• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    灌渠閉閘期閘前段流場(chǎng)特征及泥沙淤積速率分析

    2016-03-21 12:37:47張芳芳張耀哲粟曉玲西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院楊凌712100
    關(guān)鍵詞:泥沙流場(chǎng)

    張芳芳,張耀哲,粟曉玲(西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌712100)

    ?

    灌渠閉閘期閘前段流場(chǎng)特征及泥沙淤積速率分析

    張芳芳,張耀哲※,粟曉玲
    (西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌712100)

    摘要:為研究灌渠閉閘期閘前段流場(chǎng)特征及泥沙淤積速率,基于南亞某河流待建引水明渠建立水流數(shù)學(xué)模型,并借助Flow-3D軟件對(duì)高水位、中水位和低水位3種特征工況下,閉閘期閘前段流場(chǎng)進(jìn)行模擬分析。依據(jù)盲腸水流泥沙運(yùn)動(dòng)的研究思路,提出閉閘期閘前明渠段泥沙淤積速率的估算方法,并結(jié)合同期明渠段懸移質(zhì)泥沙模型試驗(yàn)資料,率定得出閘前段泥沙淤積速率求解公式。結(jié)果表明,閉閘期閘前段出現(xiàn)圍繞豎軸近似呈橢圓型的回流現(xiàn)象,平面流速呈交替增減、水位呈中心低周界高的水力特征;泥沙淤積速率較大,灌渠將呈現(xiàn)累積性淤積特征。最終得出,閉閘期閘前明渠段與港池內(nèi)盲腸水流運(yùn)動(dòng)相類似,閘前渠段淤積嚴(yán)重,引水明渠的口門初步設(shè)計(jì)方案有待充分論證的結(jié)論。

    關(guān)鍵詞:灌渠;流場(chǎng);泥沙;灌溉渠系;閘前段;泥沙淤積

    張芳芳,張耀哲,粟曉玲. 灌渠閉閘期閘前段流場(chǎng)特征及泥沙淤積速率分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):111-118. doi:10.11975/j.issn.1002-6819.2016.02.017http://www.tcsae.org

    Zhang Fangfang, Zhang Yaozhe, Su Xiaoling. Analysis of flow field characteristics and sediment deposition rate in irrigation canal in front of sluice during gate closing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 111-118. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.017 http://www.tcsae.org

    Email:1255771246@qq.com

    Email:zhangyaozhe28@tom.com

    0 引 言

    節(jié)水灌溉模式下,渠灌區(qū)渾水利用技術(shù)是灌溉水力學(xué)的熱點(diǎn)問題之一。隨著灌區(qū)泥沙災(zāi)害問題的日益突出,灌區(qū)渾水的安全輸移及有序調(diào)控需要越來越多的理論和技術(shù)支撐[1]。渠灌區(qū)渾水輸移問題的研究涉及到水流運(yùn)動(dòng)和泥沙運(yùn)動(dòng)兩個(gè)方面,張耀哲等在此方面已經(jīng)進(jìn)行了初步的研究[2-3]。對(duì)于灌區(qū)渠系節(jié)點(diǎn)處水流泥沙的調(diào)控技術(shù),目前尚處于摸索階段。研究渠系節(jié)點(diǎn)處的水流結(jié)構(gòu)特征及其泥沙運(yùn)動(dòng)規(guī)律,并進(jìn)一步開發(fā)相關(guān)的水沙一體調(diào)控技術(shù)對(duì)促進(jìn)灌區(qū)渾水資源的高效利用具有重要意義[4]。

    灌溉渠系主要由引水渠首、干、支、斗、農(nóng)等固定渠道組成,實(shí)際運(yùn)行中多采用干支續(xù)灌、斗農(nóng)渠輪灌的方式灌溉。渠首或分支渠道在非灌水期,閘門前端會(huì)形成口門開敞末端封閉的渠段。此時(shí),閘前渠段水流運(yùn)動(dòng)結(jié)構(gòu)復(fù)雜,主流攜帶的泥沙很容易在此淤積,造成閘前明渠段堵塞,給工程運(yùn)行造成嚴(yán)重影響[5]。閉閘期閘前明渠段屬于典型的盲腸回流,盲腸回流問題的研究始于港航工程中港池及引航道泥沙淤積問題的探討。岳建平[6]劉青泉[7]董耀華[8]等分別對(duì)不同邊界條件下盲腸回流的水流結(jié)構(gòu)和泥沙運(yùn)動(dòng)規(guī)律進(jìn)行過研究。但對(duì)于灌溉渠系中盲腸水流問題,尤其是與之相關(guān)的泥沙淤積問題,目前研究較少。灌溉渠系中節(jié)點(diǎn)部位的盲腸水流與港航工程中盲腸水流的主要區(qū)別在于節(jié)點(diǎn)的銜接方式以及其他相關(guān)的水力幾何條件的不同。

