張建偉,江 琦,朱良歡,王 濤,郭 佳(華北水利水電大學水利學院,鄭州 450011)
?
基于改進HHT的泵站管道工作模態(tài)辨識
張建偉,江琦,朱良歡,王濤,郭佳
(華北水利水電大學水利學院,鄭州 450011)
摘要:為提高管道工作模態(tài)辨識精度,在希爾伯特-黃變換(Hilbert-Huang Transform,HHT)辨識基礎上,發(fā)展奇異值分解(singular value decomposition,SVD)和經驗模態(tài)分解(empirical mode decomposition,EMD)聯合濾波技術與HHT時頻域辨識結合的模態(tài)辨識方法。SVD-EMD聯合濾除結構振動信號中的強噪聲,凸顯結構振動特性,有效避免了后期HHT參數辨識過程中虛假模態(tài)干擾,提高辨識精度和準確性。將該方法應用于景泰二期工程3泵站2管道的模態(tài)參數辨識問題中,建立該管道有限元模型并計算其結構動力特性。對比該文方法辨識結果、隨機子空間辨識結果與有限元計算結果,該文方法辨識結果稍小于隨機子空間辨識結果,與有限元計算結果更接近,其最大辨識誤差為3.6%。研究表明,該方法能準確辨識管道頻率,且有效降低管道結構背景強噪聲。該研究可為管道安全運行和在線健康監(jiān)測提供參考。
關鍵詞:振動;有限元法;信號分析;泵站管道;供水;模態(tài)參數辨識
張建偉,江琦,朱良歡,王濤,郭佳. 基于改進HHT的泵站管道工作模態(tài)辨識[J]. 農業(yè)工程學報,2016,32(2):71-76.doi:10.11975/j.issn.1002-6819.2016.02.011http://www.tcsae.org
Zhang Jianwei, Jiang Qi, Zhu Lianghuan, Wang Tao, Guo Jia. Modal parameter identification for pipeline of pumping station based on improved Hilbert-Huang transform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 71-76. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.02.011 http://www.tcsae.org
Email:zjwcivil@126.com
壓力管道在水利、農業(yè)、工業(yè)等領域的輸水輸氣中廣泛應用,特點是規(guī)模大、運行時間長,因此管道安全穩(wěn)定運行尤為重要。振動對于管道是交變動荷載,長期的振動會引起管道和支吊架材料的疲勞破壞,影響與管道相連設備的安全運行[1-3]。尤其在結構應力集中處,疲勞破壞引發(fā)管線斷裂、水流外泄,造成嚴重的生產事故。
美國OakRidge國家實驗室開發(fā)的電磁超聲應力腐蝕裂紋檢測系統(tǒng)成功應用在天然氣長輸管道中[4];Questar公司推出ITI視頻內窺鏡檢測管道損傷情況,之后又推出無損檢測方法辨識管道結構損傷狀況[5-6],無損檢測多采用超聲導波技術、磁場探測技術及X射線探傷等方法。上述方法及檢測儀器雖然先進,但檢測對象有局限性,價格昂貴,專用性強[7],且不能實現實時在線健康監(jiān)測。隨著神經網絡、小波等現代信息處理技術發(fā)展[8-10],潘虹等[11]提出利用小波包處理管道振動信號得到結構動力特性,進而判別損傷程度,但小波包分析局限于高頻信號辨識,導致辨識結果不完整。泵站輸水管道主要受水力激振和外界環(huán)境激勵影響,振動信號屬于非線性非平穩(wěn)低信噪比信號,結構振動特性淹沒在低頻水流脈動噪聲中,故尋找高效的現代化管道安全健康檢測方法成為研究熱點[12]。
基于環(huán)境激勵下模態(tài)參數辨識方法是近幾年快速發(fā)展的結構健康損傷辨識方法,該方法辨識結果能真實反映結構正常運行狀態(tài)下動力特性,且辨識精度高,在諸多領域廣泛應用[13-18]。Huang N E[19]提出的希爾伯特-黃變換(Hilbert-Huang Transform,HHT)適用于非線性非平穩(wěn)信號,具有自適應性、且不需要“先驗”知識等優(yōu)點而廣受矚目。國內諸多學者提出利用HHT辨識不同領域結構模態(tài)參數。薛延剛等[20]將HHT方法引入到水輪發(fā)電機組空化信號特征提取中,提取出具有明確物理意義的水輪機空化模式分量信號;單德山等[21]采用改進的HHT方法有效地識別橋梁結構的頻率、阻尼等模態(tài)參數;李成業(yè)等[22]采用HHT方法辨識高拱壩泄流結構模態(tài)參數。
