田 郎, 譯 張 霖, 校
(1.中國(guó)熱帶農(nóng)業(yè)科學(xué)院橡膠研究所,海南儋州 571737;2.河南大學(xué)生命科學(xué)學(xué)院,河南開封 475004)
?
林木對(duì)干旱脅迫的全基因組應(yīng)答(二)
田郎1, 譯張霖2, 校
(1.中國(guó)熱帶農(nóng)業(yè)科學(xué)院橡膠研究所,海南儋州 571737;2.河南大學(xué)生命科學(xué)學(xué)院,河南開封 475004)
摘要:干旱對(duì)于森林健康及人工生產(chǎn)林的建立均是一種嚴(yán)重威脅。因此,人們對(duì)于林木對(duì)干旱脅迫的應(yīng)答機(jī)制一直懷有極大的興趣。本文綜述一般植物,特別是林木對(duì)于水分虧缺的感受及響應(yīng)模式,并著重介紹林木對(duì)干旱刺激的分子應(yīng)答機(jī)制,尤其是脅迫所引發(fā)的整個(gè)基因組范圍內(nèi)轉(zhuǎn)錄本豐度及蛋白質(zhì)表達(dá)譜的改變。縱觀林木此方面的研究歷程可以看出,人們對(duì)于干旱分子應(yīng)答的認(rèn)識(shí)已由單個(gè)應(yīng)答基因的分離鑒定逐漸深入到了對(duì)協(xié)同參與和調(diào)控應(yīng)答反應(yīng)的一系列相關(guān)基因或蛋白質(zhì)的分析探討。此外,本文也關(guān)注到了如何有效地利用這些研究成果才能最終達(dá)到保護(hù)森林健康和提高人工林生產(chǎn)力的目的。我們的綜合分析結(jié)果顯示,作為一種新的研究工具和手段,林木干旱應(yīng)答的全基因組分析可有效地用于其適應(yīng)性變異的保持及新品種的選育和基因型的定向修飾,從而使其能更好地應(yīng)對(duì)未來(lái)可能的干旱脅迫。
關(guān)鍵詞:林木;干旱脅迫;全基因組應(yīng)答
(續(xù)接上期)
9目前基因組研究的進(jìn)展
在基因組學(xué)領(lǐng)域,包括全基因組測(cè)序在內(nèi)的一系列分子生物學(xué)技術(shù)的突破已為人們開啟了全面深入了解樹木分子生物學(xué)的大門[參閱Deschamps等(2009)的綜述],而下一代高通量(HTP)測(cè)序技術(shù)的建立和應(yīng)用更是為探究和解決其它更為復(fù)雜的生物學(xué)問(wèn)題提供了新的契機(jī)(Mardis,2008)。雖然對(duì)模式植物楊樹的研究非常有助于認(rèn)識(shí)和了解樹木逆境響應(yīng)的生物學(xué)及分子基礎(chǔ),不過(guò)借助這些新的技術(shù)手段則更能直接推動(dòng)并加速林木生物學(xué)家對(duì)各種非模式物種的研究步伐?;蚪M測(cè)序深度及速度的大幅提高無(wú)疑可使人們快速獲得大量可資利用的基因組資源,如序列信息,物理圖譜,以及分子遺傳標(biāo)記等,從而有力地促進(jìn)林木標(biāo)記輔助育種及各種遺傳改良技術(shù)的迅速發(fā)展。
新一代HTP測(cè)序技術(shù)不僅更有助于了解林木的序列變異,而且可進(jìn)一步探究其表觀遺傳修飾。表觀遺傳修飾,例如DNA或組蛋白修飾在基因表達(dá)調(diào)控中起著關(guān)鍵作用,因而對(duì)植株的生長(zhǎng)發(fā)育具有重要影響。在脅迫條件下, 表觀遺傳修飾同樣起著調(diào)節(jié)脅迫誘導(dǎo)基因表達(dá)的重要作用(Boyko等,2008;Chinnusamy等,2009)。有些表觀遺傳修飾具有可遺傳性,并可使植株產(chǎn)生所謂的“脅迫記憶”, 也即受脅迫植株能將其抗脅迫能力傳遞給后代植株。當(dāng)然, 植物通過(guò)表觀遺傳修飾應(yīng)對(duì)環(huán)境脅迫也許是以生長(zhǎng)下降為代價(jià)(Chinnusamy等,2009)。Gourcilleau等(2010)曾觀察發(fā)現(xiàn), 干旱脅迫下不同楊樹雜種基因型在DNA甲基化水平上存在明顯差異,不僅如此,基因型的DNA甲基化水平甚至與其非脅迫條件下的生產(chǎn)力也密切相關(guān)。然而,有關(guān)脅迫條件下植株如何通過(guò)表觀遺傳修飾調(diào)控基因表達(dá)以及脅迫傳代記憶的分子機(jī)制目前尚不十分清楚。據(jù)Molinier等(2006)及Pecinka等(2009)報(bào)道,擬南芥植株在經(jīng)受環(huán)境脅迫處理之后,其后代植株較之未經(jīng)脅迫處理植株的后代表現(xiàn)出更高的同源重組率(HRF)及DNA甲基化水平,不過(guò)這種基因組水平上的變化是否與脅迫記憶有關(guān)尚需作進(jìn)一步的驗(yàn)證。
采用協(xié)同研究的方法,包括將全基因組表達(dá)數(shù)據(jù)與基因分型數(shù)據(jù)(例如SNP標(biāo)記分析)結(jié)合起來(lái)進(jìn)行綜合分析同樣有可能將過(guò)去看來(lái)似乎完全不相干的一些生物學(xué)機(jī)制聯(lián)系起來(lái)從而達(dá)到對(duì)林木干旱響應(yīng)的更為全面的認(rèn)識(shí)。下一代測(cè)序技術(shù)的發(fā)展不但為人們打開了非模式樹種基因組測(cè)序的大門,同時(shí)也為檢測(cè)同一物種許多不同個(gè)體間的序列變異,以及研究植物的表觀遺傳修飾提供了必要的技術(shù)支撐。這些新的技術(shù)手段既有助于獲得林木脅迫適應(yīng)方面的相關(guān)信息,也能夠進(jìn)一步加深對(duì)林木表型、基因型以及表觀遺傳變異之間關(guān)系的了解和認(rèn)識(shí)。
