李賽凱 徐靜 駱瑩濱 吳建春 方志 紅李雁
上海中醫(yī)藥大學(xué)附屬市中醫(yī)醫(yī)院腫瘤科,上海200071
吲哚胺-2,3-雙加氧酶與腫瘤免疫逃逸關(guān)系的研究進(jìn)展△
李賽凱徐靜駱瑩濱吳建春方志紅李雁#
上海中醫(yī)藥大學(xué)附屬市中醫(yī)醫(yī)院腫瘤科,上海200071
吲哚胺-2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO)是色氨酸代謝的關(guān)鍵酶。它在多種腫瘤中表達(dá),越來越多的證據(jù)表明IDO具有免疫抑制作用。IDO通過抑制CD8+T細(xì)胞增殖并促進(jìn)其凋亡,促使自然殺傷細(xì)胞功能障礙,同時(shí)調(diào)控調(diào)節(jié)性T細(xì)胞的招募和巨噬細(xì)胞極化等發(fā)揮免疫抑制作用,從而促進(jìn)了腫瘤的免疫逃逸。
吲哚胺-2,3-雙加氧酶;腫瘤逃逸;免疫抑制;研究進(jìn)展
腫瘤的發(fā)生與免疫系統(tǒng)的關(guān)系處在一個(gè)動(dòng)態(tài)的發(fā)展過程。Dunn等[1]提出的“腫瘤免疫編輯學(xué)說”在理解腫瘤與免疫系統(tǒng)的關(guān)系上具有重要意義。該學(xué)說認(rèn)為,從免疫的角度看,腫瘤的發(fā)生發(fā)展分清除期、均衡期、逃逸期三個(gè)時(shí)期。在清除期(elimination phase),機(jī)體通過免疫監(jiān)視能夠識(shí)別和清除腫瘤細(xì)胞。而弱免疫原性的腫瘤細(xì)胞則會(huì)逃過免疫清除而與免疫系統(tǒng)處于相持階段,即均衡期(equilibrium phase)。通過清除期和均衡期的腫瘤突變體,經(jīng)過免疫重塑獲得了免疫抑制或者逃脫免疫系統(tǒng)識(shí)別的能力。在逃逸期(escape phase),腫瘤克服了免疫系統(tǒng)的攻擊而進(jìn)入臨床階段。近年來吲哚胺-2,3-雙加氧酶(indoleamine 2,3-dioxygenase,IDO)在腫瘤免疫逃逸方面的作用越來越被重視?,F(xiàn)就IDO與腫瘤免疫逃逸關(guān)系作一綜述。
人類IDO基因位于第8號(hào)染色體,長約15 000 bp,有10個(gè)外顯子和9個(gè)內(nèi)含子;啟動(dòng)子端有多個(gè)重復(fù)序列元件。人類超過90%的色氨酸(tryptophan,Trp)通過犬尿氨酸(kynurenine,Kyn)途徑代謝[2],而IDO是催化這一途徑關(guān)鍵步驟的限速酶。IDO能夠被IFN-γ、TNF-α和IL-1等細(xì)胞因子誘導(dǎo)表達(dá),其中IFN-γ是目前已知最強(qiáng)的誘導(dǎo)劑。
正常機(jī)體的抗原提呈細(xì)胞以及自然殺傷細(xì)胞能夠產(chǎn)生少量的IDO。在自身免疫性疾病以及多種腫瘤中存在IDO的活性增強(qiáng)或過表達(dá)。Uyttenhove等[3]通過免疫組織化學(xué)的方法在24種人類腫瘤組織中檢測到了IDO的表達(dá)。研究表明,IDO在多種人類腫瘤中高表達(dá)與腫瘤微環(huán)境的免疫抑制和臨床預(yù)后差密切相關(guān)[4-5]。
2.1IDO與肺癌的關(guān)系
夏俊芝等[6]用免疫組化和實(shí)時(shí)熒光定量PCR的方法檢測了38例非小細(xì)胞肺癌患者的腫瘤組織和10例患者的癌旁組織,結(jié)果發(fā)現(xiàn)IDO在非小細(xì)胞肺癌中高表達(dá),并且與腫瘤細(xì)胞分化程度和淋巴結(jié)轉(zhuǎn)移相關(guān)。Sim等[7]不僅證實(shí)以上研究結(jié)論,還發(fā)現(xiàn)化療能夠降低單核細(xì)胞中IDO的表達(dá)水平。
