradiation condition.However,in both studies,we have found TiO2(011)-(2×1)is inferior to TiO2(110)-(1×1) towards the photooxidation of methanol.

    Our previous[26]and present investigations of the photooxidation of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)show inconsistency with others’work which suggest TiO2(011)is more e ffi cient towards photooxidation reactions than TiO2(110)[20,23].The discrepancy likely originates from the structure of the TiO2photocatalyst.It is worth noting the photoreactivity tested in Ref.[20,23]is in aqueous environment which often alters the surface structure dramatically,causing it di ffi cult to establish the correlation between activity and surface structure from an atomic level[39].To avoid such complexity,photocatalysis studied in UHV condition is necessary.Since the surface structure in vacuum can be well characterized,and submonolayer adsorbates usually change the surface structure slightly [40].

    IV.CONCLUSION

    We have investigated the electronic structure of clean and methanol covered TiO2(011)-(2×1)and TiO2(110)-(1×1).An excited state at 2.5 eV above the EFon all the four TiO2interfaces(clean and methanol covered (011)and(110))studied here has been detected.The energy level,angular distribution and lifetime of this excited state are similar on both(110)and(011)interfaces.However,the transition dipole moment shows di ff erent con fi guration relative to the interfaces.The excited state is an indicator of reduction of TiO2interface.Irradiation dependence of the excited resonance signal during the photochemistry of methanol on TiO2(011)-(2×1)and TiO2(110)-(1×1)is attributed to the reduction of the interfaces by depositing hydrogenatoms.The reaction rate of photooxidation of methanol on TiO2(110)-(1×1)is about 11.4 times faster than that on TiO2(011)-(2×1),which is tentatively explained by the di ff erence in the surface atomic con fi guration.

    This work not only provides a detailed characterization of the electronic structure of methanol/TiO2interface by 2PPE,but also shows the importance of the surface structure in the photoreactivity on TiO2. Anisotropy of the surface properties are attracting more and more attention.For example,charge separation in photocatalysis has been successfully realized by constructing heterostructures with di ff erent facets[41]. Therefore,studying the properties of individual surface and the dependence on the surfaces are desirable.

    V.ACKNOWLEDGMENTS

    ThisworkwassupportedtheNaturalScience Foundation of Liaoning Province(No.2015020242), the National Natural Science Foundation of China (No.21203189 and No.21573225),and the State Key Laboratory of Molecular Reaction Dynamics(No.ZZ-2014-02).

    [1]A.L.Linsebigler,G.Q.Lu,and J.T.Yates,Chem. Rev.95,735(1995).

    [2]U.Diebold,Surf.Sci.Rep.48,53(2003).

    [3]Q.Guo,C.Zhou,Z.Ma,Z.Ren,H.Fan,and X.Yang, Chem.Soc.Rev.DOI:10.1039/c5cs00448,(2015).

    [4]C.Xu,W.Yang,Q.Guo,D.Dai,M.Chen,and X. Yang,J.Am.Chem.Soc.135,10206(2013).

    [5]C.Xu,W.Yang,Q.Guo,D.Dai,M.Chen,and X. Yang,J.Am.Chem.Soc.136,602(2014).

    [6]A.Vittadini,A.Selloni,F.P.Rotzinger,and M. Gratzel,Phys.Rev.Lett.81,2954(1998).

    [7]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C. Smith,H.M.Cheng,and G.Q.Lu,Nature 453,638 (2008).

    [8]G.Liu,H.G.Yang,J.Pan,Y.Q.Yang,G.Q.Lu,and H.M.Cheng,Chem.Rev.114,9559(2014).

    [9]V.E.Henrich,G.Dresselhaus,and H.J.Zeiger,Phys. Rev.Lett.36,1335(1976).

    [10]S.Wendt,P.T.Sprunger,E.Lira,G.K.H.Madsen, Z.S.Li,J.O.Hansen,J.Matthiesen,A.Blekinge-Rasmussen,E.Laegsgaard,B.Hammer,and F.Besenbacher,Science 320,1755(2008).

    [11]T.J.Beck,A.Klust,M.Batzill,U.Diebold,C.Di Valentin,and A.Selloni,Phys.Rev.Lett.93,036104 (2004).