10 展望
鑒于全球氣候和降水變化及其對(duì)森林生產(chǎn)率造成的嚴(yán)重影響, 基于眾多理由 ,人們?cè)絹?lái)越清楚地認(rèn)識(shí)到了充分了解樹木在不利環(huán)境中如何適應(yīng)和生存的重要性。盡管干旱脅迫周期的延長(zhǎng)可能會(huì)降低樹木的生存能力,不過(guò),利用在林木對(duì)干旱脅迫的分子響應(yīng)研究方面所獲得的新的知識(shí),我們能夠選育和篩選出適應(yīng)性更強(qiáng)的品種以應(yīng)對(duì)未來(lái)環(huán)境的變化。
在過(guò)去的幾十年中,人們已從最初單個(gè)干旱響應(yīng)基因的發(fā)現(xiàn)逐漸深入到了對(duì)整個(gè)干旱響應(yīng)轉(zhuǎn)錄組的比較鑒定。微陣列及高通量轉(zhuǎn)錄組分析不但有力地揭示了林木干旱響應(yīng)的復(fù)雜性,而且將表型觀察與轉(zhuǎn)錄組應(yīng)答相關(guān)聯(lián)還可進(jìn)一步揭示出林木干旱適應(yīng)性的可能機(jī)制。隨著其它“組學(xué)”平臺(tái)的逐步建立和發(fā)展,研究人員將有可能進(jìn)一步在蛋白質(zhì)組及代謝組水平上檢測(cè)林木對(duì)于干旱脅迫的反應(yīng)。盡管通過(guò)分子應(yīng)答的研究能夠獲得更多有關(guān)樹木如何響應(yīng)干旱脅迫的信息,但我們?nèi)孕鑼⒍鄠€(gè)不同高通量平臺(tái)的研究數(shù)據(jù)及結(jié)果加以整合才能夠充分揭示林木干旱響應(yīng)的分子機(jī)制和途徑。為了深入了解不同途徑和機(jī)制在林木干旱響應(yīng)中的相對(duì)重要性,采用更為全面和整體性的系統(tǒng)生物學(xué)研究法將顯得尤為重要。例如,通過(guò)轉(zhuǎn)錄組研究人們發(fā)現(xiàn),很多涉及棉子糖和肌醇半乳糖苷合成的基因在經(jīng)過(guò)干旱處理的樹木中具有更高的轉(zhuǎn)錄物豐度(Shinozaki等,2007;Hamanishi等,2010),而這些代謝產(chǎn)物被認(rèn)為在干旱條件下具有滲透保護(hù)劑的作用。了解和認(rèn)識(shí)這一抗旱途徑不同水平上的作用機(jī)理及分子可塑性對(duì)于在林木中開發(fā)和利用這種內(nèi)在的干旱保護(hù)機(jī)制將具有十分重要的意義。
基因組學(xué)技術(shù)的利用有可能使我們制定出更好的策略以在不斷變化的氣候條件下保護(hù)現(xiàn)有的樹木種群并提高新的林分及林木種植園的生產(chǎn)力。借助這些基于基因組學(xué)及多管齊下的系統(tǒng)生物學(xué)方法的新技術(shù),人們有可能鑒定出與林木干旱響應(yīng)相關(guān)的基因或基因產(chǎn)物,從而制定出林木抗旱選擇或定向修飾的有效策略。例如,水稻抗旱QTLs的鑒定(Bernier等,2009)在水稻耐旱品種的標(biāo)記輔助選擇中就起著十分重要的作用(Steele等,2009)??鼓婊?例如擬南芥(Arabidopsisthaliana)中參與氣孔關(guān)閉因而能夠調(diào)節(jié)水份損失的MYB61基因,即AtMYB61基因的同系物的鑒定(Liang等,2005)也可被用于林木耐旱性的改良。通過(guò)生物信息學(xué)分析,有些來(lái)自草本的擬南芥的基因還能被轉(zhuǎn)入到林木,例如楊樹(Populus)之中(Wilkins等,2009a),并可推斷基因(如MYB61)的作用和功能。利用這些研究工具并結(jié)合植物中干旱響應(yīng)的有關(guān)知識(shí)和信息,我們能夠獲得耐旱性有所提高和增強(qiáng)的林木工程植株。這種經(jīng)過(guò)人工改良的林木種植材料將有助于提高和保持干旱日趨嚴(yán)重的地區(qū)林木的生產(chǎn)力。對(duì)于干旱分子應(yīng)答的認(rèn)識(shí)和了解還將有助于鑒定林木在干旱響應(yīng)上所發(fā)生的自然變異,而這種變異可被選擇或作為重點(diǎn)用于森林的保護(hù)。鑒于未來(lái)氣候變化及影響的不確定性,能夠使我們提高和增加抗逆單株鑒定的準(zhǔn)確性及鑒定率的基因組學(xué)技術(shù)將在林木逆境生物學(xué)研究及抗逆品種的選育中發(fā)揮極其重要的作用。
參 考 文 獻(xiàn)
[1]Abe,H.,Yamaguchi-Shinozaki,K.,Urao,T.,Iwasaki,T.,Hosokawa,D.andShinozaki,K. 1997RoleofArabidopsisMYCandMYBhomologsindrought-andabscisicacid-regulatedgeneexpression.PlantCell. 9, 1859-1868.
