• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARTICLE Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes?

    2016-04-08 06:35:40JiayeJinGuanjunWangMingfeiZhouCollaborativeInnovationCenterofChemistryforEnergyMaterialsDepartmentofChemistryShanghaiKeyLaboratoryofMolecularCatalystsandInnovativeMaterialsFudanUniversityShanghai200433ChinaDatedReceived
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2016年1期

    Jia-ye Jin,Guan-jun Wang,Ming-fei Zhou?Collaborative Innovation Center of Chemistry for Energy Materials,Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Fudan University,Shanghai 200433, China(Dated:Received on November 25,2015;Accepted on December 8,2015)

    ?

    ARTICLE Infrared Photodisssociation Spectroscopy of Boron Carbonyl Cation Complexes?

    Jia-ye Jin,Guan-jun Wang,Ming-fei Zhou?
    Collaborative Innovation Center of Chemistry for Energy Materials,Department of Chemistry,Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials,Fudan University,Shanghai 200433, China
    (Dated:Received on November 25,2015;Accepted on December 8,2015)

    The boron carbonyl cation complexes B(CO)3+,B(CO)4+and B2(CO)4+are studied by infrared photodissociation spectroscopy and theoretical calculations.The B(CO)4+ions are characterized to be very weakly bound complexes involving a B(CO)3+core ion,which is predicted to have a planar D3hstructure with the central boron retaining the most favorable 8-electron con fi guration.The B2(CO)4+cation is determined to have a planar D2hstructure involving a B?B one and half bond.The analysis of the B-CO interactions with the EDANOCV method indicates that the OC→B σ donation is stronger than the B→CO π back donation in both ions.

    Key words:Boron carbonyl,Donor-acceptor bonding,Infrared photodissociation spectroscopy,Theoretical calculations

    ?Part of the special issue for“the Chinese Chemical Society’s 14th National Chemical Dynamics Symposium”.

    ?Author to whom correspondence should be addressed.E-mail: mfzhou@fudan.edu.cn

    I.INTRODUCTION

    Carbon monoxide is one of the most important ligand in inorganic and organometallic chemistry[1].It can bind to a host of neutral and charged transition metal centers in forming diverse metal carbonyl complexes,in which carbon monoxide serves either as a two-electron donor in an end-on coordinated fashion or as a four-electron or even six-electron donor in the bridge bonded modes[2?11].Carbon monoxide can also coordinate with some main-group elements in forming main group carbonyl complexes[12,13].Homoleptic mono-and dicarbonyl complexes of main group elements with end-on bonded carbonyl ligands have been prepared and spectroscopically characterized either in low-temperature noble gas matrices or in the gas phase[12?38].These carbonyl complexes are usually not stable at ambient conditions with the exception of[C(CO)2]and[N(CO)2]+which have been crystallographically characterized[36?38].

    In the case of boron,the electron de fi cient boron species are able to coordinate one CO ligand in forming the closed-shell carbonyl borane H3BCO and related derivatives,which are well-known stable carbonyl compounds[39?43].Boron carbonyl species such as BCO,B(CO)2,B(CO)2?,OCBBCO,BBCO and B4(CO)2were identi fi ed as products from the reactions of thermal-or laser-evaporated boron atoms with CO in solid argon[44?50].The OCBBCO molecule was characterized to be a boron-boron triple bonded species[48].Both BBCO and B4(CO)2are σ-π diradicals[49,50].Bonding analysis suggests that the linear closed-shell B(CO)2?anion should be considered as a donor-acceptor bonding complex rather than a cumulene O=C=B(?)=C=O molecule with electron sharing bonding[47].Very recently,a rare example of a boron dicarbonyl complex[(RB)(CO)2](R being a bulky aryl group)with two terminal carbonyl ligands which is stable under ambient conditions has been reported[51].The chemical behavior shows typical features of carbonyl complexes which are known from transition metal carbonyls.Boron carbonyl cation complexes are not known so far.Here we report a combined infrared photodissociation spectroscopy and theoretical study on boron carbonyl cation complexes B(CO)3+and B2(CO)4+in the gas phase.

    II.EXPERIMENTAL AND THEORETICAL METHODS

    The boron carbonyl cation complexes are generated in the gas phase using a pulsed laser vaporization/supersonic expansion ion source as described previously[52,53].Bulk targets compressed from isotopically-enriched10B and11B powders were used. The ions are produced from the laser vaporization process in expansions of helium seeded with 2%?5% CO using a pulsed valve(General Valve,Series 9)at 0.5?1.0 MPa backing pressure.After free expansion and cooling,the cations are skimmed into a second chamber where they are pulse-extracted into a Wiley-McLaren type time-of- fl ight mass spectrometer.The cations of interest are mass selected and decelerated into the extraction region of a second collinear timeof- fl ight mass spectrometer,where they are dissociated by a tunable IR laser.The tunable IR laser used is generated by a KTP/KTA//AgGaSe2optical parametric oscillator/ampli fi er system(OPO/OPA,Laser Vision)pumped by a Continuum Surelite EX Nd:YAG laser,producing about 1.0?2.5 mJ/pulse in the range of 1800?2400 cm?1.The ion density is too low for infrared absorption spectroscopy,thus,the infrared photodissociation spectroscopy is employed to record the vibrational spectra.Resonant absorption leads to fragmentation of the ion complex.The infrared photodissociation spectrum is obtained by monitoring the yield of the fragment ion as a function of the dissociation IR laser wavelength and normalizing to parent ion signal.