    [12]X.Torrelles,G.Cabailh,R.Lindsay,O.Bikondoa,J. Roy,J.Zegenhagen,G.Teobaldi,W.A.Hofer,and G. Thornton,Phys.Rev.Lett.101,185501(2008).

    [13]S.E.Chamberlin,C.J.Hirschmugl,H.C.Poon,and D.K.Saldin,Surf.Sci.603,3367(2009).

    [14]X.Q.Gong,N.Khorshidi,A.Stierle,V.Vonk,C. Ellinger,H.Dosch,H.Z.Cheng,A.Selloni,Y.B.He, O.Dulub,and U.Diebold,Surface Science 603,138 (2009).

    [15]T.Woolcot,G.Teobaldi,C.L.Pang,N.S.Beglitis,A. J.Fisher,W.A.Hofer,and G.Thornton,Phys.Rev. Lett.109,156105(2012).

    [16]P.A.M.Hotsenpiller,J.D.Bolt,W.E.Farneth,J.B. Lowekamp,and G.S.Rohrer,J.Phys.Chem.B 102, 3216(1998).

    [17]J.B.Lowekamp,G.S.Rohrer,P.A.M.Hotsenpiller, J.D.Bolt,and W.E.Farneth,J.Phys.Chem.B 102, 7323(1998).

    [18]T.Sugiura,S.Itoh,T.Ooi,T.Yoshida,K.Kuroda,and H.Minoura,J.Electroanal.Chem.473,204(1999).

    [19]A.Tsujiko,T.Kisumi,Y.Magari,K.Murakoshi,and Y.Nakato,J Phys.Chem.B 104,4873(2000).

    [20]T.Ohno,K.Sarukawa,and M.Matsumura,New J. Chem.26,1167(2002).

    [21]A.Y.Ahmed,T.A.Kandiel,T.Oekermann,and D. Bahnemann,J.Phys.Chem.Lett.2,2461(2011).

    [22]Y.Nakabayashi and Y.Nosaka,J.Phys.Chem.C 117, 23832(2013).

    [23]H.Takahashi,R.Watanabe,Y.Miyauchi,and G.Mizutani,J.Chem.Phys.134,154704(2011).

    [24]T.Luttrell,S.Halpegamage,J.Tao,A.Kramer,E. Sutter,and M.Batzill,Sci.Rep.4,4043(2014).

    [25]J.G.Tao and M.Batzill,J.Phys.Chem.Lett.1,3200 (2010).

    [26]X.Mao,Z.Wang,X.Lang,Q.Hao,B.Wen,D.Dai,C. Zhou,L.M.Liu,and X.Yang,J.Phys.Chem.C 119, 6121(2015).

    [27]Z.F.Ren,C.Y.Zhou,Z.B.Ma,C.L.Xiao,X.C. Mao,D.X.Dai,J.LaRue,R.Cooper,A.M.Wodtke, and X.M.Yang,Chin.J.Chem.Phys.23,255(2010). [28]C.Zhou,Z.Ma,Z.Ren,A.M.Wodtke,and X.Yang, Energy Environ.Sci.5,6833(2012).

    [29]X.C.Mao,X.F.Lang,Z.Q.Wang,Q.Q.Hao,B. Wen,Z.F.Ren,D.X.Dai,C.Y.Zhou,L.M.Liu,and X.M.Yang,J.Phys.Chem.Lett.4,3839(2013).

    [30]J.Tao,Q.Cuan,X.Q.Gong,and M.Batzill,J.Phys. Chem.C 116,20438(2012).

    [31]Z.Wang,B.Wen,Q.Hao,L.M.Liu,C.Zhou,X.Mao, X.Lang,W.J.Yin,D.Dai,A.Selloni,and X.Yang, J.Am.Chem.Soc.137,9146(2015).

    [32]C.Y.Zhou,Z.F.Ren,S.J.Tan,Z.B.Ma,X.C.Mao, D.X.Dai,H.J.Fan,X.M.Yang,J.LaRue,R.Cooper, A.M.Wodtke,Z.Wang,Z.Y.Li,B.Wang,J.L.Yang, and J.G.Hou,Chem.Sci.1,575(2010).

    [33]C.Zhou,Z.Ma,Z.Ren,X.Mao,D.Dai,and X.Yang, Chem.Sci.2,1980(2011).

