魏生賢,胡粉娥,晏翠瓊(1.曲靖師范學(xué)院物理與電子工程學(xué)院,曲靖 655011; .曲靖師范學(xué)院化學(xué)化工學(xué)院,曲靖 655011;3.曲靖師范學(xué)院云南省高校先進(jìn)功能材料及低維材料重點(diǎn)實(shí)驗(yàn)室,曲靖 655011)
?
溫和地區(qū)陽(yáng)臺(tái)壁掛式平板型太陽(yáng)能熱水器水量配比優(yōu)化
魏生賢1,3,胡粉娥2,晏翠瓊1,3
(1.曲靖師范學(xué)院物理與電子工程學(xué)院,曲靖 655011;2.曲靖師范學(xué)院化學(xué)化工學(xué)院,曲靖 655011;3.曲靖師范學(xué)院云南省高校先進(jìn)功能材料及低維材料重點(diǎn)實(shí)驗(yàn)室,曲靖 655011)
摘要:基于溫和地區(qū)9城市的典型氣象數(shù)據(jù),利用所建數(shù)學(xué)模型對(duì)陽(yáng)臺(tái)壁掛式平板型太陽(yáng)能熱水器的水量配比和太陽(yáng)能保證率進(jìn)行了計(jì)算,并討論了方位角對(duì)水量配比的影響。結(jié)果顯示,南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器春、夏、秋、冬4季和全年水量配比的取值范圍分別為28~51、21~41、31~53、37~57和31~47 kg/m2。為便于應(yīng)用,給出了南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器季均和年均水量配比與傾角間相關(guān)系數(shù)大于0.99的線性回歸關(guān)系式。對(duì)于非南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器,季均和年均水量配比的方位角因子隨方位角的增大而逐漸減小。傾角為60°~90°、方位角為10°~90°時(shí),季均和年均水量配比的方位角因子分別位于0.57~1.00和0.72~1.00之間。方位角分別小于20°和30°時(shí),方位角對(duì)冬季水量配比和春、夏、秋3季及年均水量配比的影響約為5%;方位角分別小于30°和40°時(shí),方位角對(duì)上述水量配比的影響約為10%。進(jìn)一步討論發(fā)現(xiàn),溫和地區(qū)南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的年均太陽(yáng)能保證率位于0.55~0.70之間,推廣應(yīng)用潛力較大。
關(guān)鍵詞:太陽(yáng)能;熱水器;優(yōu)化;水量配比;方位角;方位角因子;太陽(yáng)能保證率
魏生賢,胡粉娥,晏翠瓊. 溫和地區(qū)陽(yáng)臺(tái)壁掛式平板型太陽(yáng)能熱水器水量配比優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):195-201.doi:10.11975/j.issn.1002-6819.2016.03.028http://www.tcsae.org
Wei Shengxian, Hu Fene, Yan Cuiqiong. Optimization of tank-volume-to-collector-area ratio for balcony wall-mounted flat-plate solar water heater in mild region of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 195-201. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.028http://www.tcsae.org
Email:wsx_8600@163.com
