• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      堿脅迫下磷酸脲降低土壤pH值促進菠菜生長

      2016-03-21 12:37:54逄煥成中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所北京100081
      農(nóng)業(yè)工程學(xué)報 2016年2期
      關(guān)鍵詞:生理特性菠菜含水率

      張 莉,王 婧,逄煥成(中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081)

      ?

      堿脅迫下磷酸脲降低土壤pH值促進菠菜生長

      張莉,王婧,逄煥成※
      (中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081)

      摘要:為明確磷酸脲緩解菠菜堿脅迫的作用效果,該文以大葉菠菜為材料,研究了堿脅迫下磷酸脲對土壤pH值、植株生長、葉片生理特性的影響。試驗設(shè)無堿脅迫處理、堿脅迫處理、堿脅迫后灌溉無機肥液處理、堿脅迫后灌溉磷酸脲液處理,結(jié)果表明:堿脅迫6d后,施入磷酸脲、無機肥溶液均顯著降低土壤pH值,分別比堿脅迫不施肥處理降低2.69、0.86個單位。堿脅迫后灌溉磷酸脲液處理顯著提高葉片超氧化物歧化酶(superoxide dismutase,SOD)、過氧化物酶(peroxidase,POD)和過氧化氫酶(catalase,CAT)活性,分別比堿脅迫處理提高7.96%、26.75%、57.70%,丙二醛(malondiadehyde,MDA)含量降低了10.63%,進而減輕了膜脂過氧化程度,顯著提高葉片光合色素葉綠素a、b及類胡蘿卜素含量,促進菠菜的生長,表現(xiàn)為堿脅迫后灌溉磷酸脲液處理的株高、葉面積、整株干質(zhì)量分別比堿脅迫處理提高23.55%、21.03%、33.84%;而堿脅迫后灌溉無機肥液處理加劇堿脅迫程度,抑制菠菜生長,降低其生理特性,其葉綠素a、b及類胡蘿卜素質(zhì)量分?jǐn)?shù)比堿脅迫后灌溉磷酸脲液處理降低19.84%、37.15%、14.15%。這說明磷酸脲溶液可以有效減輕菠菜堿脅迫程度,能作為堿化土壤的改良劑,為堿土地植物安全生產(chǎn)提供技術(shù)手段。

      關(guān)鍵詞:土壤;含水率;肥料;磷酸脲;堿脅迫;菠菜;生理特性

      張莉,王婧,逄煥成. 堿脅迫下磷酸脲降低土壤pH值促進菠菜生長[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(2):148-154. doi:10.11975/j.issn.1002-6819.2016.02.022http://www.tcsae.org

      Zhang Li, Wang Jing, Pang Huancheng. Decreasing soil pH value to promote spinach growth by application of urea phosphate under alkaline stress [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 148-154. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.022http://www.tcsae.org

      Email:dazhang0376@163.com

      0 引 言

      當(dāng)今,全球鹽漬土面積約10億hm2,其中堿土和次生堿化土壤占60%左右[1]。堿土中植物受到高濃度Na+的滲透脅迫的同時,土壤pH值因CO32-和HCO3-的水解而升高,還會加重植物毒害,抑制其生長甚至死亡。近年來,由于化肥過量使用,不合理灌溉等因素,全球堿地面積日益擴大、堿化程度日趨嚴(yán)重[2-3],給農(nóng)業(yè)生產(chǎn)造成嚴(yán)重?fù)p失。研發(fā)改良、治理堿化土壤的技術(shù),有效防止土地繼續(xù)堿化,對緩解土地壓力、保障糧食安全具有重要意義[4]。多年以來,國內(nèi)外學(xué)者對鹽脅迫研究較多,而對生態(tài)破壞力更大的堿性土壤治理的研究相對較少[5-6]。田玉福等[7]提出深埋排水管技術(shù)改良松嫩平原蘇打堿土。姜超強等[8]發(fā)現(xiàn)施用適量硫磺可以降低土壤pH值,改善煙葉品質(zhì),提高煙葉產(chǎn)值。潘香梅等[9]認(rèn)為噴施脫落酸能夠增強黃瓜幼苗的抗氧化能力,減輕堿脅迫對細(xì)胞膜傷害程度,提高其耐堿性。曲長鳳等[10]、Suhayda等[11]指出石膏中的Ca2+能夠置換土壤表面吸附的Na+,在減輕堿化程度、提高土壤養(yǎng)分有效性和作物產(chǎn)量方面效果顯著。以上方法均能夠有效改良堿性土壤,但因在不同區(qū)域植物種類、耕作方式和土壤性質(zhì)等因素的限制,未能大面積推廣應(yīng)用。

