• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Changes in the Composition of Volatiles Emitted from Newhall Nucellar Navel Oranges (Citrus Sinensis (L.) Osbeck)During Anaerobic Storage

    2016-03-19 18:36:07YANGGengZHANGYujieLIUShuluYUYuegang
    關(guān)鍵詞:荷爾安徽師范大學(xué)萜烯

    YANG Geng, ZHANG Yu-jie, LIU Shu-lu, YU Yue-gang

    (College of Environmental Sciences and Engineering, Anhui Normal University, Wuhu 241003, China)

    ?

    Changes in the Composition of Volatiles Emitted from Newhall Nucellar Navel Oranges (Citrus Sinensis (L.) Osbeck)During Anaerobic Storage

    YANG Geng,ZHANG Yu-jie,LIU Shu-lu,YU Yue-gang

    (College of Environmental Sciences and Engineering, Anhui Normal University, Wuhu 241003, China)

    Clssification No: TS207.3Document Code: APaper No:1001-2443(2016)04-0364-07

    Newhall nucellar navel oranges (Citrus sinensis (L.) Osbeck) originating as a limb sport of Washington navel oranges are native to USA and now widely planted in middle part of China. The fruit of Newhall is oval-shaped, 6.48-7.18cm in long and 6.65-7.71cm in diameter, and it weights approximately from 250 to 350 g for each orange, containing 15.5% for soluble solids, 85-105g L-1for sugars, 10-11g L-1for titratable acids and 0.47-0.64g L-1for vitamin C, respectively[1].

    Newhall nucellar navel oranges are the most popular navel orange cultivar in China because of their bright color, rich nutrition, sweet flavor and pleasant smelling. The attractive and pleasant flavor of citrus fruit is attributed to a combination of alcohols, aldehydes, ketones, esters, hydrocarbon terpenes, sulfur volatiles and so on in specific proportions[2-4]. For Newhall nucellar navel oranges, forty-two volaitle organic compounds including twenty-seven oxygenated volatiles, thirteen terpene hydrocarbons and three sulfides were identified and quantified in the gases from their fresh fruit in previous studies[5].

    During their commercial packing and storage, citrus fruit not excepting Newhall nucellar navel oranges are usually exposed under various anaerobic conditions such as storing in modified or controlled atmospheres, coating with waxes or films, packing in plastic liners and holding in containers or trailers[6,7,4]. These anaerobic or anoxia storage and handing process can inhibit deterioration development of fruit, but anaerobic metabolism is induced, leading to decreases in aroma-active volatiles and accumulation of off-flavor volatiles such as ethanol, acetaldehyde and ethyl acetate[8,9,6,4]. The composition changes of volatiles from citrus fruit could lead to an altered balance of orange aroma away from what is considered “fresh” or desirable and thus becoming “rotten”[2-4]. Thus, measurement of the composition changes of volatiles from citrus fruit based on relative percentage may serve reliable and convenient information for quality evaluation.

    Fresh Newhall nucellar navel oranges maintain their external and internal quality in regular atmospheres for only 2-3 weeks after harvest, and thus anaerobic or anoxia storage is often needed when they are to be kept for longer than 3 weeks after harvest. Consequently, in this study Newhall nucellar navel oranges were incubated under N2 atmospheres to stimulate anaerobic respiration in laboratory, and the relative compositional changes of volatiles and the possible artifacts of Newhall nucellar navel oranges were investigated during storage under anaerobic conditions for a period of 90 days.

    1 Materials and Methods

    1.1Materials and chemicals

    Fresh ripe Newhall nucellar navel oranges (Citrus sinensis (L.) Osbeck) were obtained from a commercial orchard in the city of Ganzhou in China in November 2012. Fruits at ripe stage were classified as those possessing totally orange-yellow color. Fruits were carefully selected for uniformity size, color, and absence of physical damage, and were randomly divided into three groups for the anaerobic treatment.

    All volatiles listed in Table 1 were purchased from Sigma-Aldrich Inc. (Saint Louis, MO, USA) and were of analytical grade.

    Table 1 Compositional changes of volatiles emitted from Newhall nucellar navel oranges during the anaerobic storagea

    續(xù)表1

    ChemicalsCompositions(%)b0(fresh)c361020304050607080903-heptanone*ndtrtrtrtrtrtrtrtrtrtrtr2,3-butanedionetr0.20.30.60.20.1trtrtrtrtrtr3-hydroxy-2-butanone*ndndndnd0.1ndndndndndndndEstersmethylformate*ndtrtrtrtr0.10.10.10.10.10.1trethylformatetrtr0.1tr0.20.40.30.20.40.20.20.11-methylpropylformate*ndtrtrtrtrtrtrtrtrtrtrtr3-methylbutylformate*ndndndndndtrtrtrtrtrtrtrmethylacetatetr0.70.80.91.21.21.61.81.81.71.31.1ethylacetate0.59.010.810.07.26.45.24.23.94.23.83.4propylacetatetrtrtrtr0.20.20.40.40.50.40.50.4butylacetatetr0.10.1trtrtrtrtrtrtrtrtr1-methylpropylacetate*ndndndtr0.20.81.11.21.31.00.90.72-methylpropylacetate*ndtr0.10.10.10.10.10.10.10.10.10.12-methylbutylacetate*ndtr0.1trtrtrtr0.10.10.10.1tr3-methylbutylacetate*nd0.30.60.30.10.20.10.20.20.10.20.13-methyl-2-butenylacetate*ndndtrtrtrtrtrtrtrtrtrtrmethylpropionate*ndndndndnd0.10.10.20.20.20.20.1ethylpropionate*ndtrtrtr0.30.40.50.50.70.40.40.4propylpropionate*ndndndndndtrtrtrtrtrtrtr1-methylpropylpropoinate*ndndndndndtr0.10.10.20.10.10.1methylbutyratetrtrndndndndndndndtrtrtrethylbutyrate0.10.10.00.00.00.10.10.10.10.10.10.1methylisobutyrate*ndndndndndndndndndtrtrtrethylvalerate*ndndndndndtrtrtrtrtrtrtrmethylisovalerate*ndndndndndndtrndtrtrtrtrmethylhexanionatetrtrtrtrtrtrtrtrtrtrtrtrAcetals1,1’-diethoxy-ethane*ndtrtrtrtrtrtrtrtrtrtrtr2,4,6-trimethyl-1,3,5-trioxane0.2tr0.10.10.10.10.10.10.2trtrtrtotaloxygenatedvolatilesd18.174.580.277.372.371.272.071.270.859.459.649.0Terpenoidhydrocarbonsisoprenetrtrtrtrtrtrtrtrtrtrtrtrα-thujene0.1trtrtr0.10.10.10.10.10.10.20.1camphenetrtrtrtrtrtrtrtrtrtrtrtrβ-pinene0.60.10.10.10.30.30.30.30.30.40.50.4α-terpinenetrtrtr0.10.30.40.40.40.40.40.70.5l-phellandrene0.90.20.10.30.60.70.60.60.70.70.90.7terpinolene0.80.40.30.50.40.70.70.60.70.40.50.6