[2]Abe,H.,Urao,T.,Ito,T.,Seki,M.,Shinozaki,K.andYamaguchi-Shinozaki,K. 2003ArabidopsisAtMYC2 (bHLH)andAtMYB2 (MYB)functionastranscriptionalactivatorsinabscisicacidssignaling.PlantCell. 15, 63-78.
[3]Allen,C.D.andBreshears,D.D. 1998Drought-inducedshiftofaforest-woodlandecotone:rapidlandscaperesponsetoclimatevariation.Proc.NatlAcad.Sci.USA. 95, 14839-14842.
[4]Allen,C.D.,Macalady,A.K.,Chenchouni,H.,Bachelet,D.,McDowell,N.andVennetier,M.etal. 2010Aglobaloverviewofdroughtandheat-inducedtreemortalityrevealsemergingclimatechangerisksforforests.For.Ecol.Manage. 259, 660-684.
[5]Allona,I.,Quinn,M.,Shoop,E.,Swope,K.,Cyr,S.S.andCarlis,J.etal. 1998AnalysisofxylemformationinpinebycDNAsequencing.Proc.NatlAcad.Sci.USA. 95, 9693-9698.
[6]Almeida-Rodriguez,A.M.,Cooke,J.E.K.,Yeh,F.andZwiazek,J.J. 2010Functionalcharacterizationofdrought-responsiveaquaporinsinPopulusbalsamiferaandPopulussimonii×balsamiferacloneswithdifferentdroughtresistancestrategies.Physiol.Plant. 140, 321-333.
[7]Bahrun,A.,Jensen,C.R.,Asch,F.andMogensen,V.O. 2002Drought-inducedchangesinxylempH,ioniccomposition,andABAconcentrationactasearlysignalsinfield-grownmaize(ZeamaysL.).J.Exp.Biol. 53, 251-263.
[8]Belin,C.,Thomine,S.andSchroeder,J.I. 2010Waterbalanceandtheregulationofstomatalmovements.InAbioticStressAdaptationinPlants.A.Pareek,S.K.Sopory,H.J.BohnertandGovindjee(eds).Springer,Netherlands,pp. 283-305.
[9]Bernier,J.,Serraj,R.,Kumar,A.,Venuprasad,R.,Impa,S.andGowda,V.etal. 2009Thelarge-effectdrought-resistanceQTLqtl12.1increaseswateruptakeinuplandrice.FieldCropsRes. 110, 139-146.
[10]Berta,M.,Giovannelli,A.,Sebastiani,F.,Camussi,A.andRacchi,M.L. 2010TranscriptomechangesinthecambialregionofpoplarPopulusalbaL.inresponsetowaterdeficit.PlantBiol. 12, 341-354.
[11]Bigler,C.,Br?ker,O.,Bugmann,H.,Dobbertin,M.andRigling,A. 2006DroughtasanincitingmortalityfactorinScotspinestandsoftheValais,Switzerland.Ecosystems. 9, 330-343.
[12]Blodner,C.,Majcherczyk,A.,Kues,U.andPolle,A. 2007Earlydrought-inducedchangestotheneedleproteomeofNorwayspruce.TreePhysiol. 27, 1423-1431.
[13]Bonhomme,L.,Monclus,R.,Vincent,D.,Carpin,S.,Claverol,S.andLomenech,A.-M.etal. 2009GeneticvariationanddroughtresponseintwoPopulus×euramericanagenotypesthrough2-DEproteomicanalysisofleavesfromfieldandglasshousecultivatedplants.Phytochemistry. 70, 988-1002.
[14]Boyko,A.andKovalchuk,I. 2008Epigeneticcontrolofplantstressresponse.Environ.Mol.Mutagen. 49, 61-72.
[15]Bray,E.A. 1994Stressinducedgeneexpressioninplant.InAlterationsinGeneExpressioninResponsetoWaterDeficit.A.S.Basra(ed.).HardwoodAcademicPublishers,Chur,Switzerland,pp. 1-23.
[16]Brendel,O.,LeThiec,D.,Scotti-Saintagne,C.,Bodénès,C.,Kremer,A.andGuehl,J.-M. 2008QuantitativetraitlocicontrollingwateruseefficiencyandrelatedtraitsinQuercusroburL.TreeGenet.Genomes. 4, 263-278.
[17]Campalans,A.,Pages,M.andMesseguer,R. 2001IdentificationofdifferentiallyexpressedgenesbythecDNA-AFLPtechniqueduringdehydrationofalmond(Prunusamygdalus).TreePhysiol. 21, 633-643.