    The geometry optimizations have been carried out without symmetry constraints at the B3LYP level using the aug-cc-pVTZ basis sets[54?56].The harmonic vibrational frequencies were calculated with analytic second derivatives.These calculations were performed using the Gaussian 09 program[57].The gradient corrected BP86 functional in conjunction with uncontracted Slater-type orbitals(STOs)as basis functions was used for the bonding analyses[58?60].The latter basis sets for all elements have triple-ξ quality augmented by one set of polarization functions(ADF-basis set TZP).An auxiliary set of s,p,d,f,and g STOs was used to fi t the molecular densities and to represent the Coulomb and exchange potentials accurately in each SCF cycle.The BP86/TZP calculations were performed using the B3LYP/aug-cc-pVTZ optimized geometries with the program package ADF2014.10[61].

    III.RESULTS AND DISCUSSION

    The mass spectrum of boron carbonyl cation complexes in the m/z range of 60?150 from the laser evaporation of a10B-enriched target in expansions of helium gas seeded with 5%CO is shown in Fig.1(a).Although the mass spectra depend strongly on the parameters of the ion source such as vaporization laser power,He and CO stagnation pressures and timing,the peaks corresponding to10B(CO)3+(m/z=94)and10B2(CO)4+(m/z=132)are always the most intense peaks,suggesting that these cations are formed preferentially with high stability.The mass spectrum from the experiments with the11B-enriched target is shown in Fig.1(b).The most intense peaks shifted to m/z=95 and 134,corresponding to the11B(CO)3+and11B2(CO)4+ions,respectively.

    FIG.1 Mass spectra of the boron carbonyl cation complexes formed by pulsed laser vaporization of a target in an expansion of helium doped with carbon monoxide.(a)10B and (b)11B.

    The B(CO)3+cations are mass-selected and subjected to infrared photodissociation.It is found that the B(CO)3+cations dissociate via losing a CO ligand when excited with infrared light in the 2140?2150 cm?1frequency region but the dissociation e ffi ciency(less than 0.5%)is too low to achieve an e ff ective spectrum. This suggests that the B(CO)3+cations are very stable species with quite high CO binding energy as expected,as it satis fi es the octet rule.In contrast to B(CO)3+,the B(CO)4+cation complexes are able to dissociate via loss of a CO ligand with very high effi ciency(>50%),indicating that B(CO)4+is a very weakly bound complex.This con fi rms our expectation that B(CO)3+is a fully coordinated ion and the fourth CO in B(CO)4+is a weakly bound external carbonyl ligand.Therefore,the B(CO)4+cation can be regarded as a CO“tagged”cation complex involving a B(CO)3+core ion.The infrared photodissociation spectrum of B(CO)4+represents the spectrum of the B(CO)3+core ion that is weakly perturbed by the tagged CO ligand. The tagging e ff ect is expected to change the position of the B(CO)3+band only slightly as discussed previously[62?64].The infrared photodissociation spectra of11B(CO)4+and10B(CO)4+in the C?O stretching frequency region are shown in Fig.2.The spectrum of10B(CO)4+(Fig.2(a))exhibits a very strong band centered at 2145 cm?1along with a weak band at 2178 cm?1.The 2145 cm?1band is just 2 cm?1blueshifted from the frequency of gas phase carbon monoxide(2143 cm?1).This band can be attributed to the antisymmetric CO stretching vibrations of the10B(CO)3+core ion.The much weak band at 2178 cm?1is assigned to the CO stretching vibration of the weakly tagged CO ligand,consistent with previous observations for other weakly bound metal ion carbonyls[64?66].The same bands were also observed in the spectrum of11B(CO)4+as shown in Fig.2(b).The band positions are essentially the same indicating that the corresponding vibrational modes are pure CO stretching vibrations with negligible boron involvement.Besides 2145 and 2178 cm?1bands, additional weak bands at 2214 and 2259 cm?1were observed in the spectrum of11B(CO)4+.Both bands are located in the frequency range suitable for the symmet-ric CO stretching vibrations.We tentatively assign the 2259 cm?1band to the symmetric stretching vibration of thecore ion and the 2214 cm?1band to a combination or an overtone level that is in Fermi resonance with the symmetric CO stretching fundamental.When11B is substituted by10B,the two levels are no long close enough to show Fermi resonance,therefore,both bands were not observed in the spectrum ofcation is able to dissociate via loss of a CO ligand under focused IR laser irradiation.The parent ions can be depleted by about 5%at the laser pulse energy of 1.4 mJ/pulse at 2108 cm?1.The infrared photodissociation spectrum ois shown in Fig.3.The spectrum exhibits two bands centered at 2108 and 2152 cm?1.

    FIG.2 The experimental infrared photodissociation spectra of the(a)10B(CO)4+and(b)11B(CO)4+cation complexes in the CO stretching frequency region.

    We carried out high-level calculations in order to validate the identify of the cations and to analyze their electronic structures.The theoretically predicted geometries of Bare shown in Fig.4.The B(CO)3+cation has a1A′1ground state with planar D3hsymmetry.The calculations indicate that the CO bond distances in)is slightly shorter th?anthat of free CO calculated at the same level(1.128A).

    As shown in Fig.5,the highest doubly occupied molecular orbital(HOMO,a′2′)is primarily a central B2p orbital,which comprises signi fi cant B2p to CO 2π?back bonding.Therefore,the1A′1ground statecation correlates to an electronic excited singlet state B+with the associated valence electronic con fi guration of 2s0,2p(σ)0,2p(π)2,2p(π′)0.The11B(CO)3+cation with D3hsymmetry has only one IR active antisymmetric CO stretching mode calculated at 2223 cm?1,which is doubly degenerate.This mode foris predicted at 2224 cm?1.The symmetric stretching mode is predicted at 2317 cm?1which is IR inactive.Consistent with the experimental observations,the Bcation was predicted to be a weakly bound complex as the predicted B?CO distance of the fourth CO is quite large with the geometry of the B(CO)3+core ion being essentially the same as the free cation.Due to symmetry reduction by CO coordination,the double degeneracy of the antisymmetric CO stretching mode of B(CO)3+is lifted,and the E mode splits into two distinct modes.Calculations at the B3LYP level show very small mode split of 6 cm?1,which cannot be wellresolved experimentally.