    aTable includes all identified chemicals and percentages add to 100% for each sample.bMean percentage of individual volatile constituents from triplicate experiments.cDays of incubation.dSum of alcohols, aldehydes, ketones, esters and acetals.*Artifact volatiles. nd, not detected. tr, trace (<0.05%).

    1.2Anaerobic treatment

    For laboratory simulation study, about 2 kg fresh shredded Newhall nucellar navel oranges were weighed and placed in glass reactors with a volume of approximately 8 L. Treatments were tested in triplicate and incubated at room temperature (25±0.5℃) for 90 days. Pure N2gas was maintained between 40-60mL min-1per reactor, which was identified in preliminary work as sufficient to ensure that the O2containers were less than 0.5% for the anaerobic storage. When sampling, 1L Teflon sampling bags (SKC Inc., USA) was used to collect gas from the air outlet of each reactor. Volatile measurements were performed on days 0, 3, 6, 10, 20, 30, 40, 50, 60, 70, 80 and 90 during the incubation.

    1.3Volatiles analysis

    Volatiles were analyzed by an Entech Model 7100 Preconcentrator (Entech Instruments Inc., CA, USA) coupled with a gas chromatography/mass spectrum (GC/MS, Agilent 5973N). Detailed analysis steps were described elsewhere[10].

    1.4Statistical Analysis

    Statistical analysis was performed using SPSS 10.0 for Windows. A one-way ANOVA was performed to test the significant variance between the samples. A post hoc examination was conducted to test the significance using the LSD test. The significance level was set as p<0.05.

    2 Results and Discussion

    2.1General

    Fig.1 Typical chromatograms showing selected volatiles from fresh Newhall nucellar navel oranges at day 0 when fresh(A) and at day 50(B).

    As presented in Fig.1, differences between the chromatogram of the fresh oranges and that of the oranges at day 50 were noticeable. Several new peaks of artifact compounds occurred at day 50. The peak identities and their relative percentages, and the artifacts identified, are listed in Table 1 according to functional classes. In total, sixty-seven volatiles were identified, among which twenty-four volatile chemicals were absent in gases of fresh Newhall nucellar navel oranges and occurred as artifacts in the following storage process, consisting of 3 alcohols(2-butanol, 2-pentanol and 2-methyl-3-buten-2-ol), 3 aldehydes(2-methypropanal, 2-methylbutanal and pentanal), 2 ketones(3-heptanone and 3-hydroxy-2-butanone), 15 esters(methyl formate, 1-methylpropyl formate, 3-methylbutyl formate, 1-methylpropyl acetate, 2-methylpropyl acetate, 2-methylbutyl acetate, 3-methylbutyl acetate, 3-methyl-2-butenyl acetate, methyl propionate, ethyl propionate, propyl propionate, 1-methylpropyl propionate, methyl isobutyrate, ethyl valerate and methyl isovalerate) and 1 acetals (1,1’-diethoxy-ethane) (Table 1 and Fig.1(B)). The concentration of total volatile chemicals gradually rose up to 2729.1μg L-1upon 90 days of storage, approximately 5 times higher than that at day 0(558.8 μg L-1)(Fig.2), and the percentage of total artifact volatiles increased with storage time and attained the peak at day 70, sharing 15.9% of total volatile chemicals released (Table 1). For volatile groups or individual volatile chemicals, their compositions changed significantly during the anaerobic storage of Newhall nucellar navel oranges.

    The numbered peaks indicate compounds: 1 acetaldehyde; 2 methanol; 3 ethanol; 4 methyl acetate; 5 2-propanol; 6 2-methyl-propanal; 7 1-propanol; 8 2-butanone; 9 ethyl acetate; 10 2-butanol; 11 2-methyl-1-propanol; 12 2-methyl-butanal; 13 1-butanol; 14 ethyl propionate; 15 propyl acetate;16 3-methyl-1-butanol; 17 2-methyl-1-butanol; 18 1-methylpropyl acetate; 19 2-methylpropyl acetate; 20 2-methyl-3-buten-2-ol; 21 2,4,6-trimethyl-1,3,5-trioxane; 22 ethyl butyrate; 23 butyl acetate; 24 3-hexen-1-ol; 25 1-hexanol; 26 3-methylbutyl acetate; 27 2-methylbutyl acetate; 28 α-thujene; 29 α-pinene; 30 camphene; 31 sabinene; 32 β-pinene; 33 β-myrcene; 34 l-phellandrene; 35 Δ-3-carene; 36 α-terpinene; 37 limonene; 38 γ-terpinene; 39 terpinolene.