太陽(yáng)能熱水器已廣泛應(yīng)用于中國(guó)的城市和農(nóng)村地區(qū)。家電下鄉(xiāng)計(jì)劃進(jìn)一步擴(kuò)大了太陽(yáng)能熱水器在農(nóng)村地區(qū)的應(yīng)用。2010年底,中國(guó)太陽(yáng)能熱水器的安裝面積已達(dá)1.68億m2,每年節(jié)能20 Mt標(biāo)煤。2015年底,中國(guó)太陽(yáng)能熱水器的安裝總量已達(dá)到2.5億m2,預(yù)計(jì)2020年底可達(dá)6.0億m2[1]。太陽(yáng)能熱水器的大規(guī)模應(yīng)用,對(duì)中國(guó)節(jié)能減排、實(shí)現(xiàn)國(guó)家發(fā)改委提出的“2020年非化石能源的份額達(dá)到15%[2]”的目標(biāo)具有積極作用。為提升平板型太陽(yáng)能熱水器的經(jīng)濟(jì)性能和熱性能,鄧月超等對(duì)微熱管陣列平板太陽(yáng)能集熱器中空保溫層進(jìn)行了優(yōu)化[3],對(duì)基于微熱管陣列的平板太陽(yáng)能熱水器的熱性能進(jìn)行了試驗(yàn)研究[4-5]。李明等對(duì)立面陽(yáng)臺(tái)式太陽(yáng)能熱水器的性能進(jìn)行了試驗(yàn)研究[6]。此外,國(guó)外相關(guān)研究者對(duì)平板型集熱器的傳熱機(jī)制[7]、能效[8]、吸熱板結(jié)構(gòu)尺寸[9]、新型相變儲(chǔ)熱水箱[10-11]以及平板型太陽(yáng)能熱水器的總體性能[12]進(jìn)行了更深入的研究。這些研究對(duì)平板型太陽(yáng)能熱水器的優(yōu)化設(shè)計(jì)及其推廣應(yīng)用提供了有效的數(shù)據(jù)支撐。
為保證平板型太陽(yáng)能熱水器的高效運(yùn)行和用戶(hù)對(duì)水箱終溫的需求,世界各國(guó)因氣候不同對(duì)平板型太陽(yáng)能熱水器水箱容水量與集熱面積配比Vt/Ac(tank-volume-to-collector-area ratio,簡(jiǎn)稱(chēng)水量配比)給出了不同的推薦值:如美國(guó)[13]與希臘[14]75 kg/m2、馬來(lái)西亞[15]與土耳其[16]50~70 kg/m2、塞浦路斯[17]45~60 kg/m2、愛(ài)爾蘭[18]50 kg/m2、中國(guó)[19]≤100 kg/m2。文獻(xiàn)[20]給出了適用于中國(guó)不同地區(qū)、不同水箱價(jià)格的Vt/Ac的計(jì)算公式,文獻(xiàn)[13]認(rèn)為50~90 kg/m2較為合適。昆明氣候條件下平板型熱水器水量配比Vt/Ac在60~100 kg/m2較為合適[21]。
中國(guó)地域遼闊,氣候復(fù)雜,上述研究給出的水量配比范圍較大,不利于實(shí)際應(yīng)用。其次,中國(guó)人口眾多,大中城市居住建筑主要為高層建筑,其屋頂安裝的太陽(yáng)能熱水器僅能滿足頂層往下6至8層用戶(hù)的熱水需求。陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的應(yīng)用可解決集熱器安裝位置不夠的問(wèn)題,可為其余用戶(hù)提供熱水。但是,陽(yáng)臺(tái)壁掛式平板型熱水器水量配比的研究較為鮮見(jiàn),制約了太陽(yáng)能熱水器在高層建筑中的應(yīng)用。為解決此問(wèn)題,本文依據(jù)平板太陽(yáng)能集熱器有用能量輸出模型建立了平板型太陽(yáng)能熱水器的水量配比模型。前期研究顯示,此模型的計(jì)算值與試驗(yàn)值的相對(duì)誤差小于10%[22]。本文以中國(guó)溫和地區(qū)9個(gè)城市為例,利用所建模型對(duì)陽(yáng)臺(tái)壁掛式平板型太陽(yáng)能熱水器的水量配比和太陽(yáng)能保證率進(jìn)行了計(jì)算。為便于確定不同方位時(shí)的水量配比,本文引入了一個(gè)新概念“水量配比的方位角因子”,以便討論方位角對(duì)熱水器水量配比的影響。
1.1平板型集熱器能量輸出模型
單位傾斜面上時(shí)均接收的太陽(yáng)總輻射強(qiáng)度[23]
式中Iβ為單位傾斜面上時(shí)均接收的太陽(yáng)總輻射強(qiáng)度,W/m2;Ib、Id和Ih分別為時(shí)均太陽(yáng)直射、地面散射輻射和總輻射強(qiáng)度,W/m2;θ為太陽(yáng)直射光對(duì)斜面的入射角,(°);β為集熱器傾角,(°);ρg為地面反射率。Ib、Id和Ih可由水平面上月平均日太陽(yáng)總輻射量折算得出[22]。
傾斜面上直射、散射和地面反射入射角的修正因子Kb、Kd、和Kg由下式確定[24]。
其中
太陽(yáng)直射光對(duì)斜面的入射角
式中λ為地理緯度,(°);δ為太陽(yáng)赤緯,(°);γ為集熱器方位角,(°);ω為時(shí)角,(°);θd、θg為傾斜面上散射和地面反射等效入射角,(°);對(duì)于單層透明蓋板,常數(shù)b0=?0.1。