    [34]Z.Ma,Q.Guo,X.Mao,Z.Ren,X.Wang,C.Xu,W. Yang,D.Dai,C.Zhou,H.Fan,and X.Yang,J.Phys. Chem.C 117,10336(2013).

    [35]Z.B.Ma,C.Y.Zhou,X.C.Mao,Z.F.Ren,D.X.Dai, and X.M.Yang,Chin.J.Chem.Phys.26,1(2013).

    [36]Z.Wang,Q.Hao,X.Mao,C.Zhou,Z.Ma,Z.Ren,D. Dai,and X.Yang,Chin.J.Chem.Phys.28,123(2015). [37]Y.Tamaki,A.Furube,M.Murai,K.Hara,R.Katoh, and M.Tachiya,Phys.Chem.Chem.Phys.9,1453 (2007).

    [38]L.Thulin and J.Guerra,Phys.Rev.B 77,195112 (2008).

    [39]U.Aschauer and A.Selloni,Phys.Rev.Lett.106, 166102(2011).

    [40]R.S.de Armas,J.Oviedo,M.A.San Miguel,and J. F.Sanz,J.Phys.Chem.C 111,10023(2007).

    [41]R.Li,F.Zhang,D.Wang,J.Yang,M.Li,J.Zhu,X. Zhou,H.Han,and C.Li,Nat.Commun.4,1432(2013).