Suzuki等[8]研究了123例肺癌患者血清中Trp和Kyn,并以Kyn/Trp表示IDO的活性,發(fā)現(xiàn)肺癌患者血清中Trp濃度低于對(duì)照組,而Trp經(jīng)犬尿氨酸途徑降解的代謝產(chǎn)物Kyn的濃度和IDO活性顯著升高,并且肺癌患者IDO活性升高與更高的TNM分期相關(guān)。提示IDO可能通過耗竭體內(nèi)Trp并累積有毒代謝產(chǎn)物Kyn,引發(fā)免疫抑制而促進(jìn)腫瘤的進(jìn)展。
另一項(xiàng)研究表明肺癌患者血液中IDO活性升高,具有一定程度的診斷價(jià)值,有望成為肺癌的輔助診斷指標(biāo)[9]。
2.2IDO與乳腺癌的關(guān)系
大量研究發(fā)現(xiàn)IDO在乳腺癌中也存在著高表達(dá),其原因與乳腺癌的高臨床分期和淋巴結(jié)轉(zhuǎn)移密切相關(guān)[10-13]。Isla等[13]還發(fā)現(xiàn)IDO的表達(dá)增加了乳腺癌循環(huán)微泡,而循環(huán)微泡被認(rèn)為與腫瘤的擴(kuò)散有關(guān)。
2.3IDO與胃癌的關(guān)系
在胃癌的研究中也得到了相似的結(jié)論。有學(xué)者發(fā)現(xiàn)IDO在胃癌中的高表達(dá)與腫瘤的惡性生物學(xué)表現(xiàn)相關(guān),如浸潤深度和淋巴結(jié)轉(zhuǎn)移[14]。
2.4IDO與其他腫瘤的關(guān)系
Yang等[15]發(fā)現(xiàn)膀胱移行細(xì)胞癌患者的IDO mRNA表達(dá)顯著高于正常人,IDO陽性表達(dá)與腫瘤的組織學(xué)分級(jí)和TNM分期及無病生存期相關(guān);Folgiero等[16]證實(shí)了兒童急性髓系白血病中IDO表達(dá)組比不表達(dá)組的8年無事件生存率顯著下降。
IDO在多種腫瘤患者中高表達(dá)可引發(fā)腫瘤微環(huán)境及引流淋巴管內(nèi)Trp的耗竭,并產(chǎn)生大量有毒代謝產(chǎn)物,如Kyn等,抑制了免疫系統(tǒng)的功能從而導(dǎo)致腫瘤的免疫耐受,最終使得腫瘤細(xì)胞逃逸免疫系統(tǒng)。也因此,IDO被認(rèn)為是腫瘤免疫逃逸的關(guān)鍵之一。
IDO激活在癌癥中起到多方面作用。作為腫瘤逃避機(jī)體免疫監(jiān)視的重要因子,IDO除了能下調(diào)
MHC classⅠ,表達(dá)免疫抑制分子,還能調(diào)節(jié)免疫細(xì)胞的募集,如IDO能抑制T細(xì)胞和自然殺傷細(xì)胞(natural killer cells,NK),募集和活化調(diào)節(jié)性T細(xì)胞(regulatory T cells,Treg)和髓源抑制細(xì)胞(myeloidderived suppressor cells,MDSC)。IDO甚至還能增加腫瘤血管生成來促進(jìn)疾病進(jìn)展。
3.1IDO對(duì) T淋巴細(xì)胞的影響
3.1.1IDO與 T淋巴細(xì)胞增殖IDO能催化Trp降解為Kyn等,機(jī)體IDO過表達(dá)則引起Trp耗竭和有毒代謝產(chǎn)物累積。CD8+T細(xì)胞主要為細(xì)胞毒性T細(xì)胞,其功能為特異性殺傷帶抗原的靶細(xì)胞,如移植細(xì)胞、腫瘤細(xì)胞及受微生物感染的細(xì)胞等且對(duì)Trp缺乏特別敏感。
Ino等[17]發(fā)現(xiàn)子宮內(nèi)膜癌中IDO高表達(dá)能夠減少腫瘤和腫瘤引流淋巴結(jié)中CD3+T細(xì)胞、CD8+T細(xì)胞浸潤。腫瘤引流淋巴結(jié)中樹突狀細(xì)胞(dendritic cells,DC)表達(dá)IDO在腫瘤的進(jìn)展中也起重要作用[18]。有研究指出體外DC經(jīng)刺激后分泌IDO,導(dǎo)致T細(xì)胞增殖受到抑制,而應(yīng)用IDO抑制劑則逆轉(zhuǎn)了T細(xì)胞增殖抑制[19]。那么IDO是通過Trp耗竭還是代謝產(chǎn)物累積抑制了T細(xì)胞增殖?