    Fig.2 Concentrations of three volatile groups and total volatile compounds released from Newhall nucellar navel oranges during the anaerobic storage. Error bars represent the standard deviation

    2.2Change in oxygenated volatiles

    Fifty-one oxygenated volatiles were determined during the anaerobic storage of Newhall nucellar navel oranges(Table 1), and the concentration of total oxygenated volatiles increased rapidly to attain the maximum(1924.2μg L-1) at day 50, about 18 times higher than that at day 0(101.7 μg L-1)(Fig.2). Methanol, ethanol, 2-butanol, acetaldehyde, 2-butanone and ethyl acetate dominated and were the most important oxygenated volatiles. For the total oxygenated volatiles or major oxygenated compounds except acetaldehyde, their relative percentages showed a significant increasing trend during the anaerobic incubation. The relative percentage of total oxygenated volatiles increase from 18.1% to 49.0% upon 90 days of anaerobic storage, attaining the maximum (80.2%) at day 6. Also, oxygenated compounds were the most predominant function group after 3 days, although they were less than terpenes to some extent again after 90 days. The observably growing oxygenated volatiles were methanol (from 0.8% to 5.9%), ethanol (from 13.9% to 15.6%), 2-butanol (from 0.0% to 11.1%), 2-butanone (from>0.05% to 8.1%) and ethyl acetate (from 0.5% to 3.4%). Particular for ethanol, its ratio reached the peak (59.0%) at day 3 and it became the first abundant volatile chemicals. 2-Butanol and ethyl acetate were the third abundant volatile chemicals at day 40 and at day 3, respectively. For acetaldehyde, it decreased steadily to 0.1% at day 90, but its concentration actually increased and reached a peak at day 50 during the anaerobic storage.

    The relative changes of the oxygenated compounds from Newhall nucellar navel oranges on the anaerobic storage were in accordance with reports on commercial packing and storage of navel oranges[7]. The considerable enhancements of the oxygenated compounds could be related to secondary metabolites of orange substrates from biochemical reaction caused by enzymes[11]or microorganisms[12,13]. The production of alcohols, aldehydes, ketones and esters from fruit under anoxic or anaerobic conditions had been reported[9,6]. For example, methanol, ethanol, acetaldehyde and ethyl acetate as anaerobic metabolites were reported to be strongly accumulated in fruit such as mandarin[14], grapefruit[14]and pear[15]on storage under conditions favoring anaerobiosis. As well known, ethanol as major component of wines is produced from anaerobic fermentation of substrates, and its biosynthesis in fruit such as apples enhanced at greater rate under hypoxic or anoxic storage conditions[9]. 2-Butanol as undirable constituent was found in spirits of grape pomace, which fermented under anaerobic conditions[16]. 2-Butanone had been reported in gases purged and trapped from cherry fruit homogenates after storage under controlled atmosphere (anoxic condition)[8]. The production of esters in fruit could be attributed to esterification of various alcohol moieties and acetyl CoA[9]. Actually, a good correlation were between total alcohols and total esters (r=0.77,p<0.01), particularly between ethanol and ethyl acetate (r=0.90,p<0.01). As also reported by[8], qualitative and quantitative changes in ester production, particularly ethyl acetate, were coincident with the accumulation of ethanol. Acetals were usually produced during the anaerobic fermentation of fruit and grain. For example, 1,1’-diethoxy-ethane was present in grape wine[17]and Chinese ‘Yanghe Daqu’ liquor, which was made from the anaerobic fermentation of grains[18].

    2.3Change in isoprene and monoterpenes

    As shown in Table 1, isoprene was merely a trivial constituent detected in emitted volatiles and was under 0.05% during the whole anaerobic storage. β-Myrcene, sabinene, α-pinene and Δ-3-carene were the major monoterpenes in addition to limonene during the anaerobic storage of Newhall nucellar navel oranges. During the early 6 days, the concentration of total monoterpenes decreased sharply from 457.1μg L-1to 288.6μg L-1(Fig.2). Also, the relative percentages of total monoterpenes decreased abruptly from 81.9% to 19.8%, as much loss of limonene (from 54.9% to 15.8%), β-myrcene (from 10.8% to 1.8%), sabinene (from 6.6% to 0.8%), α-pinene (from 5.0% to 0.4%) and Δ-3-carene (from 2.0% to 0.3%). Some slight dropping also occurred for α-thujene (from 0.1% to <0.05%), β-pinene (from 0.6% to 0.1%), l-phellandrene (from 0.9% to 0.1%) and terpinolene (from 0.8% to 0.3%). The decrease of monoterpene hydrocarbons from Newhall nucellar navel oranges during the early stage was in accordance with reports on storage of some citrus fruit oil such as Yuzu[19], and Daidai[20]. The monoterpene hydrocarbons can be lost through chemical process and/or physical process. Chemical degradation such as polymerization, oxidation and rearrangement of monoterpene was reported by[19]. For example, limonene could be oxidized to cis- and trans-limonene oxides as artifacts in the citrus fruit oil[12]and also be cyclized to camphene, α-pinene and β-pinene as previously noted[21]. Mycrene could be cyclized to γ-terpinene, α-terpinene, limonene and terpinolene[21]. This process would imply an increase of some monterpenes such as α-pinene and β-pinene and terpinolene, which was inconsistent with the data in this study. For this reason, we assume that this process can be neglible for the loss of monoterpenes. Physical evaporation of inherited constituents could be mainly responsible for the observed relative decrease of monnoterpnes. Oranges as a pool of monoterpenes were shredded before incubation, making these compounds not to be locked in clumps but volatilize rapidly due to increased surface area. For camphene, α-terpinene and γ-terpinene, their percentages were merely trivial and kept steady during the early 6 days of anaerobic incubation, but their concentrations had a decreasing trend.

    After the early 6 days of incubation, the concentration of total terpenes increased progressively to reach the peak upon 90 days (1391.9μg L-1), about three times higher than that at day 0 (457.1μg L-1) (Fig.2). The relative percentages of total monoterpenes and all monoterpene hydrocarbons except camphene also grew steadily until the end of the experiment. Monoterpenes shared 51.0% of total volatiles released and became the prevailed class upon 90 day again. The preminently enhanced monoterpenes were limonene (from 15.8% to 36.0%), β-myrcene (from 1.8% to 6.6%), α-pinene (from 0.4% to 2.9%) and Δ-3-carene (from 0.3% to 1.4%). Some slight growing also occurred for α-thujene (from <0.05% to 0.1%), β-pinene (from 0.1% to 0.4%), l-phellandrene (from 0.1 to 0.7%), α-terpinene (from <0.05 to 0.5%), γ-terpinene (from 0.2% to 0.8%), terpinolene (from 0.3% to 0.6%) and sabinene (from 0.8% to 1.0%). For camphene, its percentage still kept trivial and steady. The results indicated that monoterpenes emitted after 6 days were mainly secondary production, most probably the microbial degradation of pectin, which had high contents in oranges and would emit a high rate of monoterpenes when biologically metabolized.