因此,為提高管道模態(tài)參數辨識準確性和精度,結合奇異值分解(singular value decomposition,SVD)和經驗模態(tài)分解(empirical mode decomposition,EMD)聯合濾波技術(簡寫為SVD-EMD)的優(yōu)越性,提出基于改進HHT的泵站管道工作模態(tài)辨識方法,以期為管道安全運行和在線健康監(jiān)測提供參考。
奇異值分解是利用矩陣奇異值分解理論處理信號的數據驅動方法。其降噪本質在于信號相空間重構矩陣后,經奇異值分解得到的矩陣奇異值是唯一的,同時奇異值具有穩(wěn)定性、比例不變形等性質,使得奇異值作為一種有效描述信號內在屬性的代數特征應用于信號處理中。SVD具有很強的濾除高頻隨機白噪聲的能力,但其實質屬于低通濾波[23],無法濾除低頻水流噪聲,因此,需要對SVD降噪后信號進一步進行低頻水流噪聲處理。EMD根據信號自身特性自適應分解成一系列從高頻到低頻的固態(tài)模量(intrinsic mode function,IMF),每一階IMF都能反映一定的物理意義,可通過分析每一階固態(tài)模量頻譜特性進行信號降噪重構。
結合SVD和EMD的降噪特點,針對含高頻白噪聲和低頻水流噪聲的低信噪比信號進行SVD-EMD聯合的濾波降噪。首先,利用SVD濾除高頻白噪聲,其次,對SVD降噪后信號再進行EMD處理,濾除低頻水流噪聲,最后,得到反映結構振動特性的信號。SVD-EMD聯合濾波降噪流程圖如圖1所示。
圖1 SVD-EMD聯合濾波方法流程圖Fig.1 Flow chart of combined singular value decomposition and empirical mode decomposition filtering method
2.1自然激勵技術
實際工程應用中脈沖響應獲取十分困難,因此,利用系統(tǒng)脈沖響應函數進行結構模態(tài)辨識受到限制。美國SADIA國家實驗室提出環(huán)境激勵下的自然激勵技術(natural excitation technique,NExT),該方法利用白噪聲環(huán)境激勵下結構兩點間互相關或自相關函數代替脈沖響應函數進行模態(tài)參數辨識[24]。
2.2基于奇異熵增量的結構工作模態(tài)定階
利用輸出響應識別結構模態(tài)參數,結構的模態(tài)階次是一個重要的參數。由于結構系統(tǒng)未知,通常在模態(tài)辨識中會假定系統(tǒng)階次,這種人為主觀假設必定導致結果不準確,無法真實反映結構運行健康狀況。為解決這一難題,采用奇異熵增量概念對系統(tǒng)定階。
奇異熵增量理論定階思想是[25]:對于同一脈沖響應信號,無論其受到的噪聲干擾程度如何,完整提取其有效特征信息所需的奇異譜階次是一定的,即結構系統(tǒng)階次一定。故可選取奇異熵增量開始降低到漸近值時的對應階次作為系統(tǒng)模態(tài)階次。
2.3希爾伯特-黃變換模態(tài)參數辨識
根據NExT理論,選擇受迫振動量較小的測點作為參考點,計算同工況下其它測點與參考點之間的互相關函數,將之作為脈沖響應函數進行EMD分解,得到的各階IMF分量即為結構的自由衰減響應,其函數表達式為
式中x(t)為脈沖響應信號;A0表示與荷載強度、結構質量和頻率特性等有關的常數;ξ表示相對阻尼系數;ω0為結構系統(tǒng)的無阻尼固有圓頻率,Hz;x0為初始位移,m;ωd為有阻尼固有圓頻率,Hz;t為時間,s;φ0為初始相位角,(°)。
對式(1)進行Hilbert變換,得到x(t)的解析信號
在阻尼較小、頻率較高情況下,式(3)幅值及相位可表示為
對式(4)和式(5)分別取對數并進行微分
由式(7)可得到ωd,則系統(tǒng)的固有圓頻率ω0和阻尼比ξ可通過式(2)求得。
對于管道振動信號,為提高模態(tài)辨識精度,減少虛假模態(tài)干擾,結合SVD-EMD聯合降噪優(yōu)勢,提出基于改進HHT的泵站管道工作模態(tài)辨識方法。首先對現場采集振動信號進行SVD-EMD聯合濾波前處理,減少強噪聲干擾,利用奇異熵增量理論確定系統(tǒng)模態(tài)階次,然后采用HHT辨識降噪后信號獲得結構振動動力特性。
3.1景泰工程實例
甘肅景泰電力提灌工程(簡稱景泰工程)是一項高揚程、大流量、多梯級電力提水灌溉工程。以二期3泵站工程的2號壓力管道為研究對象進行工作模態(tài)參數識別。2號管道(4號、5號機組)布置型式為多機單管,3個拾振器作為一組,分別沿管道的徑向、軸向和鉛垂方向布置。試驗采用中國地震局工程力學研究所研制的891-2型拾振器,該拾振器設有小速度、中速度、大速度和加速度4檔,具有體積小、質量小、使用方便、動態(tài)范圍大和一機多用的特點,根據管道的工作振動特點,選用中速度檔位,該檔位下12個水平拾振器的靈敏度范圍在7.394~7.543 V·s/m之間,6個垂直拾振器的靈敏度范圍在6.729~6.920 V·s/m之間?,F場測點布置和壓力管道測點具體布置見圖2。