    本文以南亞某河流引水工程明渠口門銜接形式的初步設(shè)計(jì)方案為依據(jù),借助FLOW-3D流體計(jì)算軟件進(jìn)行閉閘期閘前明渠段水流運(yùn)動(dòng)規(guī)律的分析研究。通過量化描述閉閘期閘前明渠段水流要素特征,并結(jié)合現(xiàn)有的回流區(qū)泥沙淤積問題相關(guān)研究成果,構(gòu)建灌溉渠系閉閘期閘前段泥沙淤積速率的分析計(jì)算模型。

    1 閘前明渠段體型概化及計(jì)算模型的建立

    1.1計(jì)算區(qū)域體型概化簡(jiǎn)介

    本文研究對(duì)象為引水明渠以73.1°分流角斜接主河道,河道岸邊局部斷面類似楔形。明渠布置在河道左岸,模擬河寬范圍為85.4 m,河底高程?11.15 m,1.33 m高程線以下坡比1∶3,以上邊坡為1∶5,河道縱坡設(shè)為1/1 000。明渠口門為開敞的喇叭口式斷面,渠道為坡比1∶3的梯形斷面,渠底高程?1.15 m。參照初步設(shè)計(jì)方案,在進(jìn)行流場(chǎng)分析計(jì)算時(shí),依據(jù)閘前明渠段及其與主河道的銜接形式對(duì)計(jì)算區(qū)域進(jìn)行概化,其原型平面布置如圖1所示。為便于同實(shí)體模型試驗(yàn)的淤積結(jié)果進(jìn)行對(duì)比,統(tǒng)一按照40∶1的幾何比尺進(jìn)行建模分析,圖2為計(jì)算區(qū)域的概化模型圖。

    圖1 原型平面布置圖Fig.1 Layout of prototype

    圖2 計(jì)算區(qū)域概化模型圖Fig.2 Generalized model of calculation region

    1.2分析建模及其相關(guān)邊界條件的處理

    本次計(jì)算利用FLOW-3D軟件進(jìn)行流場(chǎng)分布特征的模擬分析。計(jì)算中,湍流模型采用RNG k-ε模型,網(wǎng)格劃分采用3個(gè)網(wǎng)格區(qū)塊的模式。為避免在流場(chǎng)紊亂的汊口區(qū)域建立網(wǎng)格塊,區(qū)塊分界線分別定在口門上下游的適當(dāng)距離處;各區(qū)塊網(wǎng)格統(tǒng)一設(shè)置為,節(jié)點(diǎn)平面間距4 cm,垂向間距3 cm;河道出口為自由出流時(shí),模擬結(jié)果易出現(xiàn)顯著的水位跌落,本文采用延長(zhǎng)下游河道的方式,以保證口門附近區(qū)域水位不受影響。最終的網(wǎng)格數(shù)量為126萬左右,口門近區(qū)及閘前渠段網(wǎng)格區(qū)塊劃分結(jié)果如圖3所示。進(jìn)口控制來流量,側(cè)壁和底部均為固壁邊界,出口為控制水位下的自由出流,其他均為對(duì)稱邊界。

    圖3 口門近區(qū)網(wǎng)格劃分Fig.3 Mesh generation at lock approach

    1.3計(jì)算工況說明

    本次計(jì)算分別模擬了高水位(4.58 m)、中水位(2.26 m)、低水位(0.57 m)3種工況,水位流量關(guān)系如表1所示。

    表1 不同工況水位流量關(guān)系Table 1 Stage-discharge relation under different conditions

    2 閉閘期閘前段流場(chǎng)特征分析

    2.1閘前回流運(yùn)動(dòng)的現(xiàn)象描述與機(jī)理分析

    引水明渠以73.1°分流角與主河道斜交,模擬結(jié)果顯示,河道主流流經(jīng)引水明渠口門時(shí),各工況均出現(xiàn)較為明顯的水流分離現(xiàn)象。分界線以外的主河道區(qū)域水流沿河道主流方向一維流動(dòng)特征明顯;交界面以內(nèi)的明渠口門區(qū)域,水流結(jié)構(gòu)復(fù)雜流態(tài)較為紊亂,表層水流能觀測(cè)到較為明顯的平面回流,流速分布沿水深變化規(guī)律復(fù)雜,閘前明渠段三維特征明顯。