    FIG.3ExperimentalandsimulatedIRspectraof

    TABLE I Observed and calculated(harmonic,unscaled) CO stretching frequencies(cm?1)of the10B(CO)4+and10B2(CO)4+ions.

    aThe intensities are listed in parentheses in km/mol.molecular orbital pictures shown in Fig.5 clearly indicate that the singly occupied(SOMO)b2gMO is a B?B π antibonding orbital.The highest doubly occupied b3uorbital(HOMO)is a B?B π bonding orbital.Both the b2gand b3uorbitals comprise substantial B2+to CO π?back-donation.Both orbitals are highly delocalized involving two B and four C centers.The doubly occupied agmolecular orbital(HOMO-1)is a B?B σ bonding orbital.The ground statecation complex can thus be viewed as the interaction of aexcited-state B2+and four CO’s,which involves one B?B σ bond and a half B?B π bond.

    FIG.5 Molecular orbital pictures of the highest doubly occupied(HOMO)of B(CO)3+and the singly occupied(SOMO) and highest doubly occupied orbitals(HOMO and HOMO-1)of B2(CO)4+.

    Thebonddissociationenergiesof,andare calculated.At the B3LYP level,the BDE ofis 79.5 kcal/mol with respect to the dissociation limit+CO or 60.7 kcal/mol with respect to the ground state reactants:.The dissociation energy of the tagged CO inis calculated to be only 2.9 kcal/mol.The binding energy of B2(CO)4+is 60.4 kcal/mol with respect to the dissociation limit B2+CO or 39.2 kcal/mol for the dissociation into the ground stateand CO.

    We analyze the nature of the donor-acceptor interactions in Bwith the EDA(energy decomposition analysis)in conjunction with the NOCV(natural orbitals for chemical valence)method [68],which gives a detailed insight into the bonding situation.The numerical results of the OC?B interactions in B(CO)at the BP86/TZP level are listed in Table II.The data show that both species havevery similar orbital interaction energy(?Eorb).Further inspection of the orbital components of?Eorbreveals that both species have very similar CO→B σ donation interaction,which is much stronger than the B→CO π back donation interactions.There is a large di ff erence in the strength of the B→CO π back donation between the two complexes.The π contribution of?Eorb(π⊥)+ ? Eorb(π‖)in B2(CO)4+is much larger than that in B(CO)3+.Figure 6 displays the deformation densities ?ρ(σ)and?ρ(π)which are connected to the σ donation and π backdonation in B(CO)The direction of the charge fl ow is indicated by the colors red→blue.The shape of?ρ(σ)clearly indicates that the charge fl ow comes mainly from the lone-pairelectrons at carbon to the boron atom.While the π backdonation leads to charge accumulation mainly at the carbon atom of CO.

    TABLE II EDA-NOCV results of the chemical bonding in OC-B(CO)2+and OC-B2(CO)3+at BP86/TZP.Energy values are given in kcal/mol.

    FIG.6 Plot of deformation densities?ρ of the pairwise orbital interactions and the associated interaction energies?Eorb(in kcal/mol)between CO and B

    IV.CONCLUSION

    Boron carbonyl cation complexes are produced via a laser vaporization supersonic ion source in the gas phase.The cations of interest are each mass-selected and their infrared spectra are measured via infrared photodissociation spectroscopy in the carbonyl stretching frequency region.Density functional calculations have been performed and the calculated vibrational spectra are compared to the experimental data to identify the gas-phase structures of the ions.The B(CO)3+and B2(CO)4+cations are the most intense peaks in the mass spectrum.The B(CO)3+ion is too strongly bound to achieve an e ff ective IR spectrum.In contrast, the B(CO)4+ion dissociates very e ffi ciently under IR irradiation.It is characterized to be a very weakly bound complex involving a B(CO)3+core ion,which is predicted to have a planar D3hstructure with the central boron retaining the most favorable 8-electron con fi guration.The B2(CO)4+cation is determined to have a planar D2hstructure involving a B?B bond.Both the B(CO)3+and B2(CO)4+ions have slightly red-or blue-shifted CO stretching frequencies with respect to free CO.The analysis of the B-CO interactions with the EDA-NOCV method indicates that the OC→B σ donation is stronger than the B→CO π back donation.

    V.ACKNOWLEDGMENTS

    The work was supported by the Ministry of Science and Technology of China(No.2013CB834603)and the National Natural Science Foundation of China (No.21173053 and No.21433005).

    [1]F.A.Cotton,G.Wilkinson,C.A.Murillo,and M. Bochmann,Advanced Inorganic Chemistry,6th Edn., New York:John Wiley,(1999).

    [2]G.Frenking and N.Fr¨ohlich,Chem.Rev.100,717 (2000).

    [3]M.F.Zhou,L.Andrews,and C.W.Bauschlicher Jr., Chem.Rev.101,1931(2001).

    [4]F.A.Cotton,B.A.Frenz,and L.Kruczynski,J.Am. Chem.Soc.95,951(1973).

    [5]M.Manassero,M.Sansoni,and G.Longoni,J.Chem. Soc.Chem.Commun.919(1976).

    [6]R.Colton and M.J.McCormick,Coord.Chem.Rev. 31,1(1980).

    [7]L.Jiang and Q.Xu,J.Am.Chem.Soc.127,42(2005).

    [8]X.J.Zhou,J.M.Cui,Z.H.Li,G.J.Wang,Z.P.Liu, and M.F.Zhou,J.Phys.Chem.A 117,1514(2013).

    [9]J.H.Osborne,A.L.Rheingold,and W.C.Trogler,J. Am.Chem.Soc.107,6292(1985).