穩(wěn)態(tài)工況下,t1至t2時(shí)間內(nèi)平板型集熱器有用能量輸出Qu為
熱損失系數(shù)可表示為[25-27]
式中t、t1、t2為時(shí)間,s;Ac為采光面積,m2;(τα)為透射-吸收積;ULf為平板集熱器熱損失系數(shù),W/(m2·℃);Tabs與Tair為吸熱板與環(huán)境空氣平均溫度,℃;Utop、Ubot、Uedg分別為集熱器頂部、底部與邊緣熱損系數(shù)[25-27],W/(m2·℃)。
1.2水箱容水量與集熱面積配比
用戶(hù)的熱水熱負(fù)荷QLoad由下式確定
式中M為水箱容水量,kg;Cp為水的比熱,kJ/(kg·℃);Thot為水箱終溫,℃;Tw為自來(lái)水溫度,℃。
當(dāng)Qu=QLoad時(shí),集熱器輸出能量即可滿足熱水熱負(fù)荷。此時(shí),t1、t2分別代表日出和日落時(shí)刻。則水箱容水量與集熱面積比Vt/Ac為
式中Vt為水箱容水量,kg。其中,
自來(lái)水水溫與環(huán)境溫度、相對(duì)濕度和風(fēng)速的近似關(guān)系為[28-29]
式中Tw1和Tw2為自來(lái)水水溫,℃;RH為相對(duì)濕度,%;V為風(fēng)速m/s。式(13)和(14)的適用范圍為:Tair≥0℃,20%≤RH≤95%,0≤V≤8.7 m/s。因兩式計(jì)算結(jié)果存在一定的偏差,為減小誤差,本文取式(13)與(14)的平均值作為自來(lái)水水溫:
1.3太陽(yáng)能保證率
太陽(yáng)能保證率是太陽(yáng)能熱水器熱性能的重要指標(biāo)之一。定義為太陽(yáng)能供熱系統(tǒng)提供的熱量與總熱負(fù)荷的比例,用f表示,即
式中Qaux為月平均日的輔助加熱量,J。
《民用建筑設(shè)計(jì)通則(GB50352-2005)》規(guī)定:墻面突出的建筑構(gòu)件,如凸窗、窗扇、窗罩、空調(diào)機(jī)位等的突出深度不應(yīng)大于0.5 m。由于壁掛式集熱器的寬度約為1.0 m,則太陽(yáng)能集熱器與陽(yáng)臺(tái)結(jié)合時(shí)傾角必須大于60°。故本文計(jì)算中集熱器的傾角取為60°~90°。由于陽(yáng)臺(tái)朝向并非均為正南向,且同一傾角斜面上接受的太陽(yáng)輻射基本上以正南向?qū)ΨQ(chēng)分布,故計(jì)算中集熱器方位角取值為0~90°?;跍睾偷貐^(qū)9個(gè)代表城市(蒙自、臨滄、騰沖、昆明、楚雄、麗江、德欽、會(huì)理、西昌)的氣象數(shù)據(jù)[30],利用所建數(shù)學(xué)模型對(duì)壁掛式太陽(yáng)能熱水器的水量配比進(jìn)行了計(jì)算與分析。分析過(guò)程中,水箱終溫為60 ℃,透射-吸收積(τα)為0.81,地面反射率ρg為0.2,水的比熱Cp為4.187 kJ/(kg·℃)。
溫和地區(qū)9城市的月平均氣溫和水平面上月平均日太陽(yáng)總輻射量[30]如圖1所示。圖1a顯示,各城市最低氣溫出現(xiàn)在冬季,德欽的月均氣溫最低,達(dá)?2.4℃;最高氣溫出現(xiàn)在春夏季,西昌的月均氣溫最高,達(dá)27.3℃。圖1b顯示,各城市水平面上月平均日太陽(yáng)總輻射量的最高值基本上出現(xiàn)在春季,昆明和麗江的最大,約為21.5 MJ/m2;最低值出現(xiàn)在冬季,西昌的最小、約為8.9 MJ/m2。
圖1 月平均氣溫和水平面上月平均日太陽(yáng)總輻射量Fig.1 Monthly average air temperature and monthly average daily total radiation on horizontal
3.1正南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比
利用MATLAB軟件對(duì)溫和地區(qū)9個(gè)城市春季、夏季、秋季、冬季和全年使用的正南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比進(jìn)行了計(jì)算,結(jié)果如表1所示。表1中的數(shù)據(jù)顯示,同一城市、同一季節(jié),隨著傾角的增大,熱水器的水量配比逐漸減小。同一城市同一傾角下,熱水器水量配比最小值基本上出現(xiàn)在夏季。