[18]Caruso,A.,Morabito,D.,Delmotte,F.,Kahlem,G.andCarpin,S. 2002DehydrininductionduringdroughtandosmoticstressinPopulus.PlantPhysiol.Biochem. 40, 1033-1042.
[19]Chang,S.,Puryear,J.D.,Dias,M.A.D.L.,Funkhouser,E.A.,Newton,R.J.andCairney,J. 1996Geneexpressionunderwaterdeficitinloblollypine(Pinustaeda):isolationandcharacterizationofcDNAclones.Physiol.Plant. 97, 139-148.
[20]Chaves,M.M.,Maroco,J.P.andPereira,J.S. 2003Understandingplantresponsestodrought—fromgenestothewholeplant.Funct.PlantBiol. 30, 239-264.
[21]Chinnusamy,V.andZhu,J.-K. 2009Epigeneticregulationofstressresponsesinplants.Curr.Opin.PlantBiol. 12, 133-139.
[22]Choi,H.-i,Hong,J.-h,Ha,J.-o,Kang,J.-yandKim,S.Y. 2000ABFs,afamilyofABA-responsiveelementbindingfactors.J.Biol.Chem. 275, 1723-1730.
[23]Ciais,P.,Reichstein,M.,Viovy,N.,Granier,A.,Ogee,J.andAllard,V.etal. 2005Europe-widereductioninprimaryproductivitycausedbytheheatanddroughtin2003.Nature. 437, 529-533.
[24]Close,T.J. 1996Dehydrins:emergenceofabiochemicalroleofafamilyofplantdehydrationproteins.Physiol.Plant. 97, 795-803.
[25]Cowan,I.R. 1977Stomatalbehaviorandenvironment.Adv.Bot.Res. 4, 117-228.
[26]Davies,W.J.andZhang,J. 1991Rootsignalsandtheregulationofgrowthanddevelopmentofplantsindryingsoil.Annu.Rev.PlantPhysiol.PlantMol.Biol. 42, 55-76.
[27]Deschamps,S.andCampbell,M. 2009Utilizationofnext-generationsequencingplatformsinplantgenomicsandgeneticvariantdiscovery.Mol.Breeding. 25, 553-570.
[28]Dubos,C.,LeProvost,G.,Pot,D.,Salin,F.,Lalane,C.andMadur,D.etal. 2003Identificationandcharacterizationofwater-stress-responsivegenesinhydroponicallygrownmaritimepine(Pinuspinaster)seedlings.TreePhysiol. 23, 169-179.
[29]Dubos,C.andPlomion,C. 2003Identificationofwater-deficitresponsivegenesinmaritimepine(PinuspinasterAit.)roots.PlantMol.Biol. 51, 249-262.
[30]Engelbrecht,B.M.J.,Comita,L.S.,Condit,R.,Kursar,T.A.,Tyree,M.T.andTurner,B.L.etal. 2007Droughtsensitivityshapesspeciesdistributionpatternsintropicalforests.Nature. 447, 80-82.
[31]Ferrell,W.K.andWoodard,E.S. 1966EffectsofseedoriginondroughtresistanceofDouglas-fir(Pseudotsugamenziesii) (Mirb.)Franco.Ecology. 47, 499-503.
[32]Fischer,U.andPolle,A. 2010Populusresponsestoabioticstress.InGeneticsandGenomicsofPopulus.S.Jansson,R.P.BhaleraoandA.Groover(eds).Springer,NewYork,NY,pp. 225-246.
[33]Froux,F.,Ducrey,M.,Dreyer,E.andHuc,R. 2005VulnerabilitytoembolismdiffersinrootsandshootsandamongthreeMediterraneanconifers:consequencesforstomatalregulationofwaterloss?Trees. 19, 137-144.
[34]Giuliano,G.,Pichersky,E.,Malik,V.S.,Timko,M.P.,Scolnik,P.A.andCashmore,A.R. 1988Anevolutionarilyconservedproteinbindingsequenceupstreamofaplantlight-regulatedgene.Proc.NatlAcad.Sci.USA. 85, 7089-7093.
[35]Gonzalez-Martinez,S.C.,Ersoz,E.,Brown,G.R.,Wheeler,N.C.andNeale,D.B. 2006DNAsequencevariationandselectionoftagsingle-nucleotidepolymorphismsatcandidategenesfordrought-stressresponseinPinustaedaL.Genetics. 172, 1915-1926.
[36]Gourcilleau,D.,Bogeat-Triboulot,M.-B.,LeThiec,D.,Lafon-Placette,C.,Delaunay,A.andEl-Soud,W.A.etal. 2010DNAmethylationandhistoneacetylation:genotypicvariationsinhybridpoplars,impactofwaterdeficitandrelationshipswithproductivity.Ann.For.Sci. 67, 208.
[37]Goyal,K.,Walton,L.J.andTunnacliffe,A. 2005LEAproteinspreventproteinaggregationduetowaterstress.Biochem.J. 388, 151-157..
[38]Guiltinan,M.J.,Marcotte,W.R.Jr.andQuatrano,R.S. 1990Aplantleucinezipperproteinthatrecognizesanabscisicacidresponseelement.Science. 250, 267-271.
[39]Hadley,J.andSmith,W. 1990Influenceofleafsurfacewaxandleafareatowatercontentratiooncuticulartranspirationinwesternconifers,U.S.A.Can.J.For.Res. 20, 1306-1311.
[40]Hall,D.,Tegstrom,C.andIngvarsson,P.K. 2010Usingassociationmappingtodissectthegeneticbasisofcomplextraitsinplants.Brief.Funct.Genomics. 9, 157-165.