      磷酸脲(CO(NH2)2·H3PO4)是由尿素與磷酸在一定條件下生成的復(fù)鹽,具有“高濃度、速溶、全溶”的特點,常作為新型高濃度復(fù)合肥料,與膜下滴灌技術(shù)配套使用,可有效減少氮磷損失,促進作物增產(chǎn)[12-13]。而且,磷酸脲水解后產(chǎn)生酸,可能降低土壤pH值。目前,關(guān)于外施磷酸脲是否具有減輕植物堿脅迫程度,改善土壤化學(xué)性質(zhì)的研究仍未見報道。菠菜是一種常見的綠葉蔬菜,它既不耐酸又不耐堿,對土壤酸堿性敏感,能夠快速、準(zhǔn)確地反映土壤環(huán)境的變化。鑒于此,本試驗選擇大葉菠菜為材料,通過室內(nèi)培養(yǎng)研究根灌磷酸脲溶液對菠菜幼苗生長和葉片保護酶調(diào)節(jié)效應(yīng)的影響,旨在探討磷酸脲作為消堿劑,對植物生長發(fā)育的調(diào)節(jié)作用,以期為中國堿土的改良和植物安全生產(chǎn)提供技術(shù)手段和理論依據(jù)。

      1 材料與方法

      1.1試驗材料與處理

      試驗在中國農(nóng)業(yè)科學(xué)院溫室大棚進行,以金丹隆公司生產(chǎn)的大葉菠菜為材料。2014年10月11日,篩選籽粒飽滿的種子,播種于裝有營養(yǎng)土(pH值=6.81)的塑料缽(內(nèi)徑6 cm×高15 cm)中,共600缽,每缽3粒,各灌溉10 mL去離子水后置于溫室培養(yǎng),溫度為25℃/15℃(晝/夜),濕度為60%~70%,每日灌溉5 mL去離子水。幼苗生長30 d(二葉一心),間苗至每穴單株,保留長勢一致的幼苗。11月10日開始進行堿脅迫處理,隨機選取450缽,每日灌溉5 mL濃度為300 mmol/L,pH值為10.01的NaHCO3與Na2CO3混合液(摩爾比1∶1),其余150缽每日灌溉5 mL去離子水作為對照。11月16日進行試驗處理,共設(shè)4個處理,對照處理(non-alkali stress treatment,CK)(150缽)仍每日灌溉5 mL無離子水,進行堿脅迫處理的450缽隨機分為3個處理,每處理150缽,分別作為堿脅迫處理(adding deionized water after alkali-stress,AS)、堿脅迫后灌溉無機肥液處理(adding inorganic fertilizer solution after alkali-stress which was mixed with diammonium phosphate and urea solution,AS+FT)和堿脅迫后灌溉磷酸脲液處理(adding urea phosphate solution after alkali-stress,AS+UP),AS處理每日灌溉5 mL去離子水,AS+FT處理每日灌溉5 mL無機肥液,AS+UP處理每日灌溉5 mL磷酸脲溶液。其中,磷酸脲溶液濃度為10 mmol/L,無機肥液指磷酸二銨與尿素的混合溶液,其氮、磷含量與磷酸脲溶液相等。各處理溶液基礎(chǔ)化學(xué)性質(zhì)見表1。

      表1 處理溶液化學(xué)性質(zhì)Table 1 Chemical properties of solutions used in different treatments

      1.2樣品采集與測定

      試驗于11月22日,即處理6 d后,測定植株形態(tài)與生理指標(biāo)。隨機選取長勢一致的10株菠菜,每處理3次重復(fù),用去離子水沖洗干凈,吸干水分,測定根長、株高和根、莖、葉鮮質(zhì)量,置于105℃殺青30 min,80℃烘干,稱干質(zhì)量。取基部向上第5、6片葉,硫代巴比妥酸法測定丙二醛含量,紫外吸收法測定過氧化氫酶活性,愈創(chuàng)木酚法測定過氧化物酶活性、NBT還原法測定超氧化物歧化酶活性[14],乙醇浸提法測定葉綠素含量,比重法測定葉面積;隨后多點采集根際土,風(fēng)干混勻,利用型號FE20-K梅特勒pH計以水土比法(風(fēng)干土質(zhì)量:去離子水體積=5∶1)測定根際土壤pH值,根冠比按照根冠比=地下部干物質(zhì)質(zhì)量(g)/地上干物質(zhì)質(zhì)量(g)公式計算[15]。

      1.3數(shù)據(jù)分析

      試驗數(shù)據(jù)采用SPSS 16.0和Excel 2003軟件分析、作圖,用SSR法進行多重比較。

      2 結(jié)果與分析

      2.1不同處理土壤pH值變化

      試驗結(jié)果顯示(見表2),堿脅迫6 d后土壤pH值極顯著增加,平均提高44.19%。根灌磷酸脲和等N、P含量的無機肥溶液均能夠顯著降低土壤pH值。灌溉6d后,AS+UP和AS+FT處理分別比AS處理降低了2.69 和0.86個單位,其中施入磷酸脲的處理降低土壤pH值的效果最為顯著,比AS+FT處理降低了20.40%。