Frumento等[20]的研究則證實(shí)了不僅微環(huán)境中色氨酸耗竭能夠抑制CD4+T細(xì)胞和CD8+T細(xì)胞的增殖,而且色氨酸經(jīng)IDO催化分解后的代謝產(chǎn)物犬尿氨酸、吡啶甲酸和喹啉酸也能發(fā)揮抑制作用。
Trp耗竭能夠調(diào)控小分子應(yīng)激反應(yīng)途徑,如GCN2激酶和哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)通路。GCN2分子含有一個(gè)激酶結(jié)構(gòu)域和一個(gè)變構(gòu)調(diào)控位點(diǎn)[21]。任何氨基酸的缺乏都能夠激活GCN2激酶的活性,使其下游的真核細(xì)胞起始因子2(eIF2α)磷酸化。磷酸化的eIF2α能夠阻礙大多數(shù)核糖體mRNA的轉(zhuǎn)錄。Munn等[22]發(fā)現(xiàn)腫瘤引流區(qū)淋巴結(jié)中的DC表達(dá)IDO抑制T淋巴細(xì)胞增殖,同時(shí)GCN2激酶通路激活并引起CD8+T細(xì)胞周期阻滯使其失去功能。但當(dāng)T細(xì)胞的GCN2敲除后,DC并不能抑制T淋巴細(xì)胞增殖。
而Trp經(jīng)IDO催化分解后的代謝產(chǎn)物,可以作為芳香烴受體(AHR)的天然免疫活性配體。Trp的代謝物作用于AHR后能引起機(jī)體免疫抑制[23]。Fallarino等[24]證實(shí)了色氨酸耗竭及其有毒代謝產(chǎn)物的累積能夠抑制小鼠CD8+T細(xì)胞受體ζ鏈(TCR ζ-chain)的表達(dá),TCR ζ-chain的下調(diào)呈GCN2激酶通路依賴且與T細(xì)胞的細(xì)胞毒性效應(yīng)受損有關(guān)。這些研究說明了IDO很可能是通過GCN2激酶通路抑制了T淋巴細(xì)胞增殖。
3.1.2IDO與 T淋巴細(xì)胞凋亡Yu等[25]從乳腺癌組織中分離出的MDSC高表達(dá)IDO且能夠誘導(dǎo)T細(xì)胞凋亡,而應(yīng)用IDO抑制劑1-MT后,則不能再誘導(dǎo)T細(xì)胞凋亡。Fallarino等[26]把色氨酸經(jīng)IDO催化后的代謝產(chǎn)物如喹啉酸等與抗原刺激的T細(xì)胞共培養(yǎng),24 h后熒光檢測發(fā)現(xiàn)大量Th1細(xì)胞凋亡碎片。表明IDO可促進(jìn)T淋巴細(xì)胞凋亡。
3.1.3IDO對(duì) Treg的影響漿細(xì)胞樣樹突狀細(xì)胞(pDC)是樹突狀細(xì)胞的一個(gè)特殊亞群,它能夠使CD4+CD25-T細(xì)胞分化成為CD4+CD25+Foxp3+的Treg。研究表明應(yīng)用1-MT后,此過程中Treg的產(chǎn)生明顯受到抑制,而當(dāng)添加Kyn后則能恢復(fù)pDC的Treg生成[27]。Sharma等[28]發(fā)現(xiàn)腫瘤引流淋巴結(jié)的pDC高表達(dá)IDO能直接激活靜息狀態(tài)Treg的活性,Treg經(jīng)IDO激活后能顯著上調(diào)程序性細(xì)胞死亡配體-1(PD-L1)和PD-L2在DC的表達(dá),而應(yīng)用PD-1/PD-L通路抗體能夠阻斷Treg對(duì)T細(xì)胞增殖的抑制,當(dāng)敲除小鼠IDO后,其腫瘤引流淋巴結(jié)分離的Treg則不具有PD-1/PD-L通路介導(dǎo)的抑制能力。這說明IDO+pDC激活Treg并通過PD-1/PD-L通路抑制T細(xì)胞增殖從而引發(fā)免疫抑制。