    [10]X.J.Zhou,J.M.Cui,Z.H.Li,G.J.Wang,and M.F. Zhou,J.Phys.Chem.A 116,12349(2012).

    [11]W.A.Herrmann,H.Biersack,M.L.Ziegler,K.Weidenhammer,R.Siegel,and D.Rehder,J.Am.Chem. Soc.103,1692(1981).

    [12]A.J.Bridgeman,Inorg.Chim.Acta.321,27(2001).

    [13]H.J.Himmel,A.J.Downs,and T.M.Greene,Chem. Rev.102,4191(2002).

    [14]L.Andrews,T.J.Tague,and G.P.Kushto,Inorg. Chem.34,2952(1995).

    [15]P.H.Kasai and P.M.Jones,J.Am.Chem.Soc.106, 8018(1984).

    [16]J.H.B.Chenier,C.A.Hampson,J.A.Howard,B. Mile,and R.Sutcli ff e,J.Phys.Chem.90,1524(1986).

    [17]C.Xu,L.Manceron,and J.P.Perchard,J.Chem.Soc., Faraday Trans.89,1291(1993).

    [18]Q.Y.Kong,M.H.Chen,J.Dong,Z.H.Li,K.N.Fan, and M.F.Zhou,J.Phys.Chem.A 106,11709(2002). [19]L.N.Zhang,J.Dong,M.F.Zhou,and Q.Z.Qin,J. Chem.Phys.113,10169(2000).

    [20]P.H.Kasai and P.M.Jones,J.Phys.Chem.89,2019 (1985).

    [21]J.A.Howard,R.Sutcli ff e,C.A.Hampson,and B.Mile, J.Phys.Chem.90,4268(1986).

    [22]H.J.Himmel,A.J.Downs,J.C.Greene,and T.M. Greene,J.Phys.Chem.A 104,3642(2000).

    [23]W.G.Hatton,N.P.Hacker,and P.H.Kasai,J.Phys. Chem.93,1328(1989).

    [24]R.R.Lembke,R.F.Ferrante,and W.Weltner,J.Am. Chem.Soc.99,416(1977).

    [25]M.F.Zhou,L.Jiang,and Q.Xu,J.Chem.Phys.121, 10474(2004).

    [26]A.Feltrin,S.N.Cesaro,and F.Ramondo,Vib.Spectrosc.10,139(1996).

    [27]M.F.Zhou,L.Jiang,and Q.Xu,J.Phys.Chem.A 109,3325(2005).

    [28]A.Bos,J.Chem.Soc.Chem.Commun.1,26(1972).

    [29]L.N.Zhang,J.Dong,and M.F.Zhou,J.Chem.Phys. 113,8700(2000).

    [30]L.Jiang and Q.Xu,Bull.J.Chem.Soc.Jpn.79,857 (2006).

    [31]L.Jiang and Q.Xu,J.Chem.Phys.122,034505(2005). [32]L.N.Zhang,J.Dong,and M.F.Zhou,Chem.Phys. Lett.335,334(2001).

    [33]A.J.Bridgeman,N.Harris,and N.A.Young,Chem. Commun.14,1241(2000).

    [34]T.Liang,S.D.Flynn,A.M.Morrison,and G.E.Douberly,J.Phys.Chem.A 115,7437(2011).

    [35]A.D.Brathwaite and M.A.Duncan,J.Phys.Chem. A 116,1375(2012).

    [36]A.Ellern,T.Drews,and L.Seppelt,Z.Anorg.Allg. Chem.627,73(2001).

    [37]R.Tonner and G.Frenking,Chem.Eur.J.14,3260 (2008).

    [38]I.Bernhardi,T.Drews,and K.Seppelt,Angew.Chem. Int.Ed.38,2232(1999).

    [39]A.B.Burg and H.I.Schlesinger,J.Am.Chem.Soc. 59,780(1937).

    [40]A.Terheiden,E.Bernhardt,H.Willner,and F.Aubke, Angew.Chem.Int.Ed.41,799(2002).

    [41]M.Finze,E.Bernhardt,A.Terheiden,M.Berkei,H. Willner,D.Christen,H.Oberhammer,and F.Aubke, J.Am.Chem.Soc.124,15385(2002).

    [42]M.Gerken,G.Pawelke,E.Bernhardt,and H.Willner, Chem.Eur.J.16,7527(2010).

    [43]A.Fukazawa,J.L.Dutton,C.Fan,L.G.Mercier,A.Y. Houghton,Q.Wu,W.E.Piers,and M.Parvez,Chem. Sci.3,1814(2012).

    [44]Y.M.Hamrick,R.J.V.Zee,J.T.Godbout,W.Weltner,W.J.Lauderdale,J.F.Stanton,and R.J.Bartlett, J.Phys.Chem.95,2840(1991).

    [45]T.R.Burkholder and L.Andrews,J.Phys.Chem.96, 10195(1992).

    [46]M.F.Zhou,N.Tsumori,L.Andrews,and Q.Xu,J. Phys.Chem.A 107,2458(2003).

    [47]Q.N.Zhang,W.L.Li,C.Xu,M.H.Chen,M.F.Zhou, J.Li,D.M.Andrada,and G.Frenking,Angew.Chem. Int.Ed.54,11078(2015).

    [48]M.F.Zhou,N.Tsumori,Z.H.Li,K.N.Fan.L.Andrews,and Q.Xu,J.Am.Chem.Soc.124,12936 (2002).

    [49]M.F.Zhou,Z.X.Wang,P.R.Schleyer,and Q.Xu, Chem.Phys.Chem.4,763(2003).

    [50]M.F.Zhou,Q.Xu,Z.X.Wang,and P.R.Schleyer,J. Am.Chem.Soc.124,14854(2002).

    [51]H.Braunschweig,R.D.Dewhurst,F.Hupp,M.Nutz, K.Radacki,C.W.Tate,A.Vargas,and Y.Ye,Nature 522,327(2015).