    午夜免费观看性视频| 国产99久久九九免费精品| 桃花免费在线播放| 国产97色在线日韩免费| 热re99久久国产66热| 久久久精品区二区三区| 欧美午夜高清在线| av超薄肉色丝袜交足视频| 久久久久视频综合| 一本大道久久a久久精品| 老熟女久久久| 午夜福利在线免费观看网站| 久久久国产成人免费| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久成人av| 丝瓜视频免费看黄片| 十八禁网站免费在线| 亚洲精品久久久久久婷婷小说| 2018国产大陆天天弄谢| 国产精品免费视频内射| 亚洲av美国av| 波多野结衣一区麻豆| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 欧美在线黄色| 亚洲欧美精品自产自拍| 免费久久久久久久精品成人欧美视频| av免费在线观看网站| 啦啦啦免费观看视频1| 99国产综合亚洲精品| 亚洲熟女精品中文字幕| 久久综合国产亚洲精品| 蜜桃国产av成人99| www.av在线官网国产| 欧美日韩视频精品一区| xxxhd国产人妻xxx| 亚洲国产欧美日韩在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品成人av观看孕妇| 老熟女久久久| 亚洲精品中文字幕一二三四区 | 国产亚洲精品一区二区www | 嫩草影视91久久| 日韩三级视频一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色毛片三级朝国网站| 97在线人人人人妻| 天堂中文最新版在线下载| 日本vs欧美在线观看视频| 91精品伊人久久大香线蕉| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人爽人人夜夜| 亚洲人成电影免费在线| 看免费av毛片| 99国产极品粉嫩在线观看| 久久精品人人爽人人爽视色| 女人精品久久久久毛片| 一本综合久久免费| 精品国产一区二区三区四区第35| 51午夜福利影视在线观看| 日韩大片免费观看网站| 亚洲国产精品成人久久小说| 国产精品香港三级国产av潘金莲| 满18在线观看网站| 一级毛片电影观看| 国产无遮挡羞羞视频在线观看| 亚洲av美国av| 久久这里只有精品19| 中文字幕高清在线视频| 丝瓜视频免费看黄片| 一个人免费在线观看的高清视频 | 在线观看www视频免费| 久久天堂一区二区三区四区| 十八禁网站免费在线| 亚洲精品久久久久久婷婷小说| √禁漫天堂资源中文www| 黄色视频在线播放观看不卡| 欧美午夜高清在线| 黄色片一级片一级黄色片| 伦理电影免费视频| 亚洲情色 制服丝袜| 亚洲性夜色夜夜综合| 午夜视频精品福利| 日韩欧美国产一区二区入口| 男人添女人高潮全过程视频| 国产欧美亚洲国产| 天天操日日干夜夜撸| 久久天躁狠狠躁夜夜2o2o| 国产极品粉嫩免费观看在线| 一级,二级,三级黄色视频| 久久九九热精品免费| 99久久国产精品久久久| 熟女少妇亚洲综合色aaa.| 亚洲精品av麻豆狂野| 亚洲精品第二区| 18禁观看日本| 99久久人妻综合| 精品久久蜜臀av无| 丰满迷人的少妇在线观看| 黄色毛片三级朝国网站| 午夜两性在线视频| 精品人妻一区二区三区麻豆| 欧美+亚洲+日韩+国产| 亚洲欧洲日产国产| 久9热在线精品视频| 亚洲成国产人片在线观看| 黑人猛操日本美女一级片| 久久久久久人人人人人| videos熟女内射| 在线精品无人区一区二区三| 免费看十八禁软件| 精品国产一区二区久久| 99香蕉大伊视频| 精品久久蜜臀av无| 日日夜夜操网爽| 麻豆乱淫一区二区| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 成年人黄色毛片网站| 免费不卡黄色视频| 男男h啪啪无遮挡| 国产成人欧美| 两个人免费观看高清视频| 国产三级黄色录像| 最近中文字幕2019免费版| tocl精华| 亚洲国产中文字幕在线视频| 国产在视频线精品| 久久久久久人人人人人| 人妻 亚洲 视频| 久久天堂一区二区三区四区| 色94色欧美一区二区| 欧美成狂野欧美在线观看| 一区二区av电影网| 国产成人啪精品午夜网站| 免费在线观看视频国产中文字幕亚洲 | 12—13女人毛片做爰片一| 国产av一区二区精品久久| 精品久久久久久久毛片微露脸 | 午夜福利乱码中文字幕| 亚洲成人手机| netflix在线观看网站| 成人国产av品久久久| 69av精品久久久久久 | 日韩有码中文字幕| 十八禁人妻一区二区| 好男人电影高清在线观看| 新久久久久国产一级毛片| 日韩欧美一区二区三区在线观看 | 一区二区三区精品91| 