圖2 景泰3泵站2號管道現場測試和測點平面布置圖Fig.2 Field test and measuring point layout of 3pumping station 2pipeline in Jingtai
以4號、5號機組正常運行為實測工況,測試采樣頻率204.8 Hz,采樣時間為1 500 s。為全面反映主管和支管間耦合作用的整體振動情況、保證辨識結果的準確性,分別選擇鉛垂z方向13#和16#測點數據、水平x方向8# 和17#測點數據和水平y(tǒng)方向6#和9#測點數據。該6個測點分別位于2號主管端部和A、B支管的端部和中部,其中z方向和x方向測點可反映主管和支管B的耦合振動作用,y方向測點可反映主管和支管A的耦合振動作用。
以z方向13#和16#測點為例說明本文方法辨識管道結構工作模態(tài)參數過程。首先,對13#和16#測點采用SVD-EMD聯合濾波方法得到降噪后信號,降噪前后信號時程線如圖3所示。
圖3 13#和16#點信號降噪前后時程Fig.3 Time history curves of original signal and de-noised signal at points13# and 16#
其次,對降噪后信號進行HHT模態(tài)參數辨識。對13# 和16#測點濾波降噪后信號進行NExT處理得到兩點間互相關函數,互相關函數如圖4所示。由圖4可知函數逐漸衰減最后收斂成一條直線,表明兩測點通過SVD-EMD聯合降噪處理基本濾除環(huán)境強噪聲,可利用互相關函數代替脈沖響應函數進行HHT模態(tài)參數辨識。結合奇異熵增量隨奇異譜階次變化曲線確定模態(tài)階次,如圖5所示,當奇異譜階次為12階時,對應的奇異熵增量開始逐漸趨于平穩(wěn),剔除系統(tǒng)非模態(tài)項和共軛項之后,得到管道系統(tǒng)有效振動階次為6階。
圖4 13#和16#測點降噪后互相關函數圖Fig.4 Cross-correlation function of de-noised signal between 13# and 16#
圖5 奇異熵增量隨奇異譜階次變化曲線Fig.5 Curve between increment of singular entropy and order
確定互相關函數和結構系統(tǒng)階次后,對互相關函數進行EMD分解獲得每一階IMF分量,采取適時剔除序列兩端數據的方法抑制端點效應、提高分解質量。之后將每一階IMF分量進行Hilbert變換,根據式(6)和式(7)分別求出幅值對數曲線和相位曲線,利用最小二乘法分別擬合兩曲線中間部分得到擬合直線并求出擬合直線斜率。第一階模態(tài)對數幅值曲線及其擬合直線如圖6a所示,第一階相位函數曲線及其擬合直線如圖6b所示。將求得的擬合直線的斜率數值代入式(2)求得結構固有圓頻率ω0和阻尼比ξ。
圖6 模態(tài)參數識別過程圖Fig.6 Process of modal parameters identification
為避免某一時間段內數據計算結果的偶然性,對同工況下實測的1 500 s數據,每隔100 s選取50 s數據采用本文方法計算管道結構模態(tài)參數,共得10組模態(tài)辨識結果,每一組數據分別計算得到前6階模態(tài)頻率,利用穩(wěn)定圖法對這10組計算結果求每一階頻率均值。穩(wěn)定圖橫坐標為頻率,縱坐標為試驗組數,在穩(wěn)定圖中標記每一組模態(tài)識別得到的前6階頻率,將10組模態(tài)辨識結果依次標記完成,頻率穩(wěn)定圖如圖7所示。根據圖7標記的10組試驗的前6階頻率結果,計算每一階頻率均值作為管道結構最終結果,前6階頻率均值計算結果見表1。
圖7 管道模態(tài)頻率穩(wěn)定圖Fig.7 Stabilization diagram of modal frequency of pipe
表1 景泰二期3泵站2號管道工作模態(tài)參數Table 1 Result of modal parameters identification in Jingtai
3.2其他方法辨識結果對比
張建偉等[26]就基于數據驅動的隨機子空間法(stochastic subspace identification,SSI)對泄流結構模態(tài)參數辨識進行過詳細研究,SSI對于低信噪比的振動信號辨識精度較好。因此,將本文方法辨識結果與SSI辨識結果、有限元計算結果進行對比驗證。