      表2 各處理土壤pH值Table 2 Soil pH value in spinach soil under different treatments

      2.2不同處理對菠菜幼苗生長的影響

      菠菜苗期以營養(yǎng)生長為主[16]。從表3可知,堿脅迫使菠菜幼苗地上部生長受到一定程度的抑制,與對照相比,AS處理株高、葉面積降低了37.45%、31.20%,AS+FT處理分別減少了44.33%、30.67%,AS+UP處理下降了24.30%、15.00%。施用磷酸脲能顯著減輕菠菜堿脅迫程度,AS+UP處理的株高、葉面積和干物質(zhì)質(zhì)量分別比AS處理分別增加了23.55%、21.03%和33.84%;而施用等N、P含量的無機肥溶液并沒有減輕堿脅迫程度,AS+FT處理葉面積比AS處理顯著減少了11.01%。各處理根冠比表現(xiàn)為AS、AS+FT顯著高于CK和AS+UP處理,分別比CK處理提高了11.90%、14.29%。株高、單株葉面積是衡量幼苗地上部健壯生長的重要指標(biāo)[16],研究結(jié)果表明,施用磷酸脲可改善堿脅迫對幼苗生長的抑制作用,增加光合面積,促進地上部的生長,改變光合產(chǎn)物在器官間的分配。

      2.3不同處理對菠菜幼苗組織含水率的影響

      由表4可知,堿脅迫導(dǎo)致菠菜出現(xiàn)一定程度的萎蔫現(xiàn)象,AS、AS+FT、AS+UP處理的組織含水率分別比對照降低了5.30%、5.64%和1.61%。堿脅迫的菠菜植株施用磷酸脲液(AS+UP)后,其根、莖、葉含水率分別比AS處理提高了9.87%、2.30%和0.57%;而施用普通無機肥液(AS+FT)后,菠菜根、莖含水率分別比AS處理下降了0.86%和0.44%。水分是植物重要的組成部分,其含水率能直接反映逆境對植物造成傷害的程度[17],研究結(jié)果顯示,施用磷酸脲會顯著提高堿脅迫后菠菜植株的含水率。

      表3 堿脅迫不同處理對菠菜生長特征的影響Table 3 Effect of growth characteristics of spinach seedlings under different treatments

      表4 堿脅迫不同處理對菠菜組織含水率的影響Table 4 Effect of water content of spinach seedling’s tissues under different treatments

      2.4不同處理對葉片光合色素含量的影響

      由表5可知,各處理葉片葉綠素a、葉綠素b、類胡蘿卜素和葉綠素(a+b)含量均表現(xiàn)為CK>AS+UP>AS>AS+FT。與對照相比,堿脅迫顯著降低葉片光合色素含量,AS、AS+FT和AS+UP處理Chl (a+b)質(zhì)量分?jǐn)?shù)依次比對照降低21.67%、38.96%和2.92%;類胡蘿卜素質(zhì)量分?jǐn)?shù)分別減少10.61%、23.26%和0.89%。堿脅迫后施用磷酸脲可顯著提高葉片光合色素質(zhì)量分?jǐn)?shù),比AS處理高23.94%(P<0.05),與CK處理無顯著差異;而堿脅迫后施用普通無機肥溶液(AS+FT處理)葉片光合色素含量進一步下降,顯著低于AS處理。與施用磷酸脲(AS+UP處理)相比,施用普通無機肥溶液(AS+FT處理)的葉綠素a/b顯著提高,增加了25.04%。這表明堿脅迫后施用普通無機肥溶液,可能加劇堿脅迫的危害,促進葉綠素a、b的分解,縮小菠菜對不同光質(zhì)的利用范圍,降低葉片最大光合作用的能力。此外,葉綠素和類胡蘿卜素是植物光合作用的主要色素,其含量與葉片光合性能密切相關(guān)[18]。因此,堿脅迫后根施磷酸脲溶液能夠有效延緩光合色素的降解,充分保證光能的吸收和利用。

      表5 不同處理對菠菜葉片光合色素含量的影響Table 5 Effect of different treatments on photosynthetic pigment contents of spinach leaves

      2.5不同處理對葉片抗氧化系統(tǒng)的影響

      研究表明,堿脅迫造成菠菜葉片丙二醛(malondialdehyde, MDA)含量升高(見圖1)。遭受堿脅迫的AS、AS+FT、AS+UP處理葉片MDA含量分別比對照提高了22.30%、13.14%和9.30%。堿脅迫后灌施磷酸脲或無機肥溶液,均可不同程度地減輕堿脅迫下葉片質(zhì)膜膜脂過氧化程度,與AS處理相比,AS+FT、AS+UP處理的MDA含量分別降低7.49%和10.63%。與普通無機肥液相比,磷酸脲溶液降低葉片MDA含量的效果更為顯著,其葉片MDA的含量降低了3.40%。