[41]Hamanishi,E.T.,Raj,S.,Wilkins,O.,Thomas,B.R.,Mansfield,S.D.andPlant,A.L.etal. 2010IntraspecificvariationinthePopulusbalsamiferadroughttranscriptome.PlantCellEnviron. 33, 1742-1755.
[42]Hartung,W.,Sauter,A.,Turner,N.C.,Fillery,I.andHeilmeier,H. 1996Abscisicacidinsoils:whatisitsfunctionandwhichfactorsandmechanismsinfluenceitsconcentration?PlantSoil. 184, 105-110.
[43]Heath,L.S.,Ramakrishnan,N.,Sederoff,R.,Whetten,R.,Chevone,B.andStruble,C.etal. 2002Studyingthefunctionalgenomicsofstressresponsesinloblollypinewithexpressomicroarrayexperimentmanagementsystem.Comp.Funct.Genomics. 3, 226-243.
[44]Hertzberg,M.,Aspeborg,H.,Schrader,J.,Andersson,A.,Erlandsson,R.andBlomqvist,K.etal. 2001Atranscriptionalroadmaptowoodformation.Proc.NatlAcad.Sci.USA. 98, 14732-14737.
[45]Hogg,E.H.,Brandt,J.P.andMichaelian,M. 2008Impactsofaregionaldroughtontheproductivity,diebackandbiomassofwesternCanadianaspenforests.Can.J.For.Res. 38, 1373.
[46]Hogg,E.H.andWein,R.W. 2005ImpactsofdroughtonforestgrowthandregenerationfollowingfireinsouthwesternYukon,Canada.Can.J.For.Res. 35, 2141-2150.
[47]Hsiao,T.C.andXu,L.-K. 2000Sensitivityofgrowthofrootsversusleavestowaterstress:biophysicalanalysisandrelationtowatertransport.J.Exp.Biol. 51, 1595-1616.
[48]Ingram,J.andBartels,D. 2003Themolecularbasisofdehydrationtoleranceinplants.Ann.Rev.PlantPhysiol.PlantMol.Biol. 47, 377-403.
[49]IntergovernmentalPanelonClimateChange2007IPCCFourthAssessmentReport:ClimateChange2007 (AR4)IPCC,Geneva,Switzerland.
[50]Jarvis,P.G.andJarvis,M.S. 1963Thewaterrelationsoftreeseedlings.:IV.Someaspectsofthetissuewaterrelationsanddroughtresistance.Physiol.Plant. 16, 501-516.
[51]Klingler,J.P.,Batelli,G.andZhu,J.-K. 2010ABAreceptors:theSTARTofanewparadigminphytohormonesignalling.J.Exp.Biol. 61, 3199-3210.
[52]Knight,H.andKnight,M.R. 2001Abioticstresssignallingpathways:specificityandcross-talk.TrendsPlantSci. 6, 262-267.
[53]Li,X.,Wu,H.,Dillon,S.andSoutherton,S. 2009GenerationandanalysisofexpressedsequencetagsfromsixdevelopingxylemlibrariesinPinusradiataD.Don.BMCGenomics. 10, 41.
[54]Liang,Y.K.,Dubos,C.,Dodd,I.C.,Holroyd,G.H.,Hetherington,A.M.andCampbell,M.M. 2005AtMYB61,anR2R3-MYBtranscriptionfactorcontrollingstomatalapertureinArabidopsisthaliana.Curr.Biol. 15, 1201-1206.
[55]Liu,W.,Fairbairn,D.J.,Reid,R.J.andSchachtman,D.P. 2001CharacterizationoftwoHKT1homologuesfromEucalyptuscamaldulensisthatdisplayintrinsicosmosensingcapability.PlantPhysiol. 127, 283-294.
[56]Lorenz,W.W.,Sun,F.,Liang,C.,Kolychev,D.,Wang,H.andZhao,X.etal. 2006Waterstress-responsivegenesinloblollypine(Pinustaeda)rootsidentifiedbyanalysesofexpressedsequencetaglibraries.TreePhysiol. 26, 1-16.
[57]Ma,Y.,Szostkiewicz,I.,Korte,A.,Moes,D.,Yang,Y.andChristmann,A.etal. 2009RegulatorsofPP2Cphosphataseactivityfunctionasabscisicacidsensors.Science. 324, 1064-1068.
[58]Mahdieh,M.,Mostajeran,A.,Horie,T.andKatsuhara,M. 2008DroughtstressalterswaterrelationsandexpressionofPIP-typeaquaporingenesinNicotianatabacumplants.PlantCellPhysiol. 49, 801-813.
[59]Mardis,E.R. 2008Next-generationDNAsequencingmethods.Annu.Rev.GenomicsHum.Genet. 9, 387-402.
[60]Maurel,C.,Verdoucq,L.,Luu,D.-T.andSantoni,V. 2008Plantaquaporins:membranechannelswithmultipleintegratedfunctions.Annu.Rev.PlantBiol. 59, 595-624.
[61]McCourt,P.andCreelman,R. 2008TheABAreceptors—wereportyoudecide.Curr.Opin.PlantBiol. 11, 474-478.
[62]Molinier,J.,Ries,G.,Zipfel,C.,Hohn,B. 2006Transgenerationmemoryofstressinplants.Nature. 442, 1046-1049.