研究發(fā)現(xiàn),急性髓細(xì)胞性白血?。╝cute myeloid leukemia,AML)患者循環(huán)血中Treg的增加與IDO的表達(dá)有關(guān),在與IDO+AML細(xì)胞共培養(yǎng)后CD4+CD25-T細(xì)胞轉(zhuǎn)化成了Treg[29]。Brody等[30]則通過免疫組化的方法證實(shí)了惡性黑色素瘤患者IDO的表達(dá)與Treg的增多相關(guān),且IDO的表達(dá)和Treg的增多又導(dǎo)致了患者生存時(shí)間較短。他們對(duì)轉(zhuǎn)移性胰腺導(dǎo)管腺癌的另一項(xiàng)研究中發(fā)現(xiàn)了相似的結(jié)果[31]。Yu等[32]通過免疫組化也發(fā)現(xiàn)IDO表達(dá)與乳腺癌腫瘤組織和引流淋巴結(jié)中Treg的浸潤正相關(guān),體外實(shí)驗(yàn)應(yīng)用了一個(gè)穩(wěn)定表達(dá)IDO的CHO細(xì)胞系與CD3+T細(xì)胞共培養(yǎng),通過檢測mRNA和蛋白,發(fā)現(xiàn)IDO可以增加Treg的數(shù)量。Moretti等[33]通過免疫組化證實(shí)了甲狀腺癌中IDO mRNA增高與Treg的浸潤增多和惡性程度高有關(guān),還發(fā)現(xiàn)甲狀腺癌FTC-133細(xì)胞能體外刺激淋巴細(xì)胞向Treg分化,而當(dāng)應(yīng)用shRNA技術(shù)敲除IDO后,Treg的比例顯著下降。Takamatsu等[34]敲除小鼠IDO后,發(fā)現(xiàn)腫瘤組織Treg數(shù)量明顯減少。Balachandran等[35]研究了小鼠的胃腸道間質(zhì)瘤模型,結(jié)果證明伊馬替尼能抑制致瘤的KIT信號(hào)而減少IDO的表達(dá),從而促進(jìn)Treg凋亡發(fā)揮抗腫瘤的作用。
Treg能夠阻止殺傷性T細(xì)胞對(duì)腫瘤發(fā)動(dòng)的襲擊,容忍腫瘤的發(fā)生發(fā)展,以上研究證明多種腫瘤中IDO的高表達(dá)與Treg的增多密切相關(guān),從而促進(jìn)了腫瘤的免疫逃逸。
3.2IDO對(duì)巨噬細(xì)胞的影響
巨噬細(xì)胞的活化型有兩種:經(jīng)典活化的巨噬細(xì)胞(M1)和替代性活化的巨噬細(xì)胞(M2)。腫瘤相關(guān)巨噬細(xì)胞中,M1、M2在腫瘤組織中占據(jù)不同的位置,M1主要存在于腫瘤組織的常氧區(qū),而M2主要占據(jù)低氧區(qū)[36]。M1能夠促進(jìn)免疫系統(tǒng)功能而發(fā)揮抗腫瘤作用;M2則促進(jìn)腫瘤血管生成、抑制機(jī)體免疫系統(tǒng)反應(yīng),表現(xiàn)為促進(jìn)腫瘤生長的特性。
人單核細(xì)胞系THP-1細(xì)胞是一個(gè)廣泛應(yīng)用于研究巨噬細(xì)胞的體外模型。王險(xiǎn)峰等[37]體外檢測巨噬細(xì)胞分子標(biāo)記發(fā)現(xiàn)dTHP-1經(jīng)IFN-γ刺激后向M1表型極化,同時(shí)伴隨著M1中IDO表達(dá)上調(diào)。當(dāng)dTHP-1細(xì)胞轉(zhuǎn)染了IDO質(zhì)粒后,IDO的表達(dá)顯著上調(diào),導(dǎo)致dTHP-1細(xì)胞的表型向M2型巨噬細(xì)胞極化,而敲除IDO則使其表型向M1極化。這提示了IDO過表達(dá)可能促進(jìn)了巨噬細(xì)胞向M2極化,發(fā)揮了抑制免疫的效應(yīng)。
3.3IDO對(duì)NK細(xì)胞的影響
NK細(xì)胞能夠直接殺傷腫瘤細(xì)胞,發(fā)揮抑制腫瘤發(fā)展作用,在腫瘤的非特異性免疫應(yīng)答中起關(guān)鍵作用。Ino等[17]發(fā)現(xiàn)子宮內(nèi)膜癌中IDO高表達(dá)能夠減少腫瘤和腫瘤引流淋巴結(jié)中CD57+NK細(xì)胞浸潤。Peng等[38]發(fā)現(xiàn)胰腺癌細(xì)胞中IDO的表達(dá)升高導(dǎo)致了NK細(xì)胞的功能障礙,而應(yīng)用IDO抑制劑1-MT后,則部分恢復(fù)了NK細(xì)胞的功能。表明了IDO可能通過破壞NK細(xì)胞功能促使腫瘤細(xì)胞逃逸免疫系統(tǒng)的殺傷。
4.1JAK/STAT通路與IDO