      研究結(jié)果表明(見圖2),堿脅迫顯著降低菠菜葉片抗氧化酶活性。與對照相比,AS處理超氧化物歧化酶(superoxide dismutase, SOD)、過氧化物酶(peroxidase,POD)和過氧化氫酶(catalase, CAT)活性分別降低13.77%、30.13%和40.90%,AS+FT處理減少16.62%、39.05%和52.29%,AS+UP處理下降6.91%、11.45%和6.81%。結(jié)果顯示,灌溉普通無機肥溶液會加重葉片堿脅迫程度,但磷酸脲溶液顯著增強堿脅迫后葉片抗氧化活酶的活性,其SOD、POD和CAT活性顯著高于AS處理,分別提高了6.42%、42.08%、55.13%,與AS+FT處理相比,分別增加了6.41%,23.96%和92.13%。

      圖1 不同處理對菠菜葉片丙二醛含量的影響Fig.1 Effect of different treatments on malondialdehyde content of spinach leaves

      圖2 不同處理對菠菜葉片抗氧化酶活性的影響Fig.2 Effect of different treatments on antioxidant enzyme activities in spinach leaves

      2.6堿脅迫條件下菠菜生理指標(biāo)與土壤pH值的關(guān)系

      相關(guān)性分析結(jié)果顯示(見表5),土壤pH值與丙二醛(MDA)含量、根長極顯著正相關(guān)(P <0.01);與過氧化氫酶(CAT)活性、過氧化物酶(POD)活性、葉綠素a、葉綠素b和類胡蘿卜素含量、株高、植株含水率、葉面積、植株生物量和株高等形態(tài)指標(biāo)呈極顯著負(fù)相關(guān)(P<0.01)。

      進一步分析發(fā)現(xiàn),土壤pH值與葉片CAT、POD活性、MDA含量、葉綠素a、葉綠素b與類胡蘿卜含量、株高、葉面積和植株含水率成一元二次關(guān)系,相關(guān)系數(shù)依次為0.989、0.988、0.899、0.960、0.976、0.923、0.944、0.926、0.960,均達到極顯著水平(P<0.01)。通過多元線性逐步回歸得到最優(yōu)多元線性回歸方程為Y=223.562?15.536X1+1.124X2r=0.953(Y:菠菜整株生物量,X1:土壤pH值,X2:單株葉面積)。方程中系數(shù)的大小表示因子對菠菜生物量的影響力的高低。在堿脅迫中,土壤pH值對作物生物量作用力更大,是葉面積13.82倍??梢姡瑝A脅迫條件下,降低土壤pH值是作物獲得高產(chǎn)和穩(wěn)產(chǎn)的前提條件。

      表5 堿脅迫下菠菜生理指標(biāo)與土壤pH值相關(guān)性Table 5 Correlation between physiological characteristic of spinach and soil pH value under alkaline stress

      3 討 論

      中國是土壤鹽堿化分布廣泛的國家,pH值是土壤基本化學(xué)性質(zhì),影響土壤中營養(yǎng)元素的轉(zhuǎn)化方向、循環(huán)過程,一定程度決定土壤肥力的供給情況,是指示土壤質(zhì)量的重要指標(biāo)之一,降低土壤堿化程度,對提高土壤利用效率具有重要意義。已有研究表明,高pH值土壤中,蔬菜根系周圍礦物離子的活度下降,造成地上營養(yǎng)器官的發(fā)育不良,肥料利用率顯著下降[19]。本研究發(fā)現(xiàn),堿脅迫影響菠菜幼苗生長,造成植株萎蔫,葉片光合色素含量下降,葉片生理活性降低,這與吳成龍等[20]的研究結(jié)果一致。何磊等[21]、曲元剛等[22]研究指出鹽堿地滲透脅迫和高土壤pH值是抑制植株生長的主要因素。本研究結(jié)果表明,土壤pH值與葉片的CAT、POD等抗氧化酶活性、植株葉面積、生物量、含水率等形態(tài)指標(biāo)呈極顯著的負(fù)相關(guān),土壤pH值改善是作物獲得高產(chǎn)和穩(wěn)產(chǎn)的基礎(chǔ)條件。因而,如何有效降低土壤pH值,是提升肥料利用效率,促進堿土農(nóng)業(yè)可持續(xù)發(fā)展的重要研究內(nèi)容。

      磷酸脲是一種新型肥料,常作為一種高效滴灌肥,其可顯著促進植物的生長,改善作物品質(zhì),提高肥料利用效率[12,23]。本研究發(fā)現(xiàn),堿脅迫6 d后灌溉磷酸脲溶液,土壤pH值由9.92降低至7.14,顯著降低土壤的堿化程度;而施用普通無機肥溶液,土壤pH值仍維持較高水平,這說明灌溉磷酸脲溶液具有一定的消堿作用,不但能夠提供作物生長發(fā)育所需要的養(yǎng)分,還能改善土壤微環(huán)境,在改良、治理堿化土壤具有一定的應(yīng)用價值。