    進(jìn)一步分析認(rèn)為,喇叭口式的明渠銜接形式使得主河道過流斷面驟然突增,據(jù)伯努利方程,水流沿程將出現(xiàn)逆壓梯度來阻滯主流,而由于流體黏性,在河道邊界層內(nèi)的水流質(zhì)點(diǎn),會(huì)受到更加明顯的影響,以至于減速甚至倒流。此類流體質(zhì)點(diǎn)不斷累積,回流范圍向口門內(nèi)側(cè)擴(kuò)展的同時(shí)主流被逐漸推離邊界,河道主流脫離邊界,形成主河道與閘前明渠段的主、副分區(qū)流動(dòng)[9]。由于明渠閘門的關(guān)閉,副流整體速度將遠(yuǎn)小于主流,即在口門附近產(chǎn)生很大的流速梯度,主副流間產(chǎn)生強(qiáng)烈的交換混摻,包括水體與的動(dòng)量的交換。圖4所示,A、C和B、D分別為回流橫軸、縱軸上質(zhì)點(diǎn),回流沿下壁向渠道內(nèi)部運(yùn)動(dòng)過程中,受阻力及內(nèi)部水流的頂托作用,回流在運(yùn)動(dòng)Lr距離后,必有等量的補(bǔ)償水流沿上壁流向口門,形成一種近似封閉的環(huán)形旋轉(zhuǎn)運(yùn)動(dòng),達(dá)到動(dòng)態(tài)平衡,使得回流形態(tài)保持穩(wěn)定[5]。

    圖4 回流平面形態(tài)示意圖Fig.4 Reflow plane configuration

    2.2模擬計(jì)算結(jié)果分析

    2.2.1回流平面流場(chǎng)與水面形態(tài)

    明渠閘前段流場(chǎng)結(jié)構(gòu)復(fù)雜,次生副流發(fā)育強(qiáng)烈,尤其以平面回流為主。以下各工況的流場(chǎng)特征分析從平面二維角度展開,圖5所示為高水位工況的流場(chǎng)矢量圖。

    3個(gè)工況的模擬分析計(jì)算表明,主副流分界面以內(nèi)的明渠區(qū)域,沿渠道邊壁均能形成近乎橢圓形的回流,且靠近回流中心,流線形狀愈接近于圓。沿回流軸線越靠近回流中心,質(zhì)點(diǎn)流速越??;環(huán)繞回流中心的流線上,流速呈交替增減的變化規(guī)律。另外,回流中心的位置并不是固定不變的,而是處于不斷移動(dòng)變化中。圖5中不同時(shí)刻的流場(chǎng)分布對(duì)比發(fā)現(xiàn),T2時(shí)刻回流中心更接近渠道幾何中心位置。回流區(qū)整體流速遠(yuǎn)小于河道主流速,圖中表現(xiàn)為交互摻混區(qū)流速梯度較大。

    圖5 高水位工況下回流流速矢量場(chǎng)Fig.5 Velocity vector of reflow at condition of high water level

    模擬分析發(fā)現(xiàn),閘前段回流的另一顯著特征是外高內(nèi)低的水面形態(tài)。圖6所示為高水位工況下的水位等值線,x、y仍為Flow-3D系統(tǒng)坐標(biāo),命名方式同圖5中圖注所示。由回流中心向外,水面逐漸升高,且下壁區(qū)平均水位較上壁區(qū)為高,但回流中心與周界水位高差整體幅度并不十分顯著。圖6的分析結(jié)果表明,閘前段的回流流態(tài)特征與一般盲腸回流的規(guī)律基本一致。劉青泉[5]的分析認(rèn)為,水流做環(huán)狀運(yùn)動(dòng)時(shí),產(chǎn)生背離回流中心的離心力,水流為平衡此力自動(dòng)調(diào)整水位,結(jié)果是降低中心水位,提升周界水位,產(chǎn)生徑向比降,使其在重力和離心力二者共同作用下保持平衡。

    2.2.2流速垂向分布與回流強(qiáng)度

    明渠閘前段回流區(qū)是典型的三維復(fù)雜流動(dòng),文獻(xiàn)[8]指出回流區(qū)水流可近似看作平面豎軸環(huán)流和以環(huán)流流線為軸的徑向環(huán)流二者的疊加。事實(shí)上,垂向流速瞬態(tài)多變,且分量值較小,故本章重點(diǎn)分析平面流速沿水深的分布特征。如圖4所示,A、B、C分別為某一回流半徑的環(huán)形流線圖上3頂點(diǎn),將其作為特征點(diǎn)來分析相應(yīng)處的流速垂向分布特征。圖7分別為工況1、工況2下不同回流半徑Ρ的環(huán)形流線圖上3個(gè)特征點(diǎn)的平面流速沿水深分布情況。