有限元計算采用流固耦合(fluid-solid interactions,FSI)理論建立管道結構-水體的三維有限元動力模型。假定模型流體為無黏、可壓縮和小擾動,流體平均密度和壓力不變,平均流量為0,固體為線彈性。模型動力系統(tǒng)中使用的單元為solid185和fluid30,其中與管壁接觸的一層水體單元為fluid30 present,內部的水體單元為fluid30 absent,其中,管道結構為7 412個單元,水體單元為37 104個單元。根據該梯級泵站設計資料,模型各部分參數如下:管道為壓力鋼管,可簡化為均質材料,密度為7 850 kg/m3,彈性模量2.06×105MPa,泊松比0.25,管道內流體參數為聲速1 460 m/s,密度為1 000 kg/m3。
基于ANSYS有限元平臺對泵站管道進行三維流固耦合有限元建模(如圖8所示),計算得到管道結構前6階頻率,將HHT辨識結果與SSI辨識結果和有限元計算結果進行對比,結果見表2。
圖8 管道三維有限元模型Fig.8 Three-dimensional finite element modal of pipeline
表2 HHT模態(tài)辨識結果與SSI及有限元結果對比Table 2 Comparison of HHT , SSI and finite element method
由表2可知:本文方法辨識結果稍小于SSI結果,與有限元計算頻率更接近,最大誤差為3.6%,但三者總體計算結果比較一致。表明本文方法能準確辨識低信噪比管道模態(tài)參數,采用SVD-EMD可有效濾除結構背景強噪聲,減少虛假模態(tài)干擾,提高了HHT辨識精度。
本文針對泵站管道結構工作特點,結合SVD-EMD (singular value decomposition,SVD,奇異值分解;empirical mode decomposition,EMD,經驗模態(tài)分解)聯合濾波方法處理低信噪比信號的優(yōu)越性,提出基于改進HHT的泵站管道工作模態(tài)辨識方法。利用SVD-EMD聯合技術濾除管道信號中的強噪聲,減少后期希爾伯特-黃變換(Hilbert-Huang Transform,HHT)辨識過程中虛假模態(tài)干擾,提高結構辨識精度和可靠性。
將該方法應用于景電二期3泵站2管道工作模態(tài)辨識中,并將本文辨識結果與隨機子空間法(stochastic subspace identification,SSI)辨識結果、有限元計算結果進行對比驗證,結果表明:1)該方法辨識的結果稍小于SSI辨識結果,與有限元計算結果更接近,最大誤差為3.6%;2)該方法能有效降低結構背景強噪聲干擾,可準確辨識管道頻率,可推廣至其他壓力管道結構動力特性辨識中,為管道安全運行評估和健康在線監(jiān)測提供參考。
[參考文獻]
[1] 練繼建,張龑,劉昉,等. 廠頂溢流式水電站振源特性研究[J]. 振動與沖擊,2013,32(18):8-14. Lian Jijian, Zhang Yan, Liu Fang, et al. Vibration source characteristics of a roof overflow hydropower station[J]. Journal of Vibration and Shock,2013, 32(18): 8-14. (in Chinese with English abstract)
[2] 蔣愛華,周璞,章藝,等. 基于相空間重構離心泵基礎振動的研究[J]. 農業(yè)工程學報,2014,30(2):56-62. Jiang Aihua, Zhou Pu, Zhang Yi, et al. Research on base vibration of centrifugal pump by phase space reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014,30(2): 56-62. (in Chinese with English abstract)
[3] 吳登昊,袁壽其,任蕓,等. 管道泵不穩(wěn)定壓力及振動特性研究[J]. 農業(yè)工程學報,2013,29(4):79-86. Wu Denghao, Yuan Shouqi, Ren Yun, et al. Study on unsteady pressure pulsation and vibration characteristics of in-line circulator pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 79-86. (in Chinese with English abstract)
[4] Masahiko H, Hirotsu G O. A SH-wave EMAT technique for gas pipeline inspection[J]. NDT &E International, 1999,32(3): 127-132.