[63]Munné-Bosch,S.andAlegre,L. 2004Dieandletlive:leafsenescencecontributestoplantsurvivalunderdroughtstress.Funct.PlantBiol. 31, 203-216.
[64]Nagaraj,S.H.,Gasser,R.B.andRanganathan,S. 2007Ahitchhiker’sguidetoexpressedsequencetag(EST)analysis.Brief.Bioinform. 8, 6-21.
[65]Namroud,M.-C.,Beaulieu,J.,Juge,N.,Laroche,J.andBousquet,J. 2008Scanningthegenomeforgenesinglenucleotidepolymorphismsinvolvedinadaptivepopulationdifferentiationinwhitespruce.Mol.Ecol. 17, 3599-3613.
[66]Nguyen,A.andLamant,A. 1989Variationingrowthandosmoticregulationofrootsofwater-stressedmaritimepine(PinuspinasterAit.)provenances.TreePhysiol. 5, 123-133.
[67]Park,S.-Y.,Fung,P.,Nishimura,N.,Jensen,D.R.,Fujii,H.andZhao,Y.etal. 2009Abscisicacidinhibitstype2CproteinphosphatasesviathePYR/PYLfamilyofSTARTproteins.Science. 324, 1068-1071.
[68]Pechanova,O.,Hsu,C.-Y.,Adams,J.,Pechan,T.,Vandervelde,L.andDrnevich,J.etal. 2010Apoplastproteomerevealsthatextracellularmatrixcontributestomultistressresponseinpoplar.BMCGenomics. 11, 674.
[69]Pecinka,A.,Rosa,M.,Schikora,A.,Berlinger,M.,Hirt,H.,Luschnig,C.,MittelstenScheid,O. 2009TransgenerationalstressmemoryisnotageneralresponseinArabidopsis.PLoSONE. 4(4),e5202.
[70]Plomion,C.,Lalanne,C.,Claverol,S.,Meddour,H.,Kohler,A.andBogeat-Triboulot,M.-B.etal. 2006Mappingtheproteomeofpoplarandapplicationtothediscoveryofdrought-stressresponsiveproteins.Proteomics. 6, 6509-6527.
[71]Polle,A.,Altman,A.andJiang,X. 2006Towardsgeneticengineeringfordroughttoleranceintrees.InTreeTransgenesis—RecentDevelopments.M.FladungandD.Ewald(eds).Springer,Heidelberg,Germany,pp. 275-297..
[72]Popko,J.,H?nsch,R.,Mendel,R.R.,Polle,A.andTeichmann,T. 2010Theroleofabscisicacidandauxinintheresponseofpoplartoabioticstress.PlantBiol. 12, 242-258.
[73]Ramanjulu,S.andBartels,D. 2002Drought-anddesiccation-inducedmodulationofgeneexpressioninplants.PlantCellEnviron. 25, 141-151.
[74]Rice,K.,Matzner,S.,Byer,W.andBrown,J. 2004PatternsoftreediebackinQueensland,Australia:theimportanceofdroughtstressandtheroleofresistancetocavitation.Oecologia. 139, 190-198.
[75]Ronnberg-Wastljung,A.C.,Glynn,C.andWeih,M. 2005QTLanalysesofdroughttoleranceandgrowthforaSalixdasyclados×Salixviminalishybridincontrastingwaterregimes.Theor.Appl.Genet. 110, 537-549.
[76]Saavedra,X.,Modrego,A.,Rodriguez,D.,Gonzalez-Garcia,M.P.,Sanz,L.andNicolas,G.etal. 2010TheNuclearinteractorPYL8/RCAR3ofFagussylvaticaFsPP2C1isapositiveregulatorofabscisicacidsignalinginseedsandstress.PlantPhysiol. 152, 133-150.
[77]Saez,A.,Apostolova,N.,Gonzalez-Guzman,M.,Gonzalez-Garcia,M.P.,Nicolas,C.andLorenzo,O.etal. 2004Gain-of-functionandloss-of-functionphenotypesoftheproteinphosphatase2CHAB1revealitsroleasanegativeregulatorofabscisicacidsignalling.PlantJ. 37, 354-369.
[78]Secchi,F.andZwieniecki,M.A. 2010PatternsofPIPgeneexpressioninPopulustrichocarpaduringrecoveryfromxylemembolismsuggestamajorroleforthePIP1aquaporinsubfamilyasmoderatorsofrefillingprocess.PlantCellEnviron. 33, 1285-1297.
[79]Sharp,R.E.,Poroyko,V.,Hejlek,L.G.,Spollen,W.G.,Springer,G.K.andBohnert,H.J.etal. 2004Rootgrowthmaintenanceduringwaterdeficits:physiologytofunctionalgenomics.J.Exp.Biol. 55, 2343-2351.
[80]Shaw,J.D.,Steed,B.E.andDeBlander,L.T. 2005Forestinventoryandanalysis(FIA)annualinventoryanswersthequestion:whatishappeningtopinyon-juniperwoodlands?J.For. 103, 280-285.
[81]Shen,Q.,Zhang,P.andHo,T.H.D. 1996Modularnatureofabscisicacid(ABA)responsecomplexes:compositepromoterunitsthatarenecessaryandsufficientforABAinductionofgeneexpressioninbarley.PlantCell. 8, 1107-1119.
[82]Shinozaki,K.andYamaguchi-Shinozaki,K. 1996Molecularresponsetodroughtandcoldstress.Curr.Opin.Biotechnol. 7, 161-167.