    [52]G.J.Wang,C.X.Chi,X.P.Xing,C.J.Ding,and M. F.Zhou,Sci.China Chem.57,172(2014).

    [53]G.J.Wang,C.X.Chi,J.M.Cui,X.P.Xing,and M. F.Zhou,J.Phys.Chem.A 116,2484(2012).

    [54]A.D.Becke,J.Chem.Phys.98,5648(1993).

    [55]C.Lee,W.Yang,and R.G.Parr,Phys.Rev.B 37,785 (1988).

    [56]D.E.Woon and T.H.Dunning Jr.,J.Chem.Phys. 100,2975(1994).

    [57]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V. Barone,B.Mennucci,G.A.Petersson,H.Nakat-suji, M.Caricato,X.Li,H.P.Hratchian,A.F.Iz-maylov, J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada, M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M. Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai, T.Vreven,J.A.Montgomery Jr.,J.E.Peralta,F. Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N. Kudin,V.N.Staroverov,R.Kobayashi,J.Normand, K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,N.J.Millam,M. Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo, J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochter-ski, R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A. Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A. D.Daniels,¨O.Farkas,J.B.Foresman,J.V.Ortiz,J. Cioslowski,and D.J.Fox,Gaussian 09,Revision A02, Pittsburgh,PA:Gaussian,Inc.,(2009).

    [58]A.D.Becke,Phys.Rev.A 38,3098(1988).

    [59]J.P.Perdew,Phys.Rev.B 33,8822(1986).

    [60]J.G.Snijders,E.J.Baerends,and P.Vernoojs,At. Data Nucl.Data Tables 26,483(1981).

    [61]G.Te Velde,F.M.Bickelhaupt,E.J.Baerends,C. Fonseca Guerra,S.J.A.Van Gisbergen,J.G.Snijders, and T.Ziegler,J.Comput.Chem.22,931(2001).

    [62]M.Okumura,L.I.Yeh,J.D.Myers,and Y.T.Lee,J. Chem.Phys.85,2328(1986).

    [63]W.H.Robertson and M.A.Johnson,Annu.Rev.Phys. Chem.54,173(2003).

    [64]A.M.Ricks,Z.E.Reed,and M.A.Duncan,J.Mol. Spectrosc.266,63(2011).

    [65]G.J.Wang,J.M.Cui,C.X.Chi,X.J.Zhou,Z.H.Li, X.P.Xing,and M.F.Zhou,Chem.Sci.3,3272(2012).

    [66]J.M.Cui,G.J.Wang,X.J.Zhou,C.X.Chi,Z.H.Li, Z.P.Liu,and M.F.Zhou,Phys.Chem.Chem.Phys 15,10224(2013).

    [67]P.Pyykko and M.Atsumi,Chem.Eur.J.15,12770 (2009).

    [68]M.P.Mitoraj,A.Michalak,and T.Ziegler,J.Chem. Theory Comput.5,962(2009).