    References:

    [1]CHEN J. Newhall Navel Oranges[M]. Beijing: Jindun Press. (In Chinese). 2006:1-12.

    [2]BRAT P, REGA B, ALTER P, REYNES M, BRILLOUET J-M. Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice[J]. Journal of Agricultural & Food Chemistry, 2003,51:3442-3447.

    [3]ROUSEFF R L, PEREZ-CACHO P R, JABALPURWALA F. Historical review of citrus flavor research during the past 100 years[J]. Journal of Agricultural & Food Chemistry, 2009,57:8115-8124.

    [4]TIETEL Z, PLOTTO A, FALLIK E, LEWINSOHN E, PORAT R. Taste and aroma of fresh and stored mandarins[J]. Journal of the Science of Food and Agriculture, 2011,91:14-23.

    [5]WANG X M, WU T. Chemical composition analysis of volatile components in Newhall navel oranges[J]. Food Science, 2013,34(06),160-163.(In Chinese)

    [6]PESIS E. The role of the anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration[J]. Postharvest Biology and Technology, 2015,37:1-19.

    [7]OBENLAND D, COLLIN S, SIEVERT J, et al. Commercial packing and storage of navel oranges alters aroma volatiles and reduces flavor quality[J]. Postharvest Biology and Technology, 2008,47:159-167.

    [8]MATTHEIS J P, BUCHANAN D A, FELLMAN J K. Volatile constituents of Bing sweet cherry fruit following controlled atmosphere storage[J]. Journal of Agricultural & Food Chemistry, 1997,45:212-216.

    [9]RUDELL D R, MATTINSON D S, MATTHEIS J P, et al. Investigations of aroma volatile biosynthesis under anoxic conditions and in different tissues of “Redchief Delicious” apple fruit (Malus domestica Borkh.). Journal of Agricultural & Food Chemistry, 2002,50:2627-2632.

    [10]WANG X M, WU T. Release of isoprene and monoterpenes during the aerobic decomposition of orange wastes from laboratory incubation experiments[J]. Environmental Science & Technology, 2008,42:3265-3270.

    [11]PETERSON D, REINECCIUS G A. Biological Pathways for the Formation of Oxygen-Containg Aroma Compounds[M]//In: Reineccius G A, Reineccius T A. Eds., Heteroatomic Aroma Compounds Washington: American Chemical Society, 2002:227-242.

    [12]PEREZ-CACHO P R, ROUSEFF R L. Fresh squeezed orange juice odor: A Review[J]. Critical Reviews in Food Science and Nutrition, 2008,48:681-695.

    [13]ARREBOLA E, SIVAKUMAR D, KORSTEN L. Effect of volatile compounds produced by Bacillus strains on postharvest decay in citrus[J]. Biological Control, 2010,53:122-128.

    [14]SHI J X, PORAT R, GOREN R, GOLDSCHMIDT E E. Physiological responses of ‘Murcott’mandarins and ‘Star Ruby’ grapefruit to anaerobic stress conditions and their relation to fruit taste, quality and emission of off-flavor volatiles[J]. Postharvest Biology and Technology, 2005,38:99-105.

    [15]MATTHEIS J P, RUDELL D. Responses of ‘d’Anjou’ pear (Pyrus communis L.) fruit to storage at low oxygen setpoints determined by monitoring fruit chlorophyll fluorescence[J]. Postharvest Biology and Technology, 2011,60:125-129.

    [16]SILVA M L, MALCATA F X. Relationships between storage conditions of grape pomace and volatile composition of spirits obtained therefrom[J]. American Journal of Enology and Viticulture, 1998,49:56-63.

    [17]LEE S-J, NOBLE A C. Characterization of odor-active compounds in californian chardonnay wines using GC-olfactometry and GC-mass spectrometry[J]. Journal of Agricultural & Food Chemistry, 2003,51:8036-8044.

    [18]FAN W L, QIAN M C. Identification of aroma compounds in Chinese ‘Yanghe Daqu’ liquor by normal phase chromatography fractionation followed by gas chromatography/olfactometry[J]. Flavour and Fragrance Journal, 2006,21:333-342.

    [19]NJOROGE S M, UKEDA H, SAWAMURA M. Changes in the volatile composition of Yuzu (Citrus junos Tanaka) cold-pressed oil during storage[J]. Journal of Agricultural & Food Chemistry, 1996,44:550-556.

    [20]NJOROGE S M, UKEDA H, SAWAMURA M. Changes of the volatile profile and artifact formation in Daidai (Citrus aurantium) cold-pressed peel oil on storage[J]. Journal of Agricultural & Food Chemistry, 2003,51:4029-4035.

    [21]DIECKMANN R H, PALAMAND S R. Autoxidation of some constituents of hops. I. The monoterpene hydrocarbon, myrcene[J]. Journal of Agricultural & Food Chemistry, 1974,22:498-503.

    date:2015-10-21

    Sponsored by National Natural Science Foundation of China(41273095 and 41103067).