[5] Battelle U S. Corporation. Implementing current In-Line Inspection technologies on crawler systems[R]. Battelle: Technology Research Report, 2004.
[6] 宋振華,王志華,黃世清,等. 基于縱向超聲導波信號特性的管道損傷檢測研究[J]. 機械強度,2011,33(1):55-61. Song Zhenhua, Wang Zhihua, Huang Shiqing, et al. Study on damage detection in pipes based on signal characteristics of longitudinal ultrasonic guided waves[J]. Journal of Mechanical Strength, 2011, 33(1): 55-61. (in Chinese with English abstract)
[7] 馬書義. 管道超聲導波損傷檢測與特征識別[D]. 大連:大連理工大學,2015. Ma Shuyi. Detection and Characterization of Defects in Pipes Using Ultrasonic Guided Waves[D]. Dalian: Dalian University of Technology, 2015. (in Chinese with English abstract)
[8] 耿艷峰,王丹,華陳權. 基于反褶積與編碼激勵的長輸管道損傷檢測[J]. 振動、測試與診斷,2014,34(1):130-135. Geng Yanfeng, Wang Dan, Hua Chenquan. Deconvolution and coded excitation technique in pipe inspection[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(1): 130-135. (in Chinese with English abstract)
[9] 劉金海,馮健,馬大中. 流體管道壓力信號的高精度實時濾波方法[J]. 東北大學學報:自然科學版,2013,34(1):9-12. Liu Jinhai, Feng Jian, Ma Dazhong. A high accurate and real time filter method for pressure signal of fluid pipeline[J]. Journal of Northeastern University : Natural Science, 2013,34(1): 9-12. (in Chinese with English abstract)
[10] 王學偉,蘇丹,袁洪芳,等. 小波包多級樹模型管道泄漏信號壓縮感知方法[J]. 儀器儀表學報,2014,35(3):520-526. Wang Xuewei, Su Dan, Yuan Hongfang, et al. Pipeline leakage signal compressed sensing based on wavelet packet hierarchical tree model[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 520-526. (in Chinese with English abstract)
[11] 潘虹,鄭源,于洋. 基于小波包的泵站機組振動信號特征分析[J]. 水電能源科學,2007,25(6):109-112. Pan Hong, Zheng Yuan, Yu yang. Feature analysis of the unit vibration signal of pump station based on wavelet packet [J]. Water Resources and Power, 2007, 25(6): 109-112. (in Chinese with English abstract)
[12] 王佐才,任偉新,邢云斐. 基于解析模態(tài)分解的時變與弱非線性結構密集模態(tài)參數識別[J]. 振動與沖擊,2014,33(19):1-7. Wang Zuocai, Ren Weixin, Xing Yunfei. Analytical modal decomposition-based time-varying and weakly nonlinear structures modal parametric identification with closely-paced modes[J]. Journal of Vibration and Shock, 2014, 33(19): 1-7. (in Chinese with English abstract)
[13] 劉宇飛,辛克貴,樊健生,等. 環(huán)境激勵下結構模態(tài)參數識別方法綜述[J]. 工程力學,2014,31(4):46-53. Liu Yufei, Xin Kegui, Fan Jiansheng, et al. A review of structure modal identification methods through ambient excitation[J]. Engineering Mechanics, 2014, 31(4): 46-53. (in Chinese with English abstract)
[14] 楊佑發(fā),李帥,李海龍. 環(huán)境激勵下結構模態(tài)參數識別的改進ITD法[J]. 振動與沖擊,2014,33(1):194-199. Yang Youfa, Li Shuai, Li Hailong. Improved ITD method for structural modal parameter identification under ambient excitation[J]. Journal of Vibration and Shock, 2014, 33(1): 194-199. (in Chinese with English abstract)