    圖6 回流區(qū)水位等值線圖Fig.6 Isoline of water level in reflow zone

    圖7 回流特征點(diǎn)垂向流速分布Fig.7 Vertical distribution of flow rate of feature points

    常規(guī)情況下,明渠水流流速沿垂線均符合對(duì)數(shù)或指數(shù)形式分布[10]。但對(duì)于閉閘期閘前明渠段,分析結(jié)果顯示,只有工況一下,回流半徑Ρ=20 cm時(shí)A點(diǎn)流速近似符合沿水深指數(shù)增長(zhǎng)的形式,而其它各點(diǎn)流速水深方向相對(duì)均勻,甚至出現(xiàn)底流速大于水面流速的現(xiàn)象。這一結(jié)果說明,閘前明渠段流速分布特征也與一般的盲腸回流所呈現(xiàn)的規(guī)律基本一致。劉青泉的分析認(rèn)為回流區(qū)流速上下分布相對(duì)均勻的這一特點(diǎn),緣于徑向環(huán)流,表流流向回流周界,底流流向回流中心,根據(jù)水流連續(xù)性,必然在回流周界出現(xiàn)自上而下的下潛運(yùn)動(dòng),在回流中心出現(xiàn)自下向上的上升運(yùn)動(dòng),如此環(huán)流促使上下層水流不斷進(jìn)行動(dòng)量交換,流速趨于均勻。

    為了進(jìn)一步量化描述閉閘期閘前明渠段的盲腸回流運(yùn)動(dòng)現(xiàn)象,取回流橫軸上平均流速Ur表征回流強(qiáng)度。提取各工況下回流強(qiáng)度及相應(yīng)的水力參數(shù),結(jié)果如表2所示。

    表2 特征工況的水力參數(shù)統(tǒng)計(jì)Table 2 Hydraulic parameters at characteristic conditions

    根據(jù)表2的統(tǒng)計(jì)結(jié)果,不考慮水深、回流寬度影響,當(dāng)主流流速增大時(shí),回流區(qū)速度增大,回流強(qiáng)度增加。這一點(diǎn)也表明閘前明渠段回流強(qiáng)度與一般的盲腸回流有完全相似的變化規(guī)律。分析認(rèn)為:主流流速增大時(shí),摻混區(qū)的紊動(dòng)切應(yīng)力增加,促使回流區(qū)速度同步增大。前述對(duì)明渠閘前段相關(guān)水流特征的分析說明,現(xiàn)有盲腸水流的研究成果可用于閘前明渠段水流泥沙問題的分析研究[11-12]。

    3 閉閘期閘前段泥沙淤積速率的分析計(jì)算

    3.1閉閘期閘前段泥沙淤積速率估算方法

    閘前段回流區(qū)的水流形態(tài)十分復(fù)雜,主副流區(qū)主要通過摻混區(qū)進(jìn)行動(dòng)量、能量和物質(zhì)的交換,可近似地認(rèn)為回流區(qū)淤積的泥沙全部來源于摻混區(qū)的擴(kuò)散,同時(shí)將閘前段回流區(qū)作平面二維的簡(jiǎn)化處理。根據(jù)Fick定律,單位時(shí)間通過單位面積的主副流交界面泥沙擴(kuò)散量為

    式中y為回流縱軸方向;εsy為y方向上的泥沙擴(kuò)散系數(shù);為y方向上的含沙量梯度,kg/m2。

    相應(yīng)地,單位時(shí)間內(nèi)通過的泥沙量為

    式中H為水深,m;Br為回流橫軸寬度,m。閘前段口門為開闊的喇叭口形式,沿縱軸線與梯形斷面的明渠光滑銜接,斷面面積漸縮,近似以回流橫軸寬度Br表征回流區(qū)平均寬度,亦為交界面寬度,以便于積分計(jì)算。

    假設(shè)在主副流交界面上有

    式中Um為主流流速,m/s;Sm為主流區(qū)的含沙量,kg/m3;Sr*是回流區(qū)的飽和挾沙力,kg/m3;η、μ均未待定系數(shù)。聯(lián)立(1)、(2)、(3)、(4)式得

    式中α=η·μ為綜合系數(shù)。劉青泉[13]的分析研究中給出的系數(shù)α是定值0.0235。我們認(rèn)為工程實(shí)際中盲腸回流問題各種各樣,但其主要區(qū)別應(yīng)在于口門附近的水力幾何條件的不同以及交界面泥沙擴(kuò)散強(qiáng)度的不同,系數(shù)α則正是反映口門處水力幾何條件和泥沙紊動(dòng)擴(kuò)散強(qiáng)度的的綜合參數(shù)[14-15]。