    The composition of volatiles emitted from Newhall nucellar navel oranges were investigated during laboratory-controlled anaerobic storage for a period of 90 days, using preconcentrator coupled with gas chromatography-mass spectrum (GC-MS). Major relative changes occurred for oxygenated volatiles and monoterpene hydrocarbons, while no observable changes were found for sulfides. Before storage, terpenoid hydrocarbons and oxygenated volatiles dominated, with the most abundance of limonene, ethanol, β-myrcene, sabinene, α-pinene, acetaldehyde and Δ-3-carene. During the early 6 days of storage, terpenoid hydrocarbons decreased sharply as much loss of limonene, β-myrcene, sabinene, α-pinene and Δ-3-carene, while oxygenated volatiles increased abruptly and became the first predominant class, with observable growing of methanol, ethanol and ethyl acetate. After 6 days of storage, terpenoid hydrocarbons rose up progressively with storage time, whereas oxygenated volatiles dropped down gradually until the end of the experiment. It is worth noting that twenty-four oxygenated volatiles as artifacts were formed, with predominance of 2-butanol and methyl acetate.

    volatiles; compositions; newhall nucellar navel oranges; anaerobic storage

    紐荷爾臍橙(Citrus sinensis (L.) Osbeck)厭氧保存過(guò)程中揮發(fā)性風(fēng)味物質(zhì)組成變化

    楊耿,張玉潔,劉書(shū)路,于越剛

    (安徽師范大學(xué) 環(huán)境科學(xué)與工程學(xué)院,安徽 蕪湖241003)

    采用預(yù)濃縮系統(tǒng)與氣相色譜質(zhì)譜聯(lián)用技術(shù)分析檢測(cè)紐荷爾臍橙在實(shí)驗(yàn)室控制厭氧條件下保存90天過(guò)程中釋放出來(lái)的揮發(fā)性風(fēng)味物質(zhì)組成變化.結(jié)果表明,紐荷爾臍橙厭氧保存過(guò)程中含氧化合物和萜烯化合物兩類(lèi)揮發(fā)性風(fēng)味物質(zhì)組成比例變化明顯,含硫化合物變化不明顯.在尚未保存前,紐荷爾臍橙釋放出來(lái)的揮發(fā)性風(fēng)味物質(zhì)主要是含氧化合物和萜烯化合物兩類(lèi)化合物,其中檸檬烯、乙醇、β-月桂烯、檜烯、α-蒎烯,乙醛和蒈烯是最主要的成分.在保存的前6天,由于檸檬烯、β-月桂烯、檜烯、α-蒎烯和蒈烯5種化合物大量減少導(dǎo)致萜烯類(lèi)化合物比例隨時(shí)間急劇下降,同時(shí)由于甲醇、乙醇和乙酸乙酯3種化合物大量增加使得含氧化合物比例隨時(shí)間急劇升高,成為最主要的揮發(fā)性風(fēng)味物質(zhì).在保存6天以后到實(shí)驗(yàn)結(jié)束,萜烯類(lèi)化合物比例隨時(shí)間逐漸增高,而含氧化合物比列隨時(shí)間逐漸降低.特別值得注意的是紐荷爾臍橙保存過(guò)程中有24種含氧化合物是新生成的,其中最主要是2-丁醇和乙酸甲酯.

    揮發(fā)性風(fēng)味物質(zhì);紐荷爾臍橙;厭氧保存

    Author’s brief:YANG Geng(1968-),F(xiàn)emale,born in Tongcheng,Anhui Province, senior experimentalist.

    引用格式:楊耿,張玉潔,劉書(shū)路,等.紐荷爾臍橙(Citrus sinensis (L.) Osbeck)厭氧保存過(guò)程中揮發(fā)性風(fēng)味物質(zhì)組成變化[J].安徽師范大學(xué)學(xué)報(bào):自然科學(xué)版,2016,39(4):364-370.