表1 正南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比Table 1 Vt/Acvalues of balcony wall-mounted solar water heater with collectors facing south kg·m-2
表2給出了溫和地區(qū)陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比的取值范圍。表2的數(shù)據(jù)顯示,溫和地區(qū)9城市春季、夏季、秋季、冬季和全年使用陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比范圍分別約為28~51、21~41、31~53、37~57和31~47 kg/m2。
表2 正南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比的取值范圍Table 2 Ranges of Vt/Acfor balcony wall-mounted solar water heater with collectors facing south kg·m-2
為便于確定各傾角下陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比,下面將表1中的數(shù)據(jù)按公式(17)進(jìn)行線性擬合,擬合系數(shù)如表3所示。Vt/Ac與β的線性相關(guān)性較好,相關(guān)系數(shù)R均大于0.99。依據(jù)不同季節(jié)的供熱目的,可利用公式(17)和表3的數(shù)據(jù)快速確定溫和地區(qū)各城市各傾角下使用太陽(yáng)能熱水器的水量配比。
表3 水量配比Vt/Ac與集熱器傾角β的線性擬合系數(shù)Table 3 Linear fitting coefficient between Vt/Acand β
3.2非正南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比
為便于確定不同方位安裝集熱器時(shí)的水量配比,此處引入水量配比的方位角因子。此因子定義為相同傾角下不同方位角安裝集熱器時(shí)的水量配比與正南向安裝集熱器時(shí)的水量配比的比值。因此,非正南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比等于正南向的水量配比(表1)與相應(yīng)水量配比的方位角因子的乘積。圖2給出了溫和地區(qū)陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器水量配比的方位角因子與方位角的變化關(guān)系。
圖2 陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器水量配比的方位角因子與方位角的關(guān)系Fig.2 Variations of azimuth factor of Vt/Acwith azimuth angle for balcony wall-mounted solar water heater
由圖2可知:1)季均和年均水量配比的方位角因子隨方位角的增大而逐漸減小。2)相同傾角和方位角下,夏季水量配比的方位角因子最大、冬季最小,春、秋季和年均水量配比的方位角因子位于二者之間。3)傾角為60°~90°、方位角為10°~90°時(shí),春、夏、秋、冬4季和年均水量配比的方位角因子分別位于0.74~1.00、0.76~0.99、0.74~1.00、0.57~0.99和0.72~1.00之間。4)方位角小于20o時(shí),冬季水量配比的方位角因子位于0.95~1.00之間;方位角小于30°時(shí),春、夏、秋3季和年均水量配比的方位角因子位于0.95~1.00之間;此時(shí)方位角對(duì)水量配比僅有5%的影響。5)當(dāng)方位角分別小于30°和40°時(shí),方位角對(duì)冬季水量配比和春、夏、秋3季及年均水量配比存在10%左右的影響。
3.3南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的太陽(yáng)能保證率