    3.2閘前段泥沙淤積速率估算公式的分析與討論

    式(5)中,劉青泉對(duì)回流挾沙力的確定采用的是張瑞瑾公式

    該挾沙力公式作為經(jīng)典是河流動(dòng)力學(xué)中所普遍采用的[16-17],但是合理確定K、m值有較大的難度。分析比選后我們建議,對(duì)于閘前明渠段回流挾沙力的計(jì)算采用扎馬林渠道挾沙力公式[18]

    式中Ur為回流強(qiáng)度,取回流橫軸上的平均流速,m/s;R為回流區(qū)水力半徑,以回流區(qū)平均水深H表征,m;J為回流區(qū)縱向水面比降;ω為泥沙沉速,cm/s。

    如前所述,綜合系數(shù)α是反映口門處水力幾何條件的參數(shù),為了驗(yàn)證綜合系數(shù)α的敏感性,我們根據(jù)同期進(jìn)行的閘前段明渠懸移質(zhì)泥沙淤積資料進(jìn)行了α的率定,結(jié)果如表3所示。

    表3的分析結(jié)果表明,4四組渾水試驗(yàn)的系數(shù)α比較接近,其平均值為0.02331,與文獻(xiàn)[11]所給定的值0.0235相差不大。因此,作者認(rèn)為對(duì)于本次計(jì)算所針對(duì)的明渠口門水力幾何條件,系數(shù)可以采用0.0235。進(jìn)一步分析認(rèn)為,本次計(jì)算所面對(duì)的工程問題對(duì)象系引水渠首閘前明渠段,與文獻(xiàn)[11]所模擬的水力幾何條件有某種程度的相似性,因此綜合系數(shù)α近似相同是合理的,但是對(duì)于灌溉渠系干、支、斗、農(nóng)渠各節(jié)點(diǎn)處,該系數(shù)是否穩(wěn)定或者有某種變化規(guī)律,仍需要進(jìn)一步的研究。

    3.3某工程閘前明渠段回流淤積速率計(jì)算

    本文前述閘前明渠段水流流場(chǎng)模擬計(jì)算是以南亞某待建引水明渠為背景開展工作,基于上述分析結(jié)論,我們對(duì)流場(chǎng)模擬計(jì)算所對(duì)應(yīng)的3種運(yùn)行工況,其閘前泥沙淤積的速率進(jìn)行了分析估算,結(jié)果如表4所示。

    表3 閘前明渠段懸移質(zhì)泥沙淤積速率綜合系數(shù)率定結(jié)果Table 3 Calibration for coefficient of suspended load accretion rate of canal before sluice

    表4 某工程特征運(yùn)行工況時(shí)閘前回流區(qū)泥沙淤積率計(jì)算Table 4 Accretion rate calculation of reflowing zone before sluice of project at characteristic conditions

    由以上淤積計(jì)算結(jié)果可知,閉閘期閘前段回流區(qū)淤積速率較大,隨著時(shí)間推移,閘前明渠段淤積泥沙將不斷累積,勢(shì)必引起渠道堵塞,給正常的引水工作造成困難,現(xiàn)有口門設(shè)計(jì)方案需進(jìn)一步優(yōu)化論證[19-20]。

    灌溉渠系中干、支、斗、農(nóng)渠各節(jié)點(diǎn)的水力幾何條件變化較多[21],作為綜合反映其水力幾何條件和泥沙紊動(dòng)擴(kuò)散強(qiáng)度的綜合系數(shù)α,仍需進(jìn)一步展開系統(tǒng)完整的研究,本文僅結(jié)合具體工程實(shí)例進(jìn)行了分析,相關(guān)結(jié)論供類似工程設(shè)計(jì)參考[22]。

    4 結(jié) 論

    1)采用Flow-3D軟件,對(duì)引水明渠閉閘期間3個(gè)特征工況下閘前段的水流流場(chǎng)進(jìn)行了量化分析。結(jié)果表明:閉閘期閘前明渠段會(huì)產(chǎn)生圍繞豎軸近似橢圓型的環(huán)流,流速呈交替增減,水位呈中心低四周高的形態(tài);由于螺旋環(huán)流,回流區(qū)各點(diǎn)垂向流速方向不一,但大小相對(duì)均勻,其垂向的流速分布有別于普通明渠流的垂向?qū)?shù)或指數(shù)分布。