      適宜的土壤環(huán)境是保證作物健壯生長的必要條件[3-4,7]。試驗結(jié)果顯示,灌溉磷酸脲溶液大幅降低土壤pH值,改善了菠菜的生長環(huán)境,減輕了堿脅迫對菠菜生長及葉片生理的抑制作用。與AS處理相比,堿脅迫后施用磷酸脲溶液(AS+UP處理)顯著提高菠菜幼苗含水率,增強葉片抗氧化酶活性,減少MDA含量,其中菠菜幼苗根、莖、葉組織含水率分別提高了9.87%、2.35%和0.57%,SOD、POD和CAT的活性分別提高7.96%、26.75%、57.70%,MDA含量下降10.63%。分析研究結(jié)果可知,生物量變化是植物對鹽堿脅迫響應(yīng)的綜合體現(xiàn)及對鹽堿脅迫的綜合反映[21]。堿脅迫后灌施磷酸脲可顯著減輕逆境對地上部生物量的抑制作用,這可能是由于磷酸脲溶液呈酸性,降低了土壤pH值,最終減輕了高pH值對作物的毒害作用,同時,還能提供營養(yǎng)物質(zhì),促進植物生長。而施入等N、P含量的普通無機肥,土壤pH值仍維持較高的水平,可能增加了土壤的離子濃度,加劇了根系的滲透脅迫,進一步加重了堿脅迫作用。此外,大量研究發(fā)現(xiàn),堿害條件下,植物受到高pH值的毒害及高濃度鹽離子滲透脅迫[20,24],MDA大幅增加[25],破壞膜結(jié)構(gòu)和生理機能[26],激發(fā)植物產(chǎn)生抗氧化酶[27],避免膜脂氧化傷害。本研究結(jié)果顯示,堿脅迫后灌施磷酸脲,可顯著改善葉片生理活性。這可能是因為磷酸脲溶液能夠保證葉片體內(nèi)活性氧自由基維持在較低的水平,避免自由基對生物大分子如核酸和蛋白質(zhì)等物質(zhì)的降解,進而減輕堿脅迫對生物膜造成的損害,具體機理有待進一步研究。此外,因本試驗是在室內(nèi)培養(yǎng)條件下進行,磷酸脲的消堿效果是否會因地域、鹽堿地程度、離子成分、作物種類等因素的不同而發(fā)生改變還需要深入探討。

      4 結(jié) 論

      堿脅迫后灌施磷酸脲土壤pH值降低2.69個單位,改善菠菜的生長環(huán)境,顯著提升葉片過氧化物酶、超氧化物歧化酶、過氧化氫酶的活性,降低丙二醛的含量,光合色素葉綠素(a+b)質(zhì)量分?jǐn)?shù)、單株葉面積、總干物質(zhì)質(zhì)量分別比堿脅迫處理增加了23.94%、21.03%、33.84%,減輕堿脅迫對菠菜生長的抑制作用,促進菠菜生物量維持較高水平??梢姡姿犭迦芤涸诟纳仆寥纏H值方面發(fā)揮著重要作用,能一定程度上改善菠菜的堿脅迫環(huán)境,提高其耐堿能力,為獲得較高的經(jīng)濟產(chǎn)量奠定基礎(chǔ),具有一定推廣應(yīng)用價值。

      [參考文獻]

      [1] 張體彬,康躍虎,胡偉,等. 寧夏銀北地區(qū)龜裂堿土鹽分特征研究[J]. 土壤,2012,44(6):1001-1008. Zhang Tibin, Kang Yuehu, Hu Wei, et al. Study on salinity characteristics of Takyric solonetz in Ningxia Yinbei region[J]. Soil, 2012, 44(6): 1001-1008. (in Chinese with English abstract)

      [2] Decheng Shi, Deli Wang. Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag[J]. Plant and Soil, 2005, 271(1): 15-26.

      [3] 徐恒剛. 中國鹽生植被及鹽漬化生態(tài)[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2004:23-28,136-137.

      [4] 王婧,逄煥成,任天志,等. 地膜覆蓋與秸稈深埋對河套灌區(qū)鹽漬土水鹽運動的影響[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(15):52-59. Wang Jing, Pang Huancheng, Ren Tianzhi, et al. Effect of plastic film mulching and straw buried on soil water-salt dynamic in Hetao plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 28(15): 52-59. (in Chinese with English abstract)

      [5] Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving Plant Abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216.