    DOI:10.14182/J.cnki.1001-2443.2016.04.011

    猜你喜歡
    荷爾安徽師范大學(xué)萜烯
    4-萜烯醇對(duì)沙門(mén)菌的抗菌機(jī)制
    漫步在森林當(dāng)中為何讓人感覺(jué)心情舒暢?
    輻射松與杉木在高溫干燥中萜烯類(lèi)釋放濃度研究*
    《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
    一種改性萜烯酚樹(shù)脂及其制備方法及其在輪胎胎面膠中的應(yīng)用
    Hemingway’s Marriage in Cat in the Rain
    《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
    紐荷爾臍橙揮發(fā)性風(fēng)味成分分析
    元陽(yáng)梯田
    海峽影藝(2012年1期)2012-11-30 08:17:00
    缺硼條件下兩種不同砧木“紐荷爾”臍橙礦質(zhì)元素含量變化的比較
    精品乱码久久久久久99久播| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区国产精品乱码| 老熟妇仑乱视频hdxx| 日韩欧美三级三区| 欧美乱妇无乱码| 国产av一区在线观看免费| 特级一级黄色大片| 国产精品影院久久| 乱人视频在线观看| 国产麻豆成人av免费视频| 亚洲国产精品久久男人天堂| 免费看光身美女| 免费看a级黄色片| 丰满乱子伦码专区| 熟女人妻精品中文字幕| 人妻丰满熟妇av一区二区三区| 激情在线观看视频在线高清| 久久亚洲精品不卡| 啪啪无遮挡十八禁网站| 亚洲av不卡在线观看| 久久精品国产综合久久久| 久久久久久人人人人人| 久久久国产精品麻豆| 最近在线观看免费完整版| 久久久久精品国产欧美久久久| 成年版毛片免费区| 国产高清激情床上av| 亚洲欧美日韩卡通动漫| 欧美中文综合在线视频| 波野结衣二区三区在线 | 天天添夜夜摸| 色视频www国产| 色综合婷婷激情| bbb黄色大片| 窝窝影院91人妻| av在线蜜桃| 美女高潮喷水抽搐中文字幕| av女优亚洲男人天堂| 久久久久久久亚洲中文字幕 | 国产精品久久久人人做人人爽| 丝袜美腿在线中文| 国产高清videossex| 在线观看66精品国产| 国产高清激情床上av| 欧美黑人巨大hd| 国产精品久久电影中文字幕| 欧美日韩综合久久久久久 | 日本成人三级电影网站| 国产91精品成人一区二区三区| 最近最新免费中文字幕在线| 久久国产精品人妻蜜桃| 国产老妇女一区| 精品国产美女av久久久久小说| 国产精品久久久久久人妻精品电影| 精品日产1卡2卡| 伊人久久精品亚洲午夜| 精品国产美女av久久久久小说| 免费看十八禁软件| 国产精品永久免费网站| 不卡一级毛片| 亚洲无线在线观看| 欧美3d第一页| 欧美日韩精品网址| 97超视频在线观看视频| 成人av在线播放网站| 国产精品电影一区二区三区| 欧美又色又爽又黄视频| 日日干狠狠操夜夜爽| 国产精品久久久久久久久免 | 国产极品精品免费视频能看的| 精品乱码久久久久久99久播| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 精品人妻偷拍中文字幕| 久久久久久大精品| 国产69精品久久久久777片| 欧美日韩国产亚洲二区| 亚洲国产精品sss在线观看| 精品免费久久久久久久清纯| 亚洲精品乱码久久久v下载方式 | 成年免费大片在线观看| 国产精品一区二区三区四区免费观看 | 国产欧美日韩一区二区三| 久久天躁狠狠躁夜夜2o2o| 日韩欧美国产在线观看| 日本黄色视频三级网站网址| 欧美性猛交黑人性爽| 99热6这里只有精品| 在线播放无遮挡| 最好的美女福利视频网| 日本 欧美在线| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉精品热| 亚洲av免费在线观看| 亚洲欧美日韩高清专用| 在线观看舔阴道视频| 精品久久久久久,| 两个人视频免费观看高清| 亚洲久久久久久中文字幕| av福利片在线观看| 有码 亚洲区| 精品无人区乱码1区二区| 欧美性感艳星| 亚洲不卡免费看| 网址你懂的国产日韩在线| 神马国产精品三级电影在线观看| 国产精品久久久人人做人人爽| 免费搜索国产男女视频| 性欧美人与动物交配| 国产伦一二天堂av在线观看| 国产精品久久久久久精品电影| 日本一二三区视频观看| a级一级毛片免费在线观看| 此物有八面人人有两片| 夜夜爽天天搞| 亚洲在线观看片| 国产高清视频在线播放一区| 最近视频中文字幕2019在线8| 欧美3d第一页| 成年女人看的毛片在线观看| 舔av片在线| 国产精品久久久久久久久免 | 国产亚洲精品久久久久久毛片| 男女床上黄色一级片免费看| 欧美黄色淫秽网站| 中文亚洲av片在线观看爽| 五月玫瑰六月丁香| 亚洲第一欧美日韩一区二区三区| 国产一级毛片七仙女欲春2| 九色成人免费人妻av| 午夜激情欧美在线| 国产黄片美女视频| 亚洲内射少妇av| aaaaa片日本免费| 在线十欧美十亚洲十日本专区| 国产免费av片在线观看野外av| 欧美乱妇无乱码| 中文字幕av在线有码专区| 美女大奶头视频| 日本 欧美在线| 啦啦啦观看免费观看视频高清| 好男人电影高清在线观看| 精品久久久久久久毛片微露脸| 午夜激情欧美在线| 亚洲男人的天堂狠狠| 国产高清有码在线观看视频| 男人的好看免费观看在线视频| 三级毛片av免费| 亚洲天堂国产精品一区在线| 18+在线观看网站| 不卡一级毛片| 国产精品,欧美在线| 最近最新中文字幕大全免费视频| 免费在线观看成人毛片| 免费观看精品视频网站| 女同久久另类99精品国产91| 国产精品久久久久久精品电影| 欧美黑人巨大hd| 性欧美人与动物交配| 在线播放无遮挡| 久久精品人妻少妇| 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| 亚洲久久久久久中文字幕| 欧美绝顶高潮抽搐喷水| 全区人妻精品视频| 亚洲内射少妇av| 欧美中文日本在线观看视频| 一区二区三区激情视频| 男女之事视频高清在线观看| 九色国产91popny在线| 亚洲精品亚洲一区二区| 国产高清有码在线观看视频| 看片在线看免费视频| 国产成人系列免费观看| 国产美女午夜福利| 色老头精品视频在线观看| 天堂动漫精品| 久久精品国产99精品国产亚洲性色| 国产视频一区二区在线看| 