精品久久蜜臀av无| 色视频在线一区二区三区| 水蜜桃什么品种好| 中文字幕人妻丝袜一区二区| 少妇的丰满在线观看| 亚洲精品第二区| 在线天堂中文资源库| 亚洲av男天堂| 999久久久精品免费观看国产| 久久女婷五月综合色啪小说| 正在播放国产对白刺激| tube8黄色片| 一级,二级,三级黄色视频| 日日夜夜操网爽| 国产精品久久久av美女十八| 欧美日韩视频精品一区| 99九九在线精品视频| 韩国精品一区二区三区| 午夜免费观看性视频| 精品国产乱码久久久久久男人| 久久天躁狠狠躁夜夜2o2o| 欧美一级毛片孕妇| 黄色毛片三级朝国网站| 亚洲五月色婷婷综合| 国产一区有黄有色的免费视频| 国产亚洲欧美在线一区二区| 人妻一区二区av| tocl精华| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 熟女少妇亚洲综合色aaa.| 婷婷色av中文字幕| 99国产精品一区二区蜜桃av | av又黄又爽大尺度在线免费看| 日韩一区二区三区影片| 视频区欧美日本亚洲| 成人三级做爰电影| 亚洲精品一区蜜桃| 成人手机av| 一本综合久久免费| 欧美激情极品国产一区二区三区| 久久久精品94久久精品| 免费黄频网站在线观看国产| 最黄视频免费看| 我要看黄色一级片免费的| 亚洲,欧美精品.| 久久九九热精品免费| 欧美大码av| 国产成人av激情在线播放| 黄色视频,在线免费观看| 欧美激情 高清一区二区三区| 丝袜美足系列| 国产精品一区二区精品视频观看| 亚洲欧美日韩另类电影网站| 免费少妇av软件| 日韩欧美免费精品| 日韩有码中文字幕| www.熟女人妻精品国产| 欧美性长视频在线观看| 久久久久精品人妻al黑| 一级毛片电影观看| 国产一区有黄有色的免费视频| 午夜福利在线观看吧| 久久国产精品人妻蜜桃| 国产亚洲欧美精品永久| 国产成人影院久久av| 国产欧美日韩综合在线一区二区| 我的亚洲天堂| 亚洲精品国产av蜜桃| 国内毛片毛片毛片毛片毛片| 久久久精品国产亚洲av高清涩受| 50天的宝宝边吃奶边哭怎么回事| 国产精品一二三区在线看| 日韩,欧美,国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 两个人看的免费小视频| 99热全是精品| 99国产精品免费福利视频| 亚洲人成电影免费在线| 美女福利国产在线| 老熟女久久久| 日本黄色日本黄色录像| 老司机午夜福利在线观看视频 | 香蕉丝袜av| 久久天躁狠狠躁夜夜2o2o| 高潮久久久久久久久久久不卡| 一级a爱视频在线免费观看| 国产免费av片在线观看野外av| 在线看a的网站| 久久国产精品男人的天堂亚洲| 午夜两性在线视频| 1024香蕉在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费一区二区三区四区乱码| 搡老岳熟女国产| 亚洲激情五月婷婷啪啪| 女警被强在线播放| 国产成人影院久久av| 免费不卡黄色视频| 国产男女内射视频| 国产在视频线精品| 国产日韩欧美亚洲二区| 99国产精品一区二区蜜桃av | 欧美 日韩 精品 国产| 欧美精品亚洲一区二区| 天天影视国产精品| 欧美在线一区亚洲| 久久综合国产亚洲精品| 免费日韩欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 97精品久久久久久久久久精品| 欧美av亚洲av综合av国产av| 国产xxxxx性猛交| 丝袜喷水一区| 日本a在线网址| 免费不卡黄色视频| 亚洲一区中文字幕在线| 午夜精品国产一区二区电影| 如日韩欧美国产精品一区二区三区| 午夜久久久在线观看| 亚洲精品国产av蜜桃| 成人亚洲精品一区在线观看| 成人三级做爰电影| 亚洲成人免费电影在线观看| 日本精品一区二区三区蜜桃| 久久精品成人免费网站| 叶爱在线成人免费视频播放| www.精华液| 国产一级毛片在线| 午夜福利在线免费观看网站| 69精品国产乱码久久久| 免费在线观看视频国产中文字幕亚洲 | 天天影视国产精品| 久久免费观看电影| 国产日韩一区二区三区精品不卡| 五月天丁香电影| 亚洲成av片中文字幕在线观看| 欧美日韩一级在线毛片| 午夜91福利影院| 欧美97在线视频| 中亚洲国语对白在线视频| 欧美国产精品一级二级三级| 亚洲午夜精品一区,二区,三区| www.