[83]Shinozaki,K.andYamaguchi-Shinozaki,K. 2000Molecularresponsestodehydrationandlowtemperature:differencesandcross-talkbetweentwostresssignalingpathways.Curr.Opin.PlantBiol. 3, 217-223.
[84]Shinozaki,K.andYamaguchi-Shinozaki,K. 2007Genenetworksinvolvedindroughtstressresponseandtolerance.J.Exp.Biol. 58, 221-227.
[85]Slovik,S.,Daeter,W.andHartung,W. 1995CompartmentalRedistributionandLong-DistanceTransportofAbscisicAcid(ABA)inPlantsasInfluencedbyEnvironmentalChangesintheRhizosphere:ABiomathematicalModel.OxfordUniversityPress.
[86]Sobeih,W.Y.,Dodd,I.C.,Bacon,M.A.,Grierson,D.andDavies,W.J. 2004Long-distancesignalsregulatingstomatalconductanceandleafgrowthintomato(Lycopersiconesculentum)plantssubjectedtopartialroot-zonedrying.J.Exp.Biol. 55, 2353-2363.
[87]Steele,K. 2009NovelUplandRiceVarietyBredUsingMarker-AssistedSelectionandClient-OrientedBreedingReleasedinJharkhand,IndiaPlantBreedingNews,FAOAppliedPlantBreedingNewsletter,Rome,Italy.
[88]Sterky,F.,Bhalerao,R.R.,Unneberg,P.,Segerman,B.,Nilsson,P.andBrunner,A.M.etal. 2004APopulusESTresourceforplantfunctionalgenomics.Proc.NatlAcad.Sci.USA. 101, 13951-13956.
[89]Sterky,F.,Regan,S.,Karlsson,J.,Hertzberg,M.,Rohde,A.andHolmberg,A.etal. 1998Genediscoveryinthewood-formingtissuesofpoplar:analysisof5,692expressedsequencetags.Proc.NatlAcad.Sci.USA. 95, 13330-13335.
[90]Strabala,T.J. 2004Expressedsequencetagdatabasesfromforestrytreespecies.InMoleculargeneticsandbreedingofforesttreesFoodProducts.S.KumarandM.Fladung(eds).HawthornPress,Binghamton,NY.
[91]Street,N.R.,Skogstrom,O.,Sjodin,A.,Tucker,J.,Rodriguez-Acosta,M.andNilsson,P.etal. 2006ThegeneticsandgenomicsofthedroughtresponseinPopulus.PlantJ. 48, 321-341.
[92]Teskey,R.O.,Bongarten,B.C.,Cregg,B.M.,Dougherty,P.M.andHennessey,T.C. 1987Physiologyandgeneticsoftreegrowthresponsetomoistureandtemperaturestress:anexaminationofthecharacteristicsofloblollypine(PinustaedaL.).TreePhysiol. 3, 41-61.
[93]Tsuchihira,A.,Hanba,Y.T.,Kato,N.,Doi,T.,Kawazu,T.andMaeshima,M. 2010Effectofoverexpressionofradishplasmamembraneaquaporinsonwater-useefficiency,photosynthesisandgrowthofEucalyptustrees.TreePhysiol. 30, 417-430.
[94]Tuskan,G.A.,DiFazio,S.,Jansson,S.,Bohlmann,J.,Grigoriev,I.andHellsten,U.etal. 2006Thegenomeofblackcottonwood,Populustrichocarpa(Torr. &Gray).Science. 313, 1596-1604.
[95]Tyree,M.T.,Kolb,K.J.,Rood,S.B.andPatino,S. 1994Vulnerabilitytodrought-inducedcavitationofripariancottonwoodsinAlberta:apossiblefactorinthedeclineoftheecosystem?TreePhysiol. 14, 455-466.
[96]Ujino-Ihara,T.,Yoshimura,K.,Ugawa,Y.,Yoshimaru,H.,Nagasaka,K.andTsumura,Y. 2000ExpressionanalysisofESTsderivedfromtheinnerbarkofCryptomeriajaponica.PlantMol.Biol. 43, 451-457.
[97]Uno,Y.,Furihata,T.,Abe,H.,Yoshida,R.,Shinozaki,K.andYamaguchi-Shinozaki,K. 2000Arabidopsisbasicleucinezippertranscriptionfactorsinvolvedinanabscisicacid-dependentsignaltransductionpathwayunderdroughtandhigh-salinityconditions.Proc.NatlAcad.Sci.USA. 97, 11632-11637.
[98]Urao,T.,Yakubov,B.,Satoh,R.,Yamaguchi-Shinozaki,K.,Seki,M.andHirayama,T.etal. 1999Atransmembranehybrid-typehistidinekinaseinarabidopsisfunctionsasanosmosensor.PlantCell. 11, 1743-1754.
[99]vanMantgem,P.J.,Stephenson,N.L.,Byrne,J.C.,Daniels,L.D.,Franklin,J.F.andFule,P.Z.etal. 2009WidespreadincreaseoftreemortalityratesintheWesternUnitedStates.Science. 323, 521-524.
[100]Walton,D.C.,Harrison,M.A.andCotê,P. 1976Theeffectsofwaterstressonabscisic-acidlevelsandmetabolisminrootsofPhaseolusvulgarisL.andotherplants.Planta. 131, 141-144.
[101]Wang,C.,Wang,Y.,Diao,G.,Jiang,J.andYang,C. 2010Isolationandcharacterizationofexpressedsequencetags(ESTs)fromCambiumTissueofBirch(Betulaplatyphylla).PlantMol.Biol.Report. 28, 438-449.