[15] 楊武,劉莉,周思達,等. 前后向時間序列模型聯合估計的時變結構模態(tài)參數辨識[J]. 振動與沖擊,2015,34(3):129-135. Yang Wu, Liu Li, Zhou Sida, et al. Modal parameter identification of time-varying structure using a forwardbackward time series modal based on joint estimation[J]. Journal of Vibration and Shock, 2015, 34(3): 129-135. (in Chinese with English abstract)
[16] ???,陳換過,陳文華,等. 飛行器結構在自然環(huán)境激勵下損傷檢測的研究[J]. 機械強度,2014,36(5):779-783. Zhu Jun, Chen Huanguo, Chen Wenhua, et al. Damage detection in the flight structure subjected to the nature excitation[J]. Journal of Mechanical Strength, 2014, 36(5): 779-783. (in Chinese with English abstract)
[17] 鐘軍軍,董聰. 環(huán)境激勵下識別結構模態(tài)自然激勵-時域分解法[J]. 振動與沖擊,2013,32(18):121-125. Zhong Junjun, Dong Cong. Natural excitation technique-time domain decomposition algorithm for structural modal identification under ambient excitations[J]. Journal of Vibration and Shock, 2013, 32(18): 121-125. (in Chinese with English abstract)
[18] 陳伏彬,李秋勝. 基于環(huán)境激勵的大跨結構動力特性識別[J].地震工程與工程振動,2015,35(1):58-65. Chen Fubin, Li Qiusheng. Identification of dynamic characteristics of large-span structure based on the ambient excitation[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(1): 58-65. (in Chinese with English abstract)
[19] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(3): 903-995.
[20] 薛延剛,王瀚. 基于HHT的水輪機空化信號研究[J]. 水力發(fā)電學報,2015,34(5):147-151. Xue Yangang, Wang Han. Investigation on turbine cavitation signals analysis based on Hilbert-Huang transform[J]. Journal of Hydroelectric Engineering, 2015, 34(5): 147-151. (in Chinese with English abstract)
[21] 單德山,李喬. 橋梁結構模態(tài)參數的時頻域識別[J]. 橋梁建設,2015,45(2):26-31.Shan Deshan, Li Qiao. Modal parameter identification of bridge structure in time-frequency domain[J]. Bridge Construction, 2015, 45(2): 26-31. (in Chinese with English abstract)
[22] 李成業(yè),劉昉,馬斌,等. 基于改進HHT的高拱壩模態(tài)參數辨識方法研究[J]. 水利發(fā)電學報,2012,31(1):48-55. Li Chengye, Liu Fang, Ma Bin, et al. Study on modal parameters identification method of high arch dam based on improved Hilbert-Huang transform[J]. Journal of Hydroelectric Engineering, 2012, 31(1): 48-55. (in Chinese with English abstract)
[23] 練繼建,李火坤,張建偉. 基于奇異熵定階降噪的水工結構振動模態(tài)ERA識別方法[J]. 中國科學E輯:科學技術,2008,38(9):1398-1413. Lian Jijian, Li Huokun, Zhang Jianwei. ERA modal identification method for hydraulic Structures based on order determination and noise reduction of singular entropy[J]. Science in China Series E: Technological Science, 2008,38(9): 1398-1413. (in Chinese with English abstract)
[24] James G H, Carne T G, Lauffer J P. The natural excitation technique (NExT) for modal parameter extraction from operating structures[J]. The International Journal of Analytical and Experimental Modal Analysis, 1995,10(4):260-277.