自偷自拍.com| 制服人妻中文乱码| netflix在线观看网站| 国产日韩欧美在线精品| 91国产中文字幕| 老鸭窝网址在线观看| 亚洲五月婷婷丁香| 国产97色在线日韩免费| 国产无遮挡羞羞视频在线观看| 亚洲第一青青草原| 久久久国产成人免费| 久久久久精品国产欧美久久久 | 1024香蕉在线观看| 久久这里只有精品19| 日韩免费高清中文字幕av| 一个人免费看片子| 免费高清在线观看日韩| 中文精品一卡2卡3卡4更新| 在线观看www视频免费| 精品国产乱码久久久久久男人| 久久ye,这里只有精品| 啦啦啦啦在线视频资源| 啦啦啦免费观看视频1| 99国产极品粉嫩在线观看| a级毛片在线看网站| 中文精品一卡2卡3卡4更新| av国产精品久久久久影院| 精品国产超薄肉色丝袜足j| 捣出白浆h1v1| 国产区一区二久久| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 人人妻人人澡人人看| 久久精品亚洲熟妇少妇任你| 人妻 亚洲 视频| 国产av又大| 制服人妻中文乱码| 亚洲少妇的诱惑av| 中国美女看黄片| 国产成人a∨麻豆精品| 啦啦啦免费观看视频1| 十八禁人妻一区二区| 9191精品国产免费久久| 免费在线观看完整版高清| 成人国产av品久久久| 动漫黄色视频在线观看| 大香蕉久久网| 一级毛片电影观看| 亚洲欧美激情在线| 午夜福利一区二区在线看| 操美女的视频在线观看| 无限看片的www在线观看| 欧美黑人精品巨大| cao死你这个sao货| 色视频在线一区二区三区| 12—13女人毛片做爰片一| 日本a在线网址| 国产av国产精品国产| 精品一区二区三卡| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 亚洲激情五月婷婷啪啪| 午夜两性在线视频| 男女之事视频高清在线观看| 91老司机精品| 在线观看人妻少妇| 国产成人影院久久av| 美国免费a级毛片| 99精品欧美一区二区三区四区| 国产熟女午夜一区二区三区| 国产av国产精品国产| 久久精品国产亚洲av香蕉五月 | 午夜福利,免费看| 大片电影免费在线观看免费| 99热全是精品| 男女免费视频国产| 美女福利国产在线| 蜜桃在线观看..| 爱豆传媒免费全集在线观看| 999精品在线视频| 日韩人妻精品一区2区三区| 亚洲欧美一区二区三区久久| www.999成人在线观看| 日韩有码中文字幕| 亚洲欧美精品综合一区二区三区| 啦啦啦 在线观看视频| 国产极品粉嫩免费观看在线| 97精品久久久久久久久久精品| 久久久久精品人妻al黑| 国产激情久久老熟女| 午夜精品国产一区二区电影| 亚洲人成77777在线视频| 丰满迷人的少妇在线观看| 久久久精品免费免费高清| 国产成人欧美在线观看 | 国产日韩一区二区三区精品不卡| 精品国产一区二区三区四区第35| 免费在线观看黄色视频的| 欧美 日韩 精品 国产| 亚洲黑人精品在线| 午夜福利影视在线免费观看| 欧美日本中文国产一区发布| 菩萨蛮人人尽说江南好唐韦庄| 超碰97精品在线观看| 51午夜福利影视在线观看| 午夜日韩欧美国产| 欧美少妇被猛烈插入视频| 狠狠精品人妻久久久久久综合| 天天添夜夜摸| 黄色a级毛片大全视频| 国产一区有黄有色的免费视频| 最黄视频免费看| 韩国高清视频一区二区三区| 满18在线观看网站| 99九九在线精品视频| 免费在线观看完整版高清| 亚洲国产中文字幕在线视频| 午夜免费成人在线视频| 日韩人妻精品一区2区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 新久久久久国产一级毛片| 国产成人影院久久av| 热re99久久国产66热| 国产不卡av网站在线观看| 欧美人与性动交α欧美精品济南到| 亚洲欧美日韩高清在线视频 | 91精品三级在线观看| 美女扒开内裤让男人捅视频| 无遮挡黄片免费观看| 嫁个100分男人电影在线观看| 免费在线观看视频国产中文字幕亚洲 | 久久久精品国产亚洲av高清涩受| 欧美精品亚洲一区二区| 一个人免费在线观看的高清视频 | 97在线人人人人妻| 在线观看免费午夜福利视频| 国产精品久久久久久精品古装| 中国美女看黄片| 一级黄色大片毛片| 亚洲七黄色美女视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久久久99蜜臀| 久久久久精品国产欧美久久久 | 美女主播在线视频| xxxhd国产人妻xxx| 久久亚洲国产成人精品v| 欧美日韩亚洲国产一区二区在线观看 | 国产av精品麻豆| 91精品国产国语对白视频| 欧美激情极品国产一区二区三区| 天堂8中文在线网| 国产精品国产av在线观看| 91麻豆av在线| 波多野结衣av一区二区av| 极品人妻少妇av视频| 国产高清视频在线播放一区 | 黑人巨大精品欧美一区二区蜜桃| kizo精华| 中文精品一卡2卡3卡4更新| 亚洲专区中文字幕在线| 美女主播在线视频| 国产亚洲一区二区精品| 麻豆av在线久日| 9热在线视频观看99| 