南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的太陽(yáng)能保證率如表4所示。表中數(shù)據(jù)顯示,各城市各季節(jié)和全年的太陽(yáng)能保證率均存在一定的波動(dòng)范圍。具體體現(xiàn)為:1)德欽和臨滄的太陽(yáng)能保證率相對(duì)較小。德欽春、夏、秋3季的太陽(yáng)能保證率位于0.50~0.57之間;臨滄秋冬季的太陽(yáng)能保證率位于0.53~0.58之間。2)太陽(yáng)能保證率相對(duì)較大的是楚雄、麗江和西昌。楚雄和麗江4季的太陽(yáng)能保證率分別位于0.62~0.74和0.64~0.70之間;西昌秋冬季的太陽(yáng)能保證率位于0.67~0.73之間。3)其余城市各季節(jié)的太陽(yáng)能保證率基本上位于0.57~0.68之間。4)就全年而言,楚雄、麗江和西昌的太陽(yáng)能保證率相對(duì)較大,位于0.64~0.70之間;臨滄和德欽的太陽(yáng)能保證率相對(duì)較小,位于0.55~0.60之間;其余城市的年均太陽(yáng)能保證率位于0.60~0.65之間。
表4 正南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的太陽(yáng)能保證率Table 4 Solar fraction of balcony wall-mounted solar water heater with south-facing collectors
1)溫和地區(qū)同一城市、同一季節(jié),南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比隨傾角的增大而逐漸減小。
2)溫和地區(qū)春季、夏季、秋季、冬季和全年使用的南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器的水量配比范圍分別為28~51、21~41、31~53、37~57和31~47 kg/m2較為合適。
3)為便于實(shí)際應(yīng)用,文中給出了溫和地區(qū)各城市各傾角下南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器季均和年均水量配比與傾角間的線性回歸關(guān)系式。相關(guān)性較好,各相關(guān)系數(shù)均大于0.99。
4)季均和年均水量配比的方位角因子隨方位角的增大而逐漸減小。傾角為60°~90°、方位角為10°~90°時(shí),春、夏、秋、冬4季和年均水量配比的方位角因子分別位于0.74~1.00、0.76~0.99、0.74~1.00、0.57~0.99和0.72~1.00之間。
5)方位角分別小于20°和30°時(shí),方位角對(duì)冬季水量配比和春、夏、秋3季及年均水量配比的影響約為5%。當(dāng)方位角分別小于30°和40°時(shí),方位角對(duì)冬季水量配比和春、夏、秋3季及年均水量配比的影響約為10%。
6)溫和地區(qū)各城市南向陽(yáng)臺(tái)壁掛式太陽(yáng)能熱水器各季節(jié)的太陽(yáng)能保證率存在一定的波動(dòng)范圍。德欽春、夏、秋3季和臨滄秋冬季的太陽(yáng)能保證率分別位于0.50~0.57 和0.53~0.58之間;楚雄、麗江4季和西昌秋冬季的太陽(yáng)能保證率分別位于0.62~0.74、0.64~0.70和0.67~0.73之間;其余城市各季節(jié)的太陽(yáng)能保證率基本上位于0.57~0.68之間。
7)就全年而言,楚雄、麗江和西昌的太陽(yáng)能保證率相對(duì)較大,位于0.64~0.70之間;臨滄和德欽的太陽(yáng)能保證率相對(duì)較小,位于0.55~0.60之間;其余城市的年均太陽(yáng)能保證率位于0.60~0.65之間。
[參考文獻(xiàn)]
[1] Yuan Jiahai, Xu Yan, Zhang Xingping, et al. China's 2020 clean energy target: Consistency, pathways and policy implications [J]. Energy Policy, 2014, 65: 692-700.
[2] Hong L, Zhou N, Fridley D, et al. Assessment of China’s renewable energy contribution during the 12th five year plan[J]. Energy Policy, 2013, 62: 1533-1543.