    2)通過水流流場(chǎng)的量化分析,認(rèn)為閉閘期閘前段具有盲腸水流運(yùn)動(dòng)的相同特征,據(jù)此提出了閉閘期閘前段泥沙淤積速率的估算方法。根據(jù)同期進(jìn)行的明渠段懸移質(zhì)泥沙模型試驗(yàn)資料,對(duì)淤積速率計(jì)算方法中的綜合系數(shù)進(jìn)行了率定,為該工程其他工況淤積速率的分析計(jì)算提供了依據(jù)。

    [參考文獻(xiàn)]

    [1] 劉煥芳,宗全利,劉貞姬,等. 灌區(qū)高含沙輸水渠道淤積成因分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(4):35-40. Liu Huanfang, Zong Quanli, Liu Zhenji, et al. Analysis of the cause for sediment deposition of high-silt conveyance channel in irrigation areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 35-40. (in Chinese with English abstract)

    [2] 張耀哲,王亞林,王文娥. 含沙量對(duì)U型渠道水流流速橫向分布律的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(12):134-139. Zhang Yaozhe, Wang Yalin, Wang Wen’e. Effects of sediment concentration on lateral distribution of water velocity in U-channel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 28(12): 134-139. (in Chinese with English abstract)

    [3] 張小帥,張耀哲,黨永仁. 涇惠渠灌區(qū)渾水泥沙輸移特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增1):180-187. Zhang Xiaoshuai, Zhang Yaozhe, Dang Yongren. Sediment transport characteristics in cannal irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Suppl. 1): 180-187. (in Chinese with English abstract)

    [4] 盧紅偉,王延貴,史紅玲. 引黃灌區(qū)水沙資源配置技術(shù)的研究[J]. 水利學(xué)報(bào),2012,43(12):1405-1412. Lu Hongwei, Wang Yangui, Shi Hongling. Study on main techniques of water and sediment resources allocation in irrigation system of the Lower Yellow River[J]. Journal of Hydraulic Engineering, 2012, 43(12): 1405-1412. (in Chinese with English abstract)

    [5] 劉青泉. 盲腸回流的水流運(yùn)動(dòng)特性[J]. 水動(dòng)力學(xué)研究與進(jìn)展,1995,10(3):290-301. Liu Qingquan. The characteristics of water movement in cecum circulating flow[J]. Journal of Hydrodynamics. 1995,10(3): 290-301. (in Chinese with English abstract)

    [6] 岳建平. 港渠口門回流淤積概化模型試驗(yàn)和研究[J]. 泥沙研究,1986,(2):41-50. Yue Jianping. Experimental study on the sediment deposition caused by rotating flow in the closed channel[J]. Journal of Sediment Research, 1986, (2): 41-50. (in Chinese with English abstract)

    [7] 劉青泉. 港渠口門回流的泥沙淤積特性[J]. 水科學(xué)進(jìn)展,1995,6(3):231-236. Liu Qingquan. Properties of sediment deposition caused by circulating flow in the cecum branch[J]. Advances in Water Science, 1995, 6(3): 231-236. (in Chinese with English abstract)

    [8] 董耀華. 空腔回流區(qū)水沙特性的計(jì)算分析[J]. 泥沙研究,1994,(2):34-39. Dong Yaohua. Calculation and analysis on flow and sediment transport in cavity recirculation[J]. Journal of Sediment Research, 1994, (2): 34-39. (in Chinese with English abstract)

    [9] 劉立平. 盲腸回流泥沙運(yùn)動(dòng)機(jī)理初析[J]. 華中理工大學(xué)學(xué)報(bào),1991,19(3):21-28. Liu Liping. On the Mechanism of Water-Sediment Motion in cecum-form rivers[J]. Journal of Huazhong University of Science and Technology, 1991, 19(3): 21-28. (in Chinese with English abstract)

    [10] 胡春宏,惠遇甲. 明渠挾沙水流運(yùn)動(dòng)的力學(xué)和統(tǒng)計(jì)規(guī)律[M].北京:科學(xué)出版社,1995.

    [11] 葉海桃. 船閘引航道口門區(qū)流態(tài)的模型研究[D]. 南京:河海大學(xué),2007. Ye Haitao. Model Research of Flow Pattern at Lock Approach[D]. Nanjing: HoHai University, 2007. (in Chinese with English abstract)

    [12] 謝葆玲,明宗富,黃金堂,等. 回流附近的水流結(jié)構(gòu)及回流淤積的試驗(yàn)研究[J]. 泥沙研究,1989,(3):10-20. Xie Baoling, Ming Zongufu, Huang Jingtang, et al. Experimental study on flow structure and deposits of circulating flow[J]. Journal of Sediment Research. 1989, (3): 10-20. (in Chinese with English abstract)