      [6] 顏宏,趙偉,盛艷敏,等. 堿脅迫對羊草和向日葵的影響[J].應(yīng)用生態(tài)學(xué)報,2005,16(8):1497-1501. Yan Hong, Zhao Wei, Sheng Yanmin, et al. Effects of Alkali-stress on Aneurolepidium chinense and Heliɑnthus ɑnnuus[J]. Chinese of Journal of Applied Ecology, 2005,16(8): 1497-1501. (in Chinese with English abstract)

      [7] 田玉福,竇森,張玉廣,等. 暗管不同埋管間距對蘇打草甸堿土的改良效果[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(12):145-153. Tian Yufu, Dou Sen, Zhang Yuguang, et al. Improvement effects of subsurface pipe with different spacing on sodic-alkali soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013,29(12): 145-153. (in Chinese with English abstract)

      [8] 姜超強,沈嘉,郭盧,等. 硫磺對堿性植煙土壤烤煙生長及煙葉重金屬含量的影響[J]. 中國煙草科學(xué),2013,34(5):47-51. Jiang Chaoqiang,Shen Jia,Guo Lu,et al. Effects of sulfur on growth of flue-cured tobacco and heavy metal contents of tobacco leaves in alkaline soil[J]. Chinese Tobacco Science,2013, 34(5): 47-51. (in Chinese with English abstract)

      [9] 潘香梅,郁繼華,張國斌,等. 脫落酸對堿脅迫下黃瓜幼苗葉片膜脂過氧化及保護酶活性的影響[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報,2010,45(6):75-78. Pan Xiangmei, Yu Jihua, Zhang Guobin, et al. Effects of ABA on membrane lipid peroxidation and protective enzyme activities of cucumber seedlings leaves under alkaline stress[J]. Journal of Gansu Agricultural University, 2010,45(6): 75-78. (in Chinese with English abstract)

      [10] 曲長鳳,楊勁松,姚榮江,等. 不同改良劑對蘇北灘涂鹽堿土壤改良效果研究[J]. 灌溉排水學(xué)報,2012,31(3):21-25. Qu Changfeng, Yang Jingsong, Yao RongJiang, et al. Effects of different soil amendments on coastal saline-alkali soil in North Jiangsu[J]. Journal of Irrigation and Drainage, 2012,31(3): 21-25. (in Chinese with English abstract)

      [11] Suhayda C G, Lijuan Yin, Redmann R E, et al. Gypsum amendment improves native grass establishment on saline-alkali soils in northeast China[J]. Soil Use and Management, 1997, 13(1): 43-47.

      [12] 劉鍵,杜建衛(wèi),張衛(wèi)星. 磷酸脲對膜下滴灌棉花品質(zhì)和產(chǎn)量的影響[J]. 中國土壤與肥料,2006(4):37-39. Liu Jian, Du Jianwei, Zhang Weixing. Effect of ureaphosphate on the quality and yield of cot ton by drip irrigation under plastic film[J]. Soil and Fertilizer Sciences in China, 2006(4): 37-39. (in Chinese with English abstract)

      [13] 王敏. 磷酸脲的用途和發(fā)展前景[J]. 化工生產(chǎn)與技術(shù),2004,11(3):23. Wang Min. the use and prospect of Urea phosphate[J]. Chemical Production and Technology, 2004, 11(3): 23. (in Chinese with English abstract)

      [14] 李合生. 植物生理生化實驗原理與技術(shù)[M]. 北京:高等教育出版社,2001:119-120,260-261.

      [15] 曲繼松,郭文忠,張麗娟,等. 檸條粉作基質(zhì)對西瓜幼苗生長發(fā)育及干物質(zhì)積累的影響[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(8):291-295. Qu Jisong, Guo Wenzhong, Zhang Lijuan, et al. Influence of caragana-straw as nursery substrate on growth and dry matte accumulation of watermelon seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 291-295. (in Chinese with English abstract)

      [16] 劉爽,王宇欣,劉志丹. 生物氫烷工程沼渣用于油菜及菠菜育苗的效果[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(11):225-232. Liu Shuang, Wang Yuxin, Liu Zhidan. Application Effect of biohythane residue onbrassica andspinacia seedling production[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(11): 225-232. (in Chinese with English abstract)

      [17] 楊春武,李長有,尹紅娟,等. 小冰麥(Triticum ɑestivum-Agropyron intermedium)對鹽脅迫和堿脅迫的生理響應(yīng)[J].作物學(xué)報,2007,33(8):1255-1261. Yang Chunwu, Li Changyou, Yin Hongjuan, et al. Physiological response of xiao bing mai (Triticum ɑestivum-Agropyron intermedium) to salt-stress and alkali-stress[J]. Acta Agronomica Sinica, 2007, 33(8): 1255-1261. (in Chinese with English abstract)

      [18] 王宇超,王得祥. 鹽脅迫對木本濱藜葉綠素合成及凈光合速率的影響[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(10):151-158. Wang Yuchao, Wang Dexiang. Effects of salt stress on chlorophyll content and net photosynthetic rate of woody saltbush[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012,28(10): 151-158. (in Chinese with English abstract)