    又粗又硬又长又爽又黄的视频| 亚洲 欧美一区二区三区| 男人操女人黄网站| 大码成人一级视频| 久久99精品国语久久久| 免费人妻精品一区二区三区视频| 美女主播在线视频| 亚洲欧洲国产日韩| 午夜激情久久久久久久| 制服人妻中文乱码| 亚洲国产av新网站| 婷婷色综合大香蕉| 久久久精品94久久精品| 欧美另类一区| av天堂久久9| 青青草视频在线视频观看| 视频中文字幕在线观看| 亚洲 欧美一区二区三区| 好男人视频免费观看在线| 久久ye,这里只有精品| 国产高清国产精品国产三级| 国产亚洲精品久久久com| 大香蕉97超碰在线| 熟女人妻精品中文字幕| 丝袜在线中文字幕| 黄色 视频免费看| 日韩在线高清观看一区二区三区| 性高湖久久久久久久久免费观看| 国产成人精品久久久久久| 天堂中文最新版在线下载| 狠狠婷婷综合久久久久久88av| 成人毛片60女人毛片免费| 国产成人精品无人区| 精品人妻偷拍中文字幕| 男女免费视频国产| 欧美激情极品国产一区二区三区 | 乱码一卡2卡4卡精品| 韩国av在线不卡| 天堂俺去俺来也www色官网| 国产日韩一区二区三区精品不卡| 日本av手机在线免费观看| 国产精品久久久久久精品电影小说| 侵犯人妻中文字幕一二三四区| 日韩欧美精品免费久久| 日韩 亚洲 欧美在线| 少妇熟女欧美另类| 久久久欧美国产精品| 免费在线观看完整版高清| 亚洲成色77777| 国产免费一级a男人的天堂| 国产精品国产三级专区第一集| 视频区图区小说| 亚洲国产欧美在线一区| 久久97久久精品| 老司机影院成人| 妹子高潮喷水视频| 免费黄频网站在线观看国产| 捣出白浆h1v1| 99精国产麻豆久久婷婷| 两性夫妻黄色片 | 久久久精品94久久精品| 欧美日韩国产mv在线观看视频| av不卡在线播放| 国产无遮挡羞羞视频在线观看| 日本欧美国产在线视频| 一二三四在线观看免费中文在 | 制服丝袜香蕉在线| 日本色播在线视频| 九色成人免费人妻av| 中文字幕最新亚洲高清| 欧美日韩国产mv在线观看视频| a 毛片基地| 99久国产av精品国产电影| 午夜激情av网站| 免费黄网站久久成人精品| 青春草视频在线免费观看| 欧美97在线视频| 免费看不卡的av| 成人亚洲精品一区在线观看| 国产精品无大码| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性xxxx在线观看| 啦啦啦视频在线资源免费观看| 日韩免费高清中文字幕av| 丰满少妇做爰视频| 成年av动漫网址| 国产成人精品一,二区| 欧美老熟妇乱子伦牲交| 永久免费av网站大全| 91国产中文字幕| 色婷婷av一区二区三区视频| av国产精品久久久久影院| 亚洲综合精品二区| 激情视频va一区二区三区| 亚洲国产精品国产精品| 亚洲国产精品999| 国产精品一区二区在线观看99| 国产免费一级a男人的天堂| 免费人妻精品一区二区三区视频| 欧美国产精品一级二级三级| 一级毛片我不卡| 天堂俺去俺来也www色官网| 国产一区有黄有色的免费视频| 少妇被粗大的猛进出69影院 | 成人黄色视频免费在线看| 欧美亚洲 丝袜 人妻 在线| 中国三级夫妇交换| 成人影院久久| 亚洲av免费高清在线观看| 欧美成人午夜精品| 久久久久久久久久成人| 亚洲精品乱码久久久久久按摩| 亚洲国产av影院在线观看| 久久久久人妻精品一区果冻| 久久精品国产综合久久久 | 美女脱内裤让男人舔精品视频| 国产福利在线免费观看视频| 一级片免费观看大全| 大陆偷拍与自拍| 黄色一级大片看看| 91国产中文字幕| a级毛片在线看网站| 街头女战士在线观看网站| 亚洲av福利一区| 免费观看性生交大片5| 亚洲人与动物交配视频| 久久久久久久亚洲中文字幕| 肉色欧美久久久久久久蜜桃| 久久精品国产自在天天线| 五月玫瑰六月丁香| 人妻人人澡人人爽人人| 高清毛片免费看| 热99久久久久精品小说推荐| 高清视频免费观看一区二区| 久久99一区二区三区| 人人妻人人澡人人看| 国产片内射在线| 99久久综合免费| a级毛色黄片| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 老司机影院毛片| 日本黄大片高清| 日韩精品有码人妻一区| av免费在线看不卡| 热re99久久国产66热| 久久精品久久久久久久性| 日本91视频免费播放| 亚洲精品久久成人aⅴ小说| 亚洲欧美一区二区三区黑人 | 国产成人91sexporn| 亚洲av电影在线观看一区二区三区| av不卡在线播放| 免费黄网站久久成人精品| 在线精品无人区一区二区三| 一区二区三区精品91| 中国三级夫妇交换| av不卡在线播放| 在线亚洲精品国产二区图片欧美| 高清视频免费观看一区二区| 国产精品一国产av| 国产精品一区二区在线不卡| 国产片特级美女逼逼视频| 老熟女久久久| 80岁老熟妇乱子伦牲交| 99视频精品全部免费 在线| 国产精品国产三级专区第一集| 中国三级夫妇交换| 精品国产国语对白av| 国产日韩欧美视频二区| 国产精品国产av在线观看| 国产成人精品福利久久| 91国产中文字幕| 2018国产大陆天天弄谢| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 亚洲av日韩在线播放| 欧美日韩精品成人综合77777| 成人18禁高潮啪啪吃奶动态图| 老司机影院成人| 国产亚洲一区二区精品| 另类亚洲欧美激情| 日本黄色日本黄色录像| 如日韩欧美国产精品一区二区三区| 国产激情久久老熟女| 丝袜美足系列| 香蕉精品网在线| 一区二区日韩欧美中文字幕 | 超色免费av| 亚洲成国产人片在线观看| 天美传媒精品一区二区| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 99视频精品全部免费 在线| 观看av在线不卡| 久久精品久久久久久噜噜老黄| 国产精品免费大片| 高清不卡的av网站| 国产欧美日韩一区二区三区在线| 热99久久久久精品小说推荐| 一级片免费观看大全| 国产一区亚洲一区在线观看| 精品卡一卡二卡四卡免费| 99热6这里只有精品| 久久精品熟女亚洲av麻豆精品| 