成年美女黄网站色视频大全免费| 精品高清国产在线一区| 老汉色av国产亚洲站长工具| 天堂8中文在线网| 一本一本久久a久久精品综合妖精| 天堂8中文在线网| 在线天堂中文资源库| 亚洲精品av麻豆狂野| 19禁男女啪啪无遮挡网站| 日日摸夜夜添夜夜添小说| www.av在线官网国产| 黄色怎么调成土黄色| 亚洲专区中文字幕在线| 女警被强在线播放| 亚洲欧洲日产国产| 久久久久久久大尺度免费视频| 成人黄色视频免费在线看| 性色av一级| 国产av又大| 美女视频免费永久观看网站| 大香蕉久久成人网| 日韩中文字幕欧美一区二区| 免费女性裸体啪啪无遮挡网站| 久久青草综合色| 欧美在线黄色| 国产男人的电影天堂91| 亚洲伊人色综图| 99热网站在线观看| 97在线人人人人妻| av片东京热男人的天堂| 日本五十路高清| 99久久国产精品久久久| 老熟妇仑乱视频hdxx| 日本一区二区免费在线视频| 午夜两性在线视频| 嫁个100分男人电影在线观看| 亚洲精品第二区| 又大又爽又粗| 日韩中文字幕欧美一区二区| 亚洲五月婷婷丁香| 超碰97精品在线观看| 中国美女看黄片| 日韩中文字幕欧美一区二区| 久久精品亚洲av国产电影网| 激情视频va一区二区三区| 国产一区二区三区av在线| 黄网站色视频无遮挡免费观看| 国产av又大| 国产欧美日韩一区二区三区在线| 国产欧美日韩一区二区精品| 婷婷成人精品国产| 久久精品亚洲av国产电影网| 超碰成人久久| 亚洲精品中文字幕一二三四区 | 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 国产高清视频在线播放一区 | 狠狠精品人妻久久久久久综合| 亚洲美女黄色视频免费看| 国产精品一二三区在线看| 又大又爽又粗| 婷婷色av中文字幕| 成年人黄色毛片网站| 亚洲专区中文字幕在线| 久久久久久亚洲精品国产蜜桃av| 亚洲伊人色综图| 色婷婷av一区二区三区视频| 日韩制服丝袜自拍偷拍| av片东京热男人的天堂| 日本91视频免费播放| 午夜激情久久久久久久| 热99久久久久精品小说推荐| 久久午夜综合久久蜜桃| 99精品欧美一区二区三区四区| 久久99热这里只频精品6学生| 亚洲男人天堂网一区| 黄色怎么调成土黄色| 美女高潮到喷水免费观看| 亚洲中文日韩欧美视频| 美女高潮到喷水免费观看| 国产亚洲精品一区二区www | 欧美日韩亚洲综合一区二区三区_| 在线观看舔阴道视频| 日韩欧美免费精品| 中文字幕精品免费在线观看视频| 国产成人精品久久二区二区91| av免费在线观看网站| 国产黄色免费在线视频| 热re99久久精品国产66热6| 国产极品粉嫩免费观看在线| 精品亚洲乱码少妇综合久久| 18禁裸乳无遮挡动漫免费视频| 国产xxxxx性猛交| 国产人伦9x9x在线观看| 亚洲男人天堂网一区| 少妇猛男粗大的猛烈进出视频| 久久中文字幕一级| 欧美激情久久久久久爽电影 | 久久人妻熟女aⅴ| 男人爽女人下面视频在线观看| 丝袜人妻中文字幕| 亚洲国产成人一精品久久久| 老司机午夜十八禁免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美精品永久| 日韩欧美一区二区三区在线观看 | 高清视频免费观看一区二区| 91精品国产国语对白视频| 国产伦人伦偷精品视频| 久久久久国产精品人妻一区二区| tocl精华| 十八禁高潮呻吟视频| 老司机福利观看| 精品乱码久久久久久99久播| 久久热在线av| 亚洲精品一区蜜桃| 午夜久久久在线观看| 蜜桃在线观看..| 丝袜美足系列| 高清黄色对白视频在线免费看| 一边摸一边做爽爽视频免费| tocl精华| 精品人妻1区二区| 久久久国产一区二区| 久久中文看片网| 丝袜美足系列| 欧美日韩亚洲综合一区二区三区_| 亚洲精品一卡2卡三卡4卡5卡 | 9191精品国产免费久久| 高清黄色对白视频在线免费看| 动漫黄色视频在线观看| 日韩制服骚丝袜av| 国产精品香港三级国产av潘金莲| 亚洲精品国产色婷婷电影| 99国产精品免费福利视频| 国产免费视频播放在线视频| 狠狠婷婷综合久久久久久88av| 99热全是精品| 性少妇av在线| 国产日韩欧美在线精品| 国产片内射在线| 一二三四社区在线视频社区8| 午夜福利影视在线免费观看| 嫁个100分男人电影在线观看| 午夜视频精品福利| 爱豆传媒免费全集在线观看| 久久天堂一区二区三区四区| 在线观看免费高清a一片| 国产亚洲精品久久久久5区| 亚洲精品成人av观看孕妇| 欧美人与性动交α欧美精品济南到| 丁香六月天网| 久久久久精品国产欧美久久久 | 亚洲综合色网址| 一本一本久久a久久精品综合妖精| 日韩免费高清中文字幕av| 亚洲人成电影观看|