      [19] 李粉茹. 于群英,鄒長明. 設(shè)施菜地土壤pH值、酶活性和氮磷養(yǎng)分含量的變化[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(1):217-222. Li Fenru, Yu Qunying, Zou Changming. Variations of pH value, enzyme activity and nitrogen phosphorus content in protected vegetable soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2009, 25(1): 217-222. (in Chinese with English abstract)

      [20] 吳成龍,周春霖,尹金來,等. 堿脅迫對不同品種菊芋幼苗生物量分配和可溶性滲透物質(zhì)含量的影響[J]. 中國農(nóng)業(yè)科學(xué),2008,41(3):901-909. Wu Chenglong, Zhou Chunlin, Yin Jinlai, et al. Effects of alkaline stress on biomass allocation and the contents of soluble osmoticum in different organs of two Heliɑnthus tuberosus L. Genotypes[J]. Scientia Agricultura Sinica, 2008, 41(3): 901-909. (in Chinese with English abstract)

      [21] 何磊,陸兆華,管博,等. 鹽堿脅迫對兩種高粱種子萌發(fā)及幼苗生長的影響[J]. 西北植物學(xué)報,2012,32(2):362-369. He Lei, Lu Zhaohua, Guan Bo, et al. Seed germination and seedling growth of the two sorghums under saline-alkaline stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2012,32(2): 362-369. (in Chinese with English abstract)

      [22] 曲元剛,趙可夫. NaCl和Na2CO3對玉米生長和生理脅迫效應(yīng)的比較研究[J]. 作物學(xué)報,2004,30(4):334-341. Qu Yuangang, Zhao Kefu. Comparative studies on growth and physiological reaction of Zeɑ mɑys under NaCl and Na2CO3Stresses[J]. Acta Agronomica Sinica, 2004, 30(4): 334-340. (in Chinese with English abstract)

      [23] 梁飛,田長彥. 土壤鹽漬化對尿素與磷酸脲氨揮發(fā)的影響[J].生態(tài)學(xué)報,2011,31(14):3999-4006. Liang Fei, Tian Changyan. Effects of soil salinization on ammonia volatilization characteristics of urea and urea phosphate[J]. Acta Ecologica Sinica, 2011, 31(14): 3999-4006. (in Chinese with English abstract)

      [24] 王金滿,楊培嶺,張建國,等. 脫硫石膏改良堿化土壤過程中的向日葵苗期鹽響應(yīng)研究[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(9):33-37. Wang Jinman, Yang Peiling, Zhang Jianguo, et al. Salinity effect on sunflower at seedling stage during improving sodic soils reclaimed with by-product from flue gas desulphurization (BFGD)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 33-37. (in Chinese with English abstract)

      [25] 薛延豐,劉兆普. 不同濃度NaCl和Na2CO3處理對菊芋幼苗光合及葉綠素?zé)晒獾挠绊慬J]. 植物生態(tài)學(xué)報,2008,32(1):161-167. Xue Yanfeng, Liu Zhaopu. Effect of NaCl and Na2CO3stresses on photosynthesis and parameters of chlorophyll fluorescence in Heloɑnthus Tuberosus seedlings[J]. Journal of Plant Ecology, 2008, 32(1): 161-167. (in Chinese with English abstract)

      [26] Souza J F, Rauser W E. Maize and radish sequester excess cadmium and zinc in different ways[J]. Plant Science, 2003,165(5): 1009-1022.

      [27] 岳自慧,毛桂蓮,許興,等. 脫硫廢棄物對堿脅迫下油葵幼苗抗氧化酶活性和膜脂過氧化作用的影響[J]. 江蘇農(nóng)業(yè)學(xué)報,2010,26(4):716-720. Yue Zihui, Mao Guilian, Xu Xing, et al. Effect of desulphurized waste on antioxidative enzyme activities and lipid peroxidation of oil sun flower seedlings under alkali stress[J]. Jiangsu of AgriculturalSciences, 2010, 26(4): 716-720. (in Chinese with English abstract)

      Decreasing soil pH value to promote spinach growth by application of urea phosphate under alkaline stress

      Zhang Li, Wang Jing, Pang Huancheng※
      (Institute of Agriculturɑl Resources ɑnd Regionɑl Plɑnning, CAAS, Beijing 100081, Chinɑ)