[102]Watkinson,J.I.,Sioson,A.A.,Vasquez-Robinet,C.,Shukla,M.,Kumar,D.andEllis,M.etal. 2003Photosyntheticacclimationisreflectedinspecificpatternsofgeneexpressionindrought-stressedloblollypine.PlantPhysiol. 133, 1702-1716.
[103]Welin,B.V.,Olson, ?,Nylander,M.andPalva,E.T. 1994Characterizationanddifferentialexpressionofdhn/lea/rab-likegenesduringcoldacclimationanddroughtstressinArabidopsisthaliana.PlantMol.Biol. 26, 131-144.
[104]Wilkins,O.,Nahal,H.,Foong,J.,Provart,N.J.andCampbell,M.M. 2009aExpansionanddiversificationofthePopulusR2R3-MYBfamilyoftranscriptionfactors.PlantPhysiol. 149, 981-993.
[105]Wilkins,O.,Waldron,L.,Nahal,H.,Provart,N.J.andCampbell,M.M. 2009bGenotypeandtimeofdayshapethePopulusdroughtresponse.PlantJ. 60, 703-715.
[106]Wilkinson,S.,Corlett,J.E.,Oger,L.andDavies,W.J. 1998EffectsofxylempHontranspirationfromwild-typeandflaccatomatoleaves.Avitalroleforabscisicacidinpreventingexcessivewaterlossevenfromwell-wateredplants.PlantPhysiol. 117, 703-709.
[107]Wilkinson,S.andDavies,W.J. 2002ABA-basedchemicalsignalling:theco-ordinationofresponsestostressinplants.PlantCellEnviron. 25, 195-210.
[108]Williams,M.E.,Foster,R.andChua,N.H. 1992SequencesflankingthehexamericG-boxcoreCACGTGaffectthespecificityofproteinbinding.PlantCell. 4, 485-496.
[109]Wisniewski,M.,Close,T.J.,Artlip,T.andArora,R. 1996Seasonalpatternsofdehydrinsand70-kDaheat-shockproteinsinbarktissuesofeightspeciesofwoodyplants.Physiol.Plant. 96, 496-505.
[110]Yang,F.,Wang,Y.andMiao,L.-F. 2010Comparativephysiologicalandproteomicresponsestodroughtstressintwopoplarspeciesoriginatingfromdifferentaltitudes.Physiol.Plant. 139, 388-400.
[111]Yordanov,I.,Velikova,V.andTsonev,T. 2000Plantresponsestodrought,acclimation,andstresstolerance.Photosynthetica. 38, 171-186.
[112]Zeevaart,J.A.D.andCreelman,R.A. 1988Metabolismandphysiologyofabscisicacid.Annu.Rev.PlantPhysiol.PlantMol.Biol. 39, 439-473.
[113]Zhang,S.,Chen,F.,Peng,S.,Ma,W.,Korpelainen,H.andLi,C. 2010Comparativephysiological,ultrastructuralandproteomicanalysesrevealsexualdifferencesintheresponsesofPopuluscathayanaunderdroughtstress.Proteomics. 10, 2661-2677.
[114]Zhang,X.,Zang,R.andLi,C. 2004PopulationdifferencesinphysiologicalandmorphologicaladaptationsofPopulusdavidianaseedlingsinresponsetoprogressivedroughtstress.PlantSci. 166, 791-797.
[115]Zhao,M.andRunning,S.W. 2010Drought-inducedreductioninglobalterrestrialnetprimaryproductionfrom2000through2009.Science. 329, 940-943.
(全文譯自Forestry,2011,Vol.84,No.3)
收稿日期:2015-10-18
譯者簡(jiǎn)介:田郎(1961-),男,侗族,湖南新晃侗族自治縣人,碩士,副研究員,現(xiàn)從事植物組織培養(yǎng)及分子生物學(xué)研究工作。E-mail:tianerlang@163.com。 校張霖(1967-),男,漢族,籍貫天津,博士,副教授,主要從事植物逆境生物學(xué)及分子生物學(xué)科研教學(xué)工作。E-mail:linzhang@henu.edu.cn。
中圖分類號(hào):S 772.3+6
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1001-2117(2016)01-0062-07
Genome-wideresponsestodroughtinforesttrees
TranslatedbyTIANLang1,ProofreadbyZHANGLin2
(1.Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737;2. College of Life Sciences, Henan University, Kaifeng, Henan 475004)
Abstract:Drought is a significant threat to forest health and the establishment of productive tree plantations. There is therefore great interest in understanding the mechanisms underpinning drought responses in forest trees. This review considers the means by which plants in general, and forest trees specifically, both detect and respond to water limitation. The review focuses on molecular-level responses to a drought stimulus, with an emphasis on responses that involve genome-wide reconfigurations in transcript abundance and protein complement in forest trees. A historical view of the molecular analysis of such responses shows a remarkable transition from understanding the impact of drought on individual genes to a more comprehensive picture of the suites of genes and proteins that constitute a drought response. Attention is paid to how this understanding might further the aims of preserving forest health and improve plantation productivity. The review suggests that genome-wide analysis of forest tree drought responses can be leveraged to provide new tools for conservation of adaptive variation and targets for selective breeding or directed modification of forest tree genotypes that can better contend with future drought scenarios.
Key words:forest tree;drought stress;Genome-wide responses