    [13] 劉青泉. 回流飽和挾沙力[J]. 水利學(xué)報(bào),1996,(6):39-47. Liu Qingquan. Sediment carrying capacity of circulating flow[J]. Journal of Hydraulic Engineering, 1996, (6): 39-47. (in Chinese with English abstract)

    [14] 譚亞,鄭軍田,謝永玉. 引航道出口形態(tài)對(duì)泥沙淤積影響的數(shù)學(xué)模型研究[J]. 河海大學(xué)學(xué)報(bào):自然科學(xué)版,2003,31(4):453-456. Tan Ya, Zheng Juntian, Xie Yongyu. Numerical model for effects of outlet shapes of approach channels on sediment deposition[J]. Journal of Hohai University: Natural Sciences,2003, 31(4): 453-456. (in Chinese with English abstract)

    [15] 胡興娥,李云中,李明超. 三峽水庫(kù)135 m運(yùn)行階段永久船閘下引航道泥沙淤積分析[J]. 水科學(xué)進(jìn)展,2008,19(1):1-7. Hu Xing’e, Li Yunzhong, Li Mingchao. Sediment deposition analysis of downstream access channel of permanent ship lock during 135m operational phase of Three Gorges reservoir[J]. Advances in Water Science, 2008, 19(1): 1-7. (in Chinese with English abstract)

    [16] 王士強(qiáng),陳驥,惠遇甲. 明槽水流的非均勻沙挾沙力研究[J].水利學(xué)報(bào),1998,(1):1-9. Wang Shiqiang, Chen Ji, Hui Yujia. Study on graded sediment transport rate in stream[J]. Journal of Hydraulic Engineering, 1998, (1): 1-9. (in Chinese with English abstract)

    [17] 錢寧,萬兆惠. 泥沙運(yùn)動(dòng)力學(xué)[M]. 北京:科學(xué)出版社,1983.

    [18] 武漢水利電力學(xué)院河流泥沙工程學(xué)教研室.河流泥沙工程學(xué)(上冊(cè))[M]. 北京:水利電力出版社,1982:146-149.

    [19] 王興奎,Asim M,王 龍,等. 明渠淺水回流區(qū)泥沙淤積的試驗(yàn)研究[J]. 水力發(fā)電學(xué)報(bào),2009,28(4):149-153. Wang Xingkui, Asim M, Wang Long, et al. Experimental study on sediment deposition in circulation zone of shallow water flows[J]. Journal of Hydroelectric Engineering. 2009,28(4): 149-153. (in Chinese with English abstract)

    [20] 韓時(shí)琳,沈小雄,賀暉. 內(nèi)河挖入式港池軸線布置對(duì)回流泥沙淤積的影響[J]. 水運(yùn)工程,2004,(7):32-34. Han Shilin, Shen Xiaoxiong, He Hui. Influence of layout of inland river excavated harbor basin’s axis on sediment accumulation[J]. Port & Waterway Engineering, 2004, (7): 32-34. (in Chinese with English abstract)

    [21] 黃永健,毛繼新. 黃河下游灌渠水流泥沙數(shù)學(xué)模型[J]. 泥沙研究,1997,(3):41-47. Huang Yongjian, Mao Jixin. A mathematical model of flow and sediment transport in irrigation canals of the Lower Yellow River[J]. Journal of Sediment Research, 1997, (3): 41-47. (in Chinese with English abstract)

    [22] 趙崇濤. 潘莊引黃灌區(qū)水沙分析及泥沙處理[J]. 人民黃河,1992,(1):7-11. Zhao Chongtao. Analysis of` flow and sediment in canals of Panzhuang Irrigated Area and treatment of sediment[J]. Yellow River, 1992, (1):7-11. (in Chinese with English abstract)

    Analysis of flow field characteristics and sediment deposition rate in irrigation canal in front of sluice during gate closing

    Zhang Fangfang, Zhang Yaozhe※, Su Xiaoling
    (College of Wɑter Resources ɑnd Architecturɑl Engineering, Northwest A&F University, Yɑngling 712100, Chinɑ)