[3] 鄧月超,趙耀華,全貞花,等. 微熱管陣列平板太陽(yáng)能集熱器中空保溫層優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):268-274. Deng Yuechao, ZhaoYaohua, Quan Zhenhua, et al. Optimization of hollow insulation layer for flat plate solar collector based on micro heat pipe array[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 268-274. (in Chinese with English abstract)
[4] 鄧月超,全貞花,趙耀華,等. 基于微熱管陣列的平板太陽(yáng)能熱水器的性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(4):222-228. Deng Yuechao, Quan Zhenhua, Zhao Yaohua, et al. Performance experiments for flat plate solar water heater based on micro heat pipe array[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 222-228. (in Chinese with English abstract)
[5] Deng Yuechao, Wang Wei, Zhao Yaohua, et al. Experimental study of the performance for a novel kind of MHPA-FPC solar water heater[J]. Applied Energy, 2013, 112: 719-726.
[6] 李明,鄭土逢,季旭,等. 立面陽(yáng)臺(tái)式太陽(yáng)能熱水器的性能特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(10):228-232. Li Ming, Zheng Tufeng, Ji Xu, et al. Performance of facade balcony type solar water heaters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions ofthe CSAE), 2011, 27(10): 228-232. (in Chinese with English abstract)
[7] Cerón J F, Pérez-García J, Solano J P, et al. A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors: Analysis and validation of the heat transfer mechanisms[J]. Applied Energy, 2015, 140: 275-287.
[8] Farzad Jafarkazemi, Emad Ahmadifard. Energetic and exergetic evaluation of flat plate solar collectors[J]. Renewable Energy, 2013, 56: 55-63.
[9] Jilani G, Thomas Ciby. Effect of thermo-geometric parameters on entropy generation in absorber plate fin of a solar flat plate collector [J]. Energy, 2014, 70: 35-42.
[10] Mohammad Ali Fazilati, Ali Akbar Alemrajabi. Phase change material for enhancing solar water heater, an experimental approach[J]. Energy Conversion and Management, 2013, 71: 138-145.
[11] Behrooz M Ziapour, Azad Aghamiri. Simulation of an enhanced integrated collector–storage solar water heater[J]. Energy Conversion and Management, 2014, 78: 193-203.
[12] Khaled Zelzouli, Amenallah Guizani, Chakib Kerkeni. Numerical and experimental investigation of thermosyphon solar water Heater[J]. Energy Conversion and Management, 2014, 78: 913-922.
[13] 宋愛(ài)國(guó). 真空管式太陽(yáng)熱水器的水量配比及日平均效率的修正[J]. 首都師范大學(xué)學(xué)報(bào):自然科學(xué)版,2002,23(4):40-43. Song Aiguo. Mass area ratio and corrected to average daily efficiency about evacuated tubular solar water heaters[J]. Journal of Capital Normal University: Natural Science Edition, 2002, 23(4): 40-43. (in Chinese with English abstract)
[14] Prapas D E. Improving the actual performance of thermosiphon solar water heaters[J]. Renewable Energy, 1995, 6(4): 399-406.
[15] Zahedi H R, Adam N M, Sapuan S M, et al. Effect of storage tank geometry on performance of solar water heater[J]. Journal of Scientific & Industrial Research, 2007, 66(2): 146-151.
[16] Kemal ?omakl, Ugur ?aklr, Mehmet Kaya, et al. The relation of collector and storage tank size in solar heating systems[J]. Energy Conversion and Management, 2012, 63: 112-117.
[17] Soteris Kalogirou. Thermal performance, economic and environmental life cycle analysis of thermosiphon solar water heaters[J]. Solar Energy, 2009, 83(1): 39-48.
[18] Ayompe L M, Duffy A, Keever M M, et al. Comparative field performance study of flat plate and heat pipe evacuated tube collectors (ETCs) for domestic water heating systems in a temperate climate[J]. Energy, 2011, 36(5): 3370-3378.