九九热线精品视视频播放| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看| 青草久久国产| 日韩精品中文字幕看吧| 一个人免费在线观看的高清视频| 天堂影院成人在线观看| 日韩欧美精品v在线| 十八禁人妻一区二区| 午夜免费男女啪啪视频观看 | 久久久国产成人精品二区| 麻豆成人av在线观看| 久久精品综合一区二区三区| 成熟少妇高潮喷水视频| 久久久久久九九精品二区国产| 日本免费a在线| xxx96com| av国产免费在线观看| 久久午夜亚洲精品久久| 激情在线观看视频在线高清| 天天添夜夜摸| 九色国产91popny在线| 日本与韩国留学比较| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 国产成人欧美在线观看| 日韩中文字幕欧美一区二区| 91在线精品国自产拍蜜月 | 乱人视频在线观看| 久久久久久久亚洲中文字幕 | 女人十人毛片免费观看3o分钟| 亚洲欧美日韩高清在线视频| 色综合亚洲欧美另类图片| 国产日本99.免费观看| 日本成人三级电影网站| 亚洲七黄色美女视频| 亚洲在线观看片| av国产免费在线观看| 麻豆国产av国片精品| 国产精品国产高清国产av| 99在线人妻在线中文字幕| 色av中文字幕| 99国产极品粉嫩在线观看| 一区二区三区免费毛片| 伊人久久精品亚洲午夜| 嫩草影院精品99| 一本精品99久久精品77| 欧美bdsm另类| 夜夜夜夜夜久久久久| 午夜福利在线观看免费完整高清在 | 免费搜索国产男女视频| 国产精品亚洲美女久久久| 亚洲国产欧洲综合997久久,| 国产精品永久免费网站| 日韩 欧美 亚洲 中文字幕| 成人性生交大片免费视频hd| 夜夜看夜夜爽夜夜摸| 精品免费久久久久久久清纯| 在线播放无遮挡| 亚洲av免费在线观看| 成人亚洲精品av一区二区| 悠悠久久av| 夜夜爽天天搞| 757午夜福利合集在线观看| 国产一区二区激情短视频| 在线播放国产精品三级| 啦啦啦免费观看视频1| 操出白浆在线播放| 熟女电影av网| 狠狠狠狠99中文字幕| a级一级毛片免费在线观看| 国产蜜桃级精品一区二区三区| 国产日本99.免费观看| 成年女人看的毛片在线观看| 一边摸一边抽搐一进一小说| 少妇高潮的动态图| 亚洲av第一区精品v没综合| 天堂av国产一区二区熟女人妻| 国产精品av视频在线免费观看| 51国产日韩欧美| 午夜两性在线视频| 天天躁日日操中文字幕| 欧美激情久久久久久爽电影| 男女之事视频高清在线观看| 香蕉久久夜色| 嫩草影院精品99| 高潮久久久久久久久久久不卡| 久久精品国产自在天天线| 国产成人aa在线观看| 在线观看免费视频日本深夜| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频| 日本精品一区二区三区蜜桃| 欧美大码av| 男女午夜视频在线观看| x7x7x7水蜜桃| 好男人电影高清在线观看| 男插女下体视频免费在线播放| 国产精品乱码一区二三区的特点| 超碰av人人做人人爽久久 | 午夜免费观看网址| 欧美中文综合在线视频| 少妇丰满av| 桃色一区二区三区在线观看| 日韩欧美国产一区二区入口| 日韩有码中文字幕| 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 黄色日韩在线| 久久亚洲真实| 白带黄色成豆腐渣| 女人十人毛片免费观看3o分钟| 日韩欧美在线乱码| 久久久久久大精品| 看片在线看免费视频| 99精品欧美一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| 一a级毛片在线观看| 国产69精品久久久久777片| 在线观看av片永久免费下载| 一级作爱视频免费观看| 国产一区二区三区视频了| 欧美xxxx黑人xx丫x性爽| 国产精品99久久久久久久久| 欧美性感艳星| 亚洲无线观看免费| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| 久久久国产精品麻豆| 免费在线观看日本一区| 天堂动漫精品| 高潮久久久久久久久久久不卡| 久久精品国产清高在天天线| 中文在线观看免费www的网站| 一a级毛片在线观看| 国产精品亚洲av一区麻豆| 亚洲av成人不卡在线观看播放网| 亚洲成人久久爱视频| 欧美日韩黄片免| 18美女黄网站色大片免费观看| 色老头精品视频在线观看| 观看美女的网站| 美女高潮喷水抽搐中文字幕| 国产色爽女视频免费观看| 少妇丰满av| 国产单亲对白刺激| 97人妻精品一区二区三区麻豆| 美女 人体艺术 gogo| 一区二区三区高清视频在线| 国产欧美日韩一区二区精品| 成人av一区二区三区在线看| 熟女人妻精品中文字幕| 日本免费一区二区三区高清不卡| 别揉我奶头~嗯~啊~动态视频| 成人特级黄色片久久久久久久| 中亚洲国语对白在线视频| 国产毛片a区久久久久| 观看美女的网站| 亚洲无线观看免费| 天美传媒精品一区二区| 亚洲欧美日韩东京热| 偷拍熟女少妇极品色| 国产亚洲精品综合一区在线观看| av在线天堂中文字幕| 亚洲午夜理论影院| 我要搜黄色片| www日本在线高清视频| 日本免费a在线| 好看av亚洲va欧美ⅴa在| 九九热线精品视视频播放| 国产激情偷乱视频一区二区| 亚洲av成人av| 99精品在免费线老司机午夜| 亚洲国产欧美人成| 日韩欧美在线乱码| 香蕉丝袜av| 在线播放无遮挡| 嫩草影院精品99| 在线播放无遮挡| 国产一区二区三区在线臀色熟女| 欧美日本视频| 精品免费久久久久久久清纯| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人中文| 亚洲黑人精品在线| 亚洲专区国产一区二区| 日本一二三区视频观看| 悠悠久久av| 一级作爱视频免费观看| 此物有八面人人有两片| 国产亚洲欧美98| 村上凉子中文字幕在线| 蜜桃亚洲精品一区二区三区| 精品国产三级普通话版| 精品人妻一区二区三区麻豆 | 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 国产av一区在线观看免费| 免费av毛片视频| 国产综合懂色| 国产欧美日韩精品亚洲av| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| av专区在线播放| 欧美一区二区国产精品久久精品| 久久精品国产综合久久久| 偷拍熟女少妇极品色| 特级一级黄色大片| 一个人观看的视频www高清免费观看| 手机成人av网站| 日日干狠狠操夜夜爽| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说| 