    Abstract:To analyze flow field characteristics and sediment deposition rate of irrigation canal in front of sluice during the gate closing, a generalized numerical model was set up according to the preliminary design scheme of the scheduling diversion channel on a river in South Asia. By the software Flow-3D, simulation analysis of the flow field characteristics of canal in front of sluice was carried out under 3 characteristic conditions (high, medium and low water level) during the gate closing. In addition, the intensity of circulating under characteristic conditions was extracted, which was denoted by average velocity of water particle on the lateral axis of recirculation. Referring to the movements of water and sediment in closed channel, an estimation method of accretion rate of canal in front of sluice was proposed, and corresponding formula was derived, in which the coefficient α comprehensively reflected geometric hydraulic conditions and turbulent diffusion intensity of sediment at entrance. Based on the data of contemporaneous suspended sediment model, the average value of the coefficient α was 0.02331. We adopted 0.0235 for the coefficient after calibration and calculated the sediment deposition rate in canal in front of sluice under 3 characteristic conditions. Hence, approximate elliptic circulation appeared around vertical axis in the canal in front of sluice during the gate closing, and planar flow velocity showed fluctuation. Water level elevation was low in center and high all around. Planar flow velocity of inferior wall was larger than that of superior wall. Water level elevation of the former was higher than that of the latter. In fact, water in recirculation zone exhibited three-dimensional and transient property. By the Flow-3D, radial circulation around the streamline of planar circulation was obvious, which promoted mass, momentum and energy exchange to become uniform between the upper and lower flow constantly. Therefore, vertical flow velocity in recirculation zone was in different directions but relatively uniform in value, which differed from logarithmic or exponential vertical distribution of flow velocity in common open channel. On the whole, planar circulation occupied the main position,and the radial circulation was secondary in the canal in front of sluice. Intensity of planar circulation increased obviously with the main flow velocity increasing, owing to the increasing of turbulent shear stress. The flow field of canal in front of sluice was similar to that of closed channel in cecum branch during the gate closing. Results on cecum circulating flow can be used in canal in front of sluice. The sediment deposition rate of the canal in front of sluice is large, so the irrigation canal will present the trend of cumulative deposition, which certainly will bring serious influences on the operation and management of irrigation canal system. The trumpet-shaped cross section of the entrance is extremely unreasonable. Preliminary design scheme of the entrance in water diversion canal needs sufficient demonstration. However, the calculation of sediment deposition rate in the canal in front of sluice provides evidence for siltation analysis of the project under other conditions. Geometric and hydraulic conditions at entrance are various in main, branch or lateral canal. Influencing factors on the coefficient α in calculation formula of sediment deposition rate are numerous. The results in this paper can offer the reference for analogous engineering design.

    Keywords:canals; flow fields; sediment; irrigation canal; canal before sluice; sediment deposition

    通信作者:※張耀哲,男,陜西鳳翔人,副教授,主要從事河流動(dòng)力學(xué)和工程泥沙研究。楊凌西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。

    作者簡(jiǎn)介:張芳芳,女,河南三門峽人,研究方向?yàn)樗W(xué)及河流動(dòng)力學(xué)。楊凌西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,712100。

    基金項(xiàng)目:水利部公益性行業(yè)專項(xiàng)經(jīng)費(fèi)項(xiàng)目(201301016-01)

    收稿日期:2015-07-24

    修訂日期:2015-11-01

    中圖分類號(hào):S152.7

    文獻(xiàn)標(biāo)志碼:A

    文章編號(hào):1002-6819(2016)-02-0111-08

    doi:10.11975/j.issn.1002-6819.2016.02.017

    猜你喜歡
    泥沙流場(chǎng)
    泥沙做的父親
    大型空冷汽輪發(fā)電機(jī)轉(zhuǎn)子三維流場(chǎng)計(jì)算
    新疆多泥沙河流水庫(kù)泥沙處理措施
    土壤團(tuán)聚體對(duì)泥沙沉降速度的影響
    轉(zhuǎn)杯紡排雜區(qū)流場(chǎng)與排雜性能
    基于HYCOM的斯里蘭卡南部海域溫、鹽、流場(chǎng)統(tǒng)計(jì)分析
    基于Delft3D模型的挾沙水流泥沙輸運(yùn)特征分析
    基于瞬態(tài)流場(chǎng)計(jì)算的滑動(dòng)軸承靜平衡位置求解
    河口泥沙數(shù)學(xué)模型的若干問題
    泥沙滅火
    兒童繪本(2015年2期)2015-05-25 18:10:15
    乌鲁木齐县| 云安县| 德令哈市| 宁津县| 弥渡县| 固原市| 寻甸| 吴忠市| 彩票| 罗山县| 新民市| 博罗县| 盐山县| 新安县| 浦江县| 孝昌县| 萨迦县| 赣榆县| 越西县| 尼木县| 正蓝旗| 巴林右旗| 皮山县| 宁津县| 阳谷县| 阿坝| 酒泉市| 霞浦县| 阿拉善盟| 宜都市| 灵川县| 肇庆市| 平南县| 城口县| 鹤峰县| 巴彦县| 平原县| 秦安县| 右玉县| 海门市| 长岭县|