[19] NY/T 343-1998. 家用太陽(yáng)熱水器技術(shù)條件[S]. 中華人民共和國(guó)農(nóng)業(yè)部發(fā)布,1998.
[20] 王少杰,涂光備,鄭宗和,等. 太陽(yáng)熱水器水箱容積與集熱面積的合理配比的探討[J].太陽(yáng)能學(xué)報(bào),2003,24(5):629-632. Wang Shaojie, Tu Guangbei, Zheng Zonghe, et al. Optimal ratio of solar water tank capacity and solar collector area [J]. Acta Energiae Solaris Sinica, 2003, 24(5): 629-632. (in Chinese with English abstract)
[21] 諶學(xué)先,高文峰. 家用太陽(yáng)熱水器水量配比與平均日效率關(guān)系[J]. 云南師范大學(xué)學(xué)報(bào),2000,20(2):24-28. Chen Xuexian, Gao Wenfeng. The relation between ratio of water mass to area of solar energy collector and average daily efficiency in domestic solar water heaters[J]. Journal of Yunnan Normal University, 2000, 20(2): 24-28. (in Chinese with English abstract)
[22] 魏生賢,李明,林文賢,等. 高層住宅建筑南立面太陽(yáng)能熱水系統(tǒng)水量配比特性研究[J]. 太陽(yáng)能學(xué)報(bào),2012,33(4):663-669. Wei Shengxian, Li Ming, Lin Wenxian, et al. The study of mass area ratio of solar water heating systems integrated with south-fa?ade of high-rise residential buildings[J]. Acta Energiae Solaris Sinica, 2012, 33(4): 663-669. (in Chinese with English abstract)
[23] Notton G, Cristofari C, Poggi P. Performance evaluation of various hourly slope irradiation models using Mediterranean experimental data of Ajaccio[J]. Energy Conversion and Management, 2006, 47 (2): 147-173.
[24] Cristofari C, Notton G, Poggi P, et al. Modelling and performance of a copolymer solar water heating collector[J]. Solar Energy, 2002, 72(2): 99-112.
[25] Wang Man, Wang Jiangfeng, Zhao Yuzhu, et al. Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors[J]. Applied Thermal Engineering, 2013, 50: 816-825.
[26] Duffie J A, Beckman W A. Solar Engineering of Thermal Processes[M]. Third ed. John Wiley & Sons, New York, 2006. [27] Khaled Zelzouli, Amenallah Guizani, Chakib Kerkeni. Numerical and experimental investigation of thermosyphon solar water Heater[J]. Energy Conversion and Management, 2014, 78: 913-922.
[28] 白振營(yíng). 一個(gè)計(jì)算湖泊(水庫(kù))自然水溫的新公式[J].水文,1999(3):29-32. Bai Zhenying. A new formula for calculating water temperature of lake or reservoir[J]. Hydrology, 1999(3): 29-32. (in Chinese with English abstract)
[29] 李克鋒,郝紅升,莊春義,等. 利用氣象因子估算天然河道水溫的新公式[J]. 四川大學(xué)學(xué)報(bào):工程科學(xué)版,2006,38(1):1-4. Li Kefeng, Hao Hongsheng, Zhuang Chunyi, et al. A new method for predicting water temperature of river by using meteorological factors [J]. Journal of Sichuan University: Engineering Science Edition, 2006, 38(1):1-4. (in Chinese with English abstract)
[30] 中國(guó)氣象局氣象信息中心氣象資料室與清華大學(xué)建筑技術(shù)科學(xué)系主編. 中國(guó)建筑熱環(huán)境分析專(zhuān)用氣象數(shù)據(jù)集(含光盤(pán))[M]. 北京:中國(guó)建筑工業(yè)出版社,2005.