[25] 張敏,黃俐,李文雄,等. 大型結構模態(tài)參數識別研究[J].建筑科學與工程學報,2013,30(2):49-54. Zhang Min, Huang Li, Li Wenxiong, et al. Research on modal parameter identification on large-scale structure[J]. Journal of Architecture and Civil Engineering, 2013, 30(2): 49-54. (in Chinese with English abstract)
[26] 張建偉,張翌娜,趙瑜. 泄流激勵下水工結構應變模態(tài)參數時域識別研究[J]. 水力發(fā)電學報,2012,31(3):199-203. Zhang Jianwei, Zhang Yina, Zhao Yu. Study on strain modal parameters identification of hydraulic structure in time domain under discharge excitations[J]. Journal of Hydroelectric Engineering, 2012, 31(3): 199-203. (in Chinese with English abstract)
Modal parameter identification for pipeline of pumping station based on improved Hilbert-Huang transform
Zhang Jianwei, Jiang Qi, Zhu Lianghuan, Wang Tao, Guo Jia
(College of Wɑter Conservɑncy, North Chinɑ University of Wɑter Conservɑncy ɑnd Electric Power, Zhengzhou 450011, Chinɑ)
Abstract:For large pipeline structure, high-frequency white noise and low-frequency noise are mixed into vibration information, which belongs to one kind of non-stationary and nonlinear signal in low signal-to-noise ratio (SNR). In order to improve the precision of modal parameter identification for pipeline, on the basis of the Hilbert-Huang Transform (HHT)modal parameter identification theory, an improved HHT modal parameter identification method was proposed, which combined the united filtering technique of singular value decomposition (SVD) and empirical mode decomposition (EMD) as pretreatment. The basic of SVD is to process the online data or discrete data with the theory of matrix SVD to obtain the feature information of pipeline structure. The core of EMD is to decompose self-adaptively the signal into a series of intrinsic mode functions (IMFs) from high frequency to low frequency based on its time scale characteristics. Firstly, the pipeline structure vibration signal was processed with SVD, and high-frequency white noise was filtered out. Then the further EMD was conducted on de-noised signal processed by SVD, and through analyzing the spectrum diagram of every IMF component,low-frequency noise was filtered out. So the combined SVD-EMD filtering method was used to process vibration signal to achieve a higher precision de-noised signal. When strong noise was filtered out by the combined SVD-EMD filtering technique, the useful dominant dynamic characteristics of structure were highlighted, which decreased the noise interference to a large extent and avoided the false modal interference effectively during the later HHT processing. Structure system order was determined by singular entropy increment. Finally the de-noised signal was conducted by the improved HHT method, and the structure modal parameter was obtained. Taking the No.2 pipeline of Pumping Station 3 in Jintai River pumping irrigation as the research object, this proposed method was used to identify vibration response data to achieve modal parameter identification. Three-dimensional finite element model (FEM) of No.2 pipeline was constructed according to fluid-solid interaction theory, through which the structure modal parameter was obtained. Stochastic subspace identification (SSI) is one kind of high precision modal parameter identification method, which is used in many fields in recent years. By comparing the frequency results of improved HHT method, SSI and FEM analysis, the results showed that the frequency identified by improved HHT method was slightly smaller than that by SSI, and closed to that by FEM with the maximum error of 3.6%. This improved method can accurately identify the frequency of pipeline, which reduces the strong noise of pipeline and improves the modal parameter identification precision, and thus can be extended to lager pipeline structure. This proposed method provides a new idea for safe operation and online monitoring of the pipeline, and can be used effectively to solve the problem of structure modal parameter identification under ambient excitation, especially under the background with strong noise. This method has a broad prospect in engineering application.
Keywords:vibrations; finite element method; signal analysis; pipeline of pumping station; water supply; modal parameter identification
基金項目:國家自然科學基金(51009066、51408223);河南省科技攻關(142102310122);河南省高等學校青年骨干教師資助計劃(2012GGJS-101)。
作者簡介:張建偉,男,河南洛陽,副教授,博士,主要從事水利水電工程的研究與教學工作。鄭州華北水利水電大學水利學院,450011。
收稿日期:2015-08-14
修訂日期:2015-12-25
中圖分類號:TV93; TB53
文獻標志碼:A
文章編號:1002-6819(2016)-02-0071-06
doi:10.11975/j.issn.1002-6819.2016.02.011