国产男女超爽视频在线观看| 国产精品国产三级专区第一集| 国产精品欧美亚洲77777| 在现免费观看毛片| 久久国产精品男人的天堂亚洲 | 激情五月婷婷亚洲| av卡一久久| 亚洲精品国产av成人精品| 少妇的逼好多水| 亚洲精品国产色婷婷电影| 人人澡人人妻人| 国产1区2区3区精品| 看免费av毛片| 在现免费观看毛片| 在线观看www视频免费| 啦啦啦啦在线视频资源| 久久精品久久久久久久性| 在线亚洲精品国产二区图片欧美| 日韩视频在线欧美| 亚洲国产日韩一区二区| 色网站视频免费| 宅男免费午夜| 日本黄色日本黄色录像| 男女免费视频国产| 日韩中文字幕视频在线看片| xxxhd国产人妻xxx| 侵犯人妻中文字幕一二三四区| 久久久国产欧美日韩av| 国产精品久久久久久久电影| 爱豆传媒免费全集在线观看| 精品国产国语对白av| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人爽人人夜夜| 成人黄色视频免费在线看| 综合色丁香网| 晚上一个人看的免费电影| 在线精品无人区一区二区三| 日韩不卡一区二区三区视频在线| 久久久久久久精品精品| 黄色 视频免费看| 久久久久国产网址| 美女国产视频在线观看| 2021少妇久久久久久久久久久| 久久久久久人妻| 夫妻性生交免费视频一级片| 欧美日韩视频精品一区| 色婷婷久久久亚洲欧美| 男女午夜视频在线观看 | 精品国产国语对白av| 久久人人97超碰香蕉20202| 成人亚洲精品一区在线观看| 精品久久久久久电影网| 在线 av 中文字幕| 精品亚洲成a人片在线观看| 国产欧美亚洲国产| 又大又黄又爽视频免费| 亚洲婷婷狠狠爱综合网| 老熟女久久久| 午夜福利在线观看免费完整高清在| 日韩中文字幕视频在线看片| av女优亚洲男人天堂| 韩国高清视频一区二区三区| 巨乳人妻的诱惑在线观看| 男的添女的下面高潮视频| 色哟哟·www| 97人妻天天添夜夜摸| 久久精品aⅴ一区二区三区四区 | 精品亚洲成国产av| 亚洲第一区二区三区不卡| 777米奇影视久久| 丰满少妇做爰视频| 日韩视频在线欧美| 日韩不卡一区二区三区视频在线| 丰满饥渴人妻一区二区三| 在线天堂最新版资源| 亚洲精品国产色婷婷电影| av黄色大香蕉| 亚洲色图 男人天堂 中文字幕 | 亚洲,欧美精品.| 婷婷色麻豆天堂久久| 亚洲欧洲日产国产| av在线老鸭窝| 久久久久精品久久久久真实原创| 天堂俺去俺来也www色官网| 人人妻人人澡人人爽人人夜夜| 日韩三级伦理在线观看| 91久久精品国产一区二区三区| 黄色视频在线播放观看不卡| 一区二区日韩欧美中文字幕 | 亚洲精品色激情综合| 午夜老司机福利剧场| 九九爱精品视频在线观看| 国产成人午夜福利电影在线观看| 国产精品偷伦视频观看了| 精品少妇久久久久久888优播| 涩涩av久久男人的天堂| 又大又黄又爽视频免费| 黄网站色视频无遮挡免费观看| 香蕉丝袜av| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 亚洲国产av影院在线观看| 97精品久久久久久久久久精品| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 好男人视频免费观看在线| 国产色婷婷99| 中文欧美无线码| 少妇猛男粗大的猛烈进出视频| 日韩一区二区三区影片| 久久国产精品大桥未久av| 亚洲成国产人片在线观看| 亚洲国产精品成人久久小说| 日本黄色日本黄色录像| 爱豆传媒免费全集在线观看| 欧美3d第一页| 美女脱内裤让男人舔精品视频| 少妇的逼好多水| 少妇熟女欧美另类| 国产一区二区激情短视频 | 少妇被粗大的猛进出69影院 | 少妇被粗大猛烈的视频| 国产成人免费无遮挡视频| 99久久人妻综合| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| 黄色视频在线播放观看不卡| www.av在线官网国产| 久久精品国产自在天天线| 国产欧美另类精品又又久久亚洲欧美| 激情视频va一区二区三区| 欧美日韩综合久久久久久| 亚洲综合色网址| 一级黄片播放器| 午夜福利视频在线观看免费| 国产成人精品无人区| 亚洲av福利一区| 国产黄色视频一区二区在线观看| 免费在线观看完整版高清| 91aial.com中文字幕在线观看| 国产成人av激情在线播放| 18禁观看日本| 中文字幕人妻丝袜制服| √禁漫天堂资源中文www| 韩国av在线不卡| 欧美人与善性xxx| 精品一区二区三区四区五区乱码 | 中国国产av一级| 香蕉精品网在线| 人人妻人人澡人人爽人人夜夜| 国产精品人妻久久久影院| 侵犯人妻中文字幕一二三四区| av视频免费观看在线观看| 久久免费观看电影| 美女xxoo啪啪120秒动态图| 一级黄片播放器| 99国产精品免费福利视频| 亚洲欧美成人综合另类久久久| 一级毛片我不卡| 乱人伦中国视频| 男女免费视频国产| 91在线精品国自产拍蜜月| 韩国高清视频一区二区三区| 看十八女毛片水多多多| 高清av免费在线| 曰老女人黄片| 欧美97在线视频| 满18在线观看网站| 我的女老师完整版在线观看| 久久国内精品自在自线图片| 成人午夜精彩视频在线观看| 日本色播在线视频| 国产在视频线精品| 成年av动漫网址| 不卡视频在线观看欧美| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 免费大片黄手机在线观看| 精品国产一区二区久久| 亚洲国产精品成人久久小说| 肉色欧美久久久久久久蜜桃| 中文字幕精品免费在线观看视频 | av电影中文网址| 成年人免费黄色播放视频| 黄片播放在线免费| 日韩成人伦理影院| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| 男女国产视频网站| 国产精品人妻久久久久久| 日韩av免费高清视频| 国产色婷婷99| 九色成人免费人妻av| 天天影视国产精品| 国产极品粉嫩免费观看在线| 亚洲欧美清纯卡通| 夫妻性生交免费视频一级片| 午夜老司机福利剧场| 夫妻性生交免费视频一级片| 久久精品国产综合久久久 | 水蜜桃什么品种好| 日韩一本色道免费dvd| 国产精品一区www在线观看| 成人毛片60女人毛片免费| 热99国产精品久久久久久7| 美女脱内裤让男人舔精品视频| 久久精品久久精品一区二区三区| 亚洲精品美女久久av网站| 亚洲情色 制服丝袜| 中国美白少妇内射xxxbb| 久久久精品94久久精品| 日韩在线高清观看一区二区三区| 大片电影免费在线观看免费| 国产又爽黄色视频| 精品午夜福利在线看| 国产成人精品一,二区| 少妇的丰满在线观看| 在线观看人妻少妇| 五月玫瑰六月丁香| 巨乳人妻的诱惑在线观看| 成人国语在线视频| 亚洲国产毛片av蜜桃av| 自拍欧美九色日韩亚洲蝌蚪91| 免费黄频网站在线观看国产| 成人国产av品久久久| 99久国产av精品国产电影| 免费观看av网站的网址| 欧美人与性动交α欧美软件 | 少妇熟女欧美另类| 制服丝袜香蕉在线| 一级毛片我不卡| 色网站视频免费| 卡戴珊不雅视频在线播放| 国产白丝娇喘喷水9色精品| 高清不卡的av网站| 久久久久国产网址| 精品卡一卡二卡四卡免费| 免费高清在线观看日韩| 一级毛片我不卡| 国产精品久久久久久久电影| 亚洲精品日本国产第一区| 日本免费在线观看一区| 老司机亚洲免费影院| 欧美日韩综合久久久久久| 亚洲精品国产色婷婷电影| 成年av动漫网址| 久久这里只有精品19| 狠狠精品人妻久久久久久综合| 国产一区二区在线观看日韩| 熟妇人妻不卡中文字幕| 国产成人91sexporn| 91成人精品电影| 国产精品人妻久久久影院| 精品一区二区三卡| 欧美精品国产亚洲| 日本欧美视频一区| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久av美女十八| 精品久久国产蜜桃| 日韩在线高清观看一区二区三区| 久久综合国产亚洲精品| 午夜福利乱码中文字幕| 精品第一国产精品| 欧美激情极品国产一区二区三区 | 狠狠婷婷综合久久久久久88av| 国内精品宾馆在线| 交换朋友夫妻互换小说| 久久精品夜色国产| 香蕉国产在线看| 欧美 日韩 精品 国产| 日韩不卡一区二区三区视频在线| 国产亚洲av片在线观看秒播厂| 黑人高潮一二区| 国产免费又黄又爽又色| 久久ye,这里只有精品| 热99久久久久精品小说推荐| 精品少妇久久久久久888优播| www.av在线官网国产| 久久午夜福利片| 中文字幕另类日韩欧美亚洲嫩草| a级毛片黄视频| 日本黄大片高清| 狂野欧美激情性bbbbbb| 午夜福利网站1000一区二区三区| 麻豆乱淫一区二区| 国产 一区精品| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 久久久国产欧美日韩av| 亚洲欧洲日产国产| 亚洲成av片中文字幕在线观看 | 亚洲精品日本国产第一区| 日韩av在线免费看完整版不卡| 麻豆精品久久久久久蜜桃| 观看av在线不卡| 精品人妻一区二区三区麻豆| 又粗又硬又长又爽又黄的视频| 国产午夜精品一二区理论片| 免费观看性生交大片5| 老司机影院毛片| 在线 av 中文字幕| 免费人妻精品一区二区三区视频| 国产爽快片一区二区三区| 色吧在线观看| 国产av一区二区精品久久| 人人妻人人添人人爽欧美一区卜| 久久国产精品大桥未久av| 性色avwww在线观看| av.在线天堂| 人妻人人澡人人爽人人| 香蕉丝袜av| 九色亚洲精品在线播放| 国产精品一国产av| 精品亚洲成a人片在线观看| 免费久久久久久久精品成人欧美视频 | 久久久久久久久久久免费av| 日韩欧美精品免费久久| 伊人亚洲综合成人网| 在线观看www视频免费| 日韩不卡一区二区三区视频在线| 免费少妇av软件| 搡老乐熟女国产| 五月开心婷婷网| 欧美 亚洲 国产 日韩一| 22中文网久久字幕| 欧美3d第一页| 亚洲av男天堂| 午夜视频国产福利| 久久 成人 亚洲| 欧美xxⅹ黑人| 久久久精品区二区三区| 极品人妻少妇av视频| 丁香六月天网| 夫妻午夜视频| 久久精品国产亚洲av涩爱| 咕卡用的链子| 亚洲精品日韩在线中文字幕| 欧美 日韩 精品 国产| 亚洲一级一片aⅴ在线观看| 成人午夜精彩视频在线观看| 国精品久久久久久国模美| 免费观看av网站的网址| 免费黄色在线免费观看| 欧美人与性动交α欧美精品济南到 | 久久精品夜色国产| 街头女战士在线观看网站| 纯流量卡能插随身wifi吗| 美女国产视频在线观看| 午夜福利乱码中文字幕| 亚洲 欧美一区二区三区| 99国产综合亚洲精品| 国产免费视频播放在线视频| 一级毛片黄色毛片免费观看视频| 少妇人妻精品综合一区二区| 日韩中字成人| 精品亚洲乱码少妇综合久久| 国产精品三级大全| 黄色一级大片看看| 精品一区二区三区视频在线| 一区在线观看完整版| 久久久久久久亚洲中文字幕| 激情五月婷婷亚洲| 久久久国产精品麻豆| 男人爽女人下面视频在线观看| xxx大片免费视频| 18禁国产床啪视频网站| videossex国产| 视频在线观看一区二区三区| 日韩制服丝袜自拍偷拍| 久久人人爽人人爽人人片va| 91精品三级在线观看| 午夜老司机福利剧场| 亚洲精品日韩在线中文字幕| 高清毛片免费看| 高清av免费在线| 久久鲁丝午夜福利片| 性色avwww在线观看| 22中文网久久字幕| 天天躁夜夜躁狠狠躁躁| 有码 亚洲区| 伦理电影大哥的女人| 五月天丁香电影| 欧美人与性动交α欧美精品济南到 | 香蕉精品网在线| xxx大片免费视频| 十八禁网站网址无遮挡| 老司机亚洲免费影院| 哪个播放器可以免费观看大片| 国产日韩欧美在线精品| 精品少妇久久久久久888优播| 女性生殖器流出的白浆| 亚洲国产色片| 亚洲天堂av无毛| 精品一区二区三卡| 一区二区三区四区激情视频| 亚洲精品aⅴ在线观看| 亚洲国产成人一精品久久久| 国产亚洲欧美精品永久| 免费看光身美女| 亚洲精品国产av成人精品| 高清黄色对白视频在线免费看| 婷婷色av中文字幕| 精品久久久久久电影网| 亚洲精华国产精华液的使用体验| 王馨瑶露胸无遮挡在线观看| 亚洲一区二区三区欧美精品| 欧美成人午夜免费资源| 伦理电影免费视频| 成人亚洲欧美一区二区av| 亚洲五月色婷婷综合|