Optimization of tank-volume-to-collector-area ratio for balcony wall-mounted flat-plate solar water heater in mild region of China
Wei Shengxian1,3, Hu Fene2, Yan Cuiqiong1,3
(1. College of Physics and Electronic Engineering, Qujing Normal University, Qujing 655011, China; 2. College of Chemistry and Chemical Engineering, Qujing Normal University, Qujing 655011, China; 3. Yunnan Higher Universities Key Laboratory of Advanced Functional and Low Dimensional Materials, Qujing Normal University, Qujing 655011, China)
Abstract:Solar water heaters are widely used in urban and rural China. The Home Appliances to the Countryside program from government further expands its application in rural areas. In the end of 2010, there were 168 million square meters of installed solar heaters, with an annual primary energy saving of 20 Mtce. The total installation is very likely to reach 250 million square meters in 2015 and at least 600 million square meters in 2020. In the 2009 Copenhagen UN Climate Change Summit, president Hu Jintao pledged to the international community to reduce the CO2intensity of the economy by 40% to 45% by 2020 on the baseline level of 2005. Meanwhile, the share of non-fossil energy is also expected to rise to 15%. Application of solar water heaters will help to achieve this goal. The thermal performance of the flat-plate type solar energy water heater has been studied globally. In order to ensure the efficient operation of the solar water heater and user's demand to the terminal temperature of a tank, the countries all over the world with different climate have given different recommended value for water-mass-to-collector-area ratio (the ratio is abbreviated as MAR) of the flat-plate solar water heater. However, China has a vast territory and its climate is complex. The value range of recommended value from literatures is too large to be used to practical application. The main residential buildings in large and medium-sized cities are mostly high-rise buildings. The solar water heater installed on roof can only meet hot water use for the top six to eight floors. The application of the balcony wall-mounted solar water heater is one of the effective ways to solve hot water needs for the rest of users in high-rise buildings. Based on the typical meteorological data of nine cities in mild region of China, the values of MAR of the balcony wall-mounted flat-plate solar water heater have been calculated by using the established mathematical model. The water tank terminal temperature of 60℃, the collector angle of 60°-90° and the azimuth angle of 0-90° were used in model analysis. Calculation results for south-facing balcony wall-mounted solar water heater in mild region showed that the appropriate MAR of spring, summer, autumn, winter and the whole year was 28-51, 21-41, 31-53, 37-57 and 31-47 kg/m2, respectively. For convenience of practical application, the linear regression relation between seasonal and annual average MAR and the tilt angle for south-facing balcony wall-mounted solar water heater. The correlation coefficients between them were greater than 0.99. In this paper, we introduced a new concept “azimuth factor of MAR” which was easy to calculate MAR for the collector with different azimuth angle. For the non-south-facing balcony wall-mounted solar water heater, the seasonal and annual average azimuth factors of MAR decreased with the increase of the azimuth angle. The seasonal and annual average azimuth factors of MAR ranged from 0.57 to 1.00 and 0.72 to 1.00 when the tilt angle and azimuth angle were respectively at 60°-90° and 10°-90°. The azimuth angle had about 5% effect on MAR for winter and spring, summer, autumn and the whole year when the azimuth angle was less than or equal to 20° and 30°. The azimuth angle had about 10% effect on the above-mentioned MAR when the azimuth angle was less than or equal to 30° and 40°. In conclusion, the annual average solar fraction ranges should be in 0.55-0.70 for the south-facing balcony wall-mounted flat-plate solar water heater used in mild region of China.
Keywords:solar energy; water heaters; optimization; tank-volume-to-collector-area ratio; azimuth angle; azimuth factor; solar fraction
作者簡(jiǎn)介:魏生賢,男,云南省梁河縣人,教授,博士,從事太陽(yáng)能熱利用的研究工作。曲靖曲靖師范學(xué)院物理與電子工程學(xué)院,655011。
基金項(xiàng)目:NSFC-云南聯(lián)合基金重點(diǎn)項(xiàng)目(U1137605);云南省科技廳面上項(xiàng)目(2013FZ111);曲靖師范學(xué)院科技創(chuàng)新團(tuán)隊(duì)項(xiàng)目(TD201301)
收稿日期:2015-08-30
修訂日期:2015-12-17
中圖分類(lèi)號(hào):TK519
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1002-6819(2016)-03-0195-07
doi:10.11975/j.issn.1002-6819.2016.03.028