      Abstract:Soil alkalization is one of major environmental problems which adversely affect growth and development of plant and crop yield in agricultural production all over the world. Effective measures should be taken to reduce the impact of alkaline stress on plant growth. Urea phosphate is a new-type compound fertilizer in the drip-irrigation. It can generate acid after hydrolysis, but it is unclear if it can improve soil pH value and plant growth after applying to alkaline soil at present. Therefore, this study was conducted to test the effects of urea phosphate solution on soil pH value, plant growth and physiological characteristics of large-leaf spinach. The alkaline stress was simulated by irrigating 5 mL/d solution which was a mixture of 300 mmol/L NaHCO3solution and 300 mmol/L Na2CO3solution at 1:1 molar ratio for 6 d in a greenhouse. Four treatments were set in a random complete block design in this paper, including CK (Non-alkali stress), AS treatment (adding 5 mL deionized water after alkali-stress), AS+FT treatment (adding 5 ml inorganic fertilizer solution after alkali-stress which was mixed with diammonium phosphate and urea solution and had a concentration equal with urea phosphate solution) and AS+UP treatment (adding 5 ml urea phosphate solution after alkali-stress). The results showed that the soil pH value was significantly increased by 44.19% after alkali-stress, but it were significantly decreased by 2.69 and 0.86 when applying urea phosphate solution and inorganic fertilizer solution to soil 6 days after alkaline stress, and urea phosphate solution had better effect than inorganic fertilizer solution on improving soil pH value. Compared to AS treatment, superoxide dismutase (SOD),peroxidase (POD) and catalase (CAT) activities in AS+UP treatment were significantly increased by 6.42%, 42.08% and 55.13%, respectively, malondiadehyde (MDA) content was significantly reduced by 10.62% and then the extent of membrane lipid was obvious alleviated. Meanwhile, photosynthetic pigment content was greatly improved after applying urea phosphate solution. Chlorophyll a, chlorophyll b and carotenoid concentrations of AS+UP treatment were increased by 22.36%, 32.06% and 10.88%, respectively. Improvement effect on spinach seedlings growth in AS+UP treatment was superior to AS treatment,and plant height, whole leaf area and dry substance of spinach of AS+UP treatment were respectively 23.55%, 21.03% and 33.84% higher than AS treatment. However, the seedling growth in AS+FT treatment was inhibited and physiological characteristics of spinach leaves were decreased. Compared to AS treatment, SOD, POD and CAT activities in AS+FT treatment were reduced by 15.33%, 29.06% and 51.15%, respectively, and its MDA content was higher than that of AS treatment, so chlorophyll a, chlorophyll b and carotenoid contents were decreased by 19.84%, 37.15% and 14.15%,respectively. Moreover, leaf area, dry matter weight and root length were also respectively 26.47%, 26.16% and 1.65% lower than AS+UP treatment. This research indicates that urea phosphate solution has positive effects on improving soil condition and enzyme activity under alkaline stress. Therefore, it can be promoted as a kind of soil amendment to reduce soil pH value in alkaline soil, enhance the ability to adapt to alkali stress and ensure the normal growth and development of crop plants, and it may be a valid method to increase land use efficiency and mitigate the pressure of land demand.

      Keywords:soils; moisture; fertilizers; urea phosphate; alkaline stress; spinach; physiological characteristic

      通信作者:※逄煥成,男,研究員,博士生導(dǎo)師,主要從事鹽堿地改良與耕作制度研究。北京中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,100081。Email:panghuancheng@caas.cn

      作者簡介:張莉,女,河南信陽人,博士生,主要從事土壤耕作與培肥的研究。北京中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,100081。

      基金項目:公益性行業(yè)(農(nóng)業(yè))科研專項項目(201303130)。

      收稿日期:2015-08-31

      修訂日期:2015-12-01

      中圖分類號:S15

      文獻標(biāo)志碼:A

      文章編號:1002-6819(2016)-02-0148-07

      doi:10.11975/j.issn.1002-6819.2016.02.022

      猜你喜歡
      生理特性菠菜含水率
      昆明森林可燃物燃燒機理研究
      菠菜用肥料要謹(jǐn)慎
      基于表面能的濕煤顆粒含水率表征方法
      冬鮮菠菜
      弱膨脹土增濕變形量試驗及路堤填筑分析
      菠菜花生米
      菠菜含鐵
      超聲波處理對羽扇豆種子活力及生理特性的影響
      不同品種番茄幼苗在弱光條件下對亞適溫的適應(yīng)性研究
      原油含水率在線測量技術(shù)研究
      電子制作(2016年1期)2016-11-07 08:42:56
      凤台县| 墨玉县| 泸溪县| 青川县| 常州市| 丰顺县| 尼玛县| 论坛| 聂拉木县| 北川| 尼勒克县| 武清区| 霸州市| 朝阳市| 桦川县| 卢湾区| 莱州市| 仪征市| 二连浩特市| 卢龙县| 日照市| 高雄市| 牟定县| 腾冲县| 安化县| 台前县| 辉南县| 保定市| 井研县| 连江县| 女性| 连州市| 海门市| 拉萨市| 蒙自县| 静安区| 巢湖市| 简阳市| 洪泽县| 桓台县| 长宁县|