色哟哟哟哟哟哟| 欧美日韩一级在线毛片| 精品人妻1区二区| 国产97色在线日韩免费| www日本黄色视频网| 亚洲男人的天堂狠狠| 国产免费av片在线观看野外av| 中文字幕人妻熟人妻熟丝袜美 | 国产亚洲精品一区二区www| 日本免费a在线| 欧美日韩瑟瑟在线播放| 最近最新免费中文字幕在线| 午夜福利在线观看免费完整高清在 | 99热6这里只有精品| 男女午夜视频在线观看| 亚洲人成网站在线播| 国产高清激情床上av| 午夜久久久久精精品| 88av欧美| 午夜日韩欧美国产| 天美传媒精品一区二区| 波野结衣二区三区在线 | 99久久九九国产精品国产免费| 亚洲精华国产精华精| 一区二区三区激情视频| 女警被强在线播放| 色在线成人网| svipshipincom国产片| 久久精品国产清高在天天线| 91在线观看av| 久久6这里有精品| 黄色日韩在线| 麻豆国产av国片精品| 嫩草影视91久久| 国产成人av教育| 麻豆久久精品国产亚洲av| 亚洲黑人精品在线| 特级一级黄色大片| 制服丝袜大香蕉在线| 一本综合久久免费| 日韩欧美免费精品| 少妇的逼水好多| 国产欧美日韩精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 免费在线观看日本一区| 亚洲av电影在线进入| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 在线天堂最新版资源| 在线观看日韩欧美| 欧美av亚洲av综合av国产av| 丰满人妻熟妇乱又伦精品不卡| 国产成年人精品一区二区| 国产av麻豆久久久久久久| 欧美性感艳星| 免费av不卡在线播放| 欧美成狂野欧美在线观看| 成人国产一区最新在线观看| 亚洲第一欧美日韩一区二区三区| 国产精品一及| 中文字幕高清在线视频| 日韩av在线大香蕉| 精品国产亚洲在线| 97超级碰碰碰精品色视频在线观看| 国产一区在线观看成人免费| 午夜久久久久精精品| 国产成人福利小说| 亚洲精品国产精品久久久不卡| 国产伦精品一区二区三区四那| 99国产综合亚洲精品| 婷婷亚洲欧美| 久久九九热精品免费| 神马国产精品三级电影在线观看| 亚洲人成网站在线播| 男女床上黄色一级片免费看| 国产熟女xx| 啪啪无遮挡十八禁网站| 12—13女人毛片做爰片一| 美女高潮的动态| 九九久久精品国产亚洲av麻豆| 亚洲av成人精品一区久久| 露出奶头的视频| 又黄又爽又免费观看的视频| 欧美成狂野欧美在线观看| 99国产极品粉嫩在线观看| 99热这里只有精品一区| 国产成年人精品一区二区| 国产亚洲精品综合一区在线观看| 老鸭窝网址在线观看| 两个人的视频大全免费| 欧美中文日本在线观看视频| 国产91精品成人一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲欧美一区二区三区黑人| 国产99白浆流出| 亚洲欧美激情综合另类| 九九久久精品国产亚洲av麻豆| 啦啦啦韩国在线观看视频| 观看美女的网站| 国产亚洲精品久久久久久毛片| 热99re8久久精品国产| 男人舔女人下体高潮全视频| 国产探花在线观看一区二区| 亚洲av一区综合| 国产亚洲精品久久久久久毛片| 午夜激情欧美在线| 男女做爰动态图高潮gif福利片| 国产精品电影一区二区三区| 岛国在线免费视频观看| 国产一区二区三区视频了| 国产97色在线日韩免费| 免费电影在线观看免费观看| 亚洲国产日韩欧美精品在线观看 | 欧美一区二区精品小视频在线| 久久草成人影院| 99精品欧美一区二区三区四区| 国产午夜精品论理片| 最后的刺客免费高清国语| 波多野结衣高清无吗| 日本三级黄在线观看| 成年女人永久免费观看视频| 老熟妇乱子伦视频在线观看| 精品熟女少妇八av免费久了| avwww免费| 国产欧美日韩精品一区二区| 亚洲国产精品成人综合色| 91久久精品电影网| 熟女少妇亚洲综合色aaa.| 天堂√8在线中文| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩精品亚洲av| 又黄又粗又硬又大视频| 国产亚洲精品久久久com| 日本五十路高清| 中文字幕人妻熟人妻熟丝袜美 | av天堂中文字幕网| 中文字幕精品亚洲无线码一区| 国产伦精品一区二区三区视频9 | 亚洲熟妇中文字幕五十中出| 欧美乱色亚洲激情| 男人和女人高潮做爰伦理| 成人三级黄色视频| 精品一区二区三区av网在线观看| 亚洲av第一区精品v没综合| 国内精品美女久久久久久| 国产v大片淫在线免费观看| 国产欧美日韩精品亚洲av| 欧美日韩瑟瑟在线播放| 在线观看免费午夜福利视频| 国产主播在线观看一区二区| 一区二区三区国产精品乱码| 中国美女看黄片| 亚洲真实伦在线观看| 国产 一区 欧美 日韩| 日韩欧美免费精品| 精品一区二区三区人妻视频| 色av中文字幕| 成人特级av手机在线观看| 国产黄片美女视频| 久久久久性生活片| 久久久久久久久久黄片| 国产精品乱码一区二三区的特点| 成人性生交大片免费视频hd| 草草在线视频免费看| 中文字幕av在线有码专区| 午夜老司机福利剧场| 午夜影院日韩av| 亚洲欧美日韩高清在线视频| 欧美在线一区亚洲| 伊人久久大香线蕉亚洲五| 尤物成人国产欧美一区二区三区| 亚洲性夜色夜夜综合| 亚洲成人免费电影在线观看| 亚洲一区高清亚洲精品| 天堂动漫精品| 免费无遮挡裸体视频| 国内精品久久久久久久电影| 日韩欧美三级三区| 又黄又爽又免费观看的视频| 三级毛片av免费| 高清日韩中文字幕在线| 久久精品国产亚洲av涩爱 | 小蜜桃在线观看免费完整版高清| 中国美女看黄片| 无遮挡黄片免费观看| 怎么达到女性高潮| 久久亚洲真实| 国产三级在线视频| 国产探花在线观看一区二区| 亚洲五月天丁香| 人人妻,人人澡人人爽秒播| 国产 一区 欧美 日韩| 69人妻影院| 成人国产一区最新在线观看| 观看免费一级毛片| 狠狠狠狠99中文字幕| 97碰自拍视频| 99热这里只有是精品50| 两个人视频免费观看高清| 国产三级中文精品| 国产精品一区二区免费欧美| 成人午夜高清在线视频| 男人舔奶头视频| 最新美女视频免费是黄的| av视频在线观看入口| 久久欧美精品欧美久久欧美| 黑人欧美特级aaaaaa片| 免费人成视频x8x8入口观看| 女人高潮潮喷娇喘18禁视频| 午夜精品一区二区三区免费看| 母亲3免费完整高清在线观看| 欧美日本亚洲视频在线播放| 99精品在免费线老司机午夜| 日韩欧美精品免费久久 | 欧美在线一区亚洲| 女人高潮潮喷娇喘18禁视频| 精品国内亚洲2022精品成人| 久久久久国内视频|