Janus激酶(janus kinase,JAK)/信號(hào)轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子(signal transducer and activator of transcription,STAT)信號(hào)通路與原癌基因的表達(dá)和腫瘤免疫逃逸相關(guān)。在乳腺癌中STAT3活性增強(qiáng)能夠增加核因子-κB(nuclear factor kappa B,NF-κB)誘導(dǎo)激酶(NIK)蛋白質(zhì)水平、磷酸化NF-κB激酶α等,并能上調(diào)髓源抑制細(xì)胞(MDSC)中IDO的表達(dá)。而應(yīng)用小分子抑制劑JSI-124阻斷STAT3的活化能夠明顯減少IDO和NIK的積累。當(dāng)敲除NIK時(shí),只能減少IDO的表達(dá)而不能抑制STAT3的激活[25,39]。Sun等[40]發(fā)現(xiàn)STAT3去乙酰化能夠增加IDO的轉(zhuǎn)錄。另一項(xiàng)對(duì)鼻咽癌的研究表明了丁酸鈉(sodium butyrate,NaB)能夠抑制STAT1的磷酸化并增加其乙酰化發(fā)揮抑制IDO的表達(dá)[41]。而Campia等[42]研究發(fā)現(xiàn)JAK/STAT通路調(diào)控IDO表達(dá)促進(jìn)了腫瘤細(xì)胞的多重耐藥。這些結(jié)果表明JAK/STAT通路在調(diào)節(jié)IDO的表達(dá)上發(fā)揮重要作用,該通路的激活可能通過上調(diào)IDO幫助了腫瘤逃逸免疫系統(tǒng)的監(jiān)視和攻擊。
4.2PI3K/AKT通路與IDO
近年來磷脂肌醇3-激酶(phosphoinositide-3 kinase,PI3K)/蛋白激酶B(protein kinase B,PKB,又稱AKT)信號(hào)通路與腫瘤的發(fā)生研究較多,該通路在多種細(xì)胞生物過程中發(fā)揮重要作用。Koorella等[43]研究發(fā)現(xiàn)DC可能通過調(diào)控PI3K/AKT/NF-κB信號(hào)通路調(diào)節(jié)了IDO的表達(dá)。Ogasawara等[44]則發(fā)現(xiàn),血紅蛋白能夠誘導(dǎo)骨髓來源的樹突狀細(xì)胞表達(dá)IDO,在此過程中血紅蛋白誘導(dǎo)了AKT的磷酸化,而應(yīng)用PI3K抑制劑則能抑制此過程。由此可見,PI3K/AKT信號(hào)通路在IDO的調(diào)控中亦起到重要作用。
大量研究表明了IDO在多種腫瘤組織中的高表達(dá),改造了腫瘤微環(huán)境中浸潤的免疫細(xì)胞類型及數(shù)量??鼓[瘤免疫細(xì)胞減少和促腫瘤細(xì)胞的募集使得腫瘤細(xì)胞逃逸了免疫系統(tǒng)的清除,而在免疫逃逸中IDO占據(jù)重要作用。目前IDO的抑制劑在對(duì)復(fù)發(fā)性或難治性實(shí)體瘤的治療也已處于臨床試驗(yàn)階段。靶向IDO的治療手段將成為腫瘤免疫療法的重要補(bǔ)充。
[1]Dunn GP,Old LJ,Schreiber RD.The immunobiology of cancer immunosurveillance and immunoediting[J].Immunity,2004,21(2):137-148.
[2]Zamanakou M,Germenis AE,Karanikas V.Tumor immune escape mediated by indoleamine 2,3-dioxygenase[J].Immunol Lett,2007,111(2):69-75.
[3]Uyttenhove C,Pilotte L,Théate I,et al.Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase[J].Nat Med,2003,9(10):1269-1274.
[4]Balachandran VP,Cavnar MJ,Zeng S,et al.Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido[J].Nat Med,2011,17(9):1094-1100.
[5]Munn DH.Blocking IDO activity to enhance anti-tumor immunity[J].Front Biosci(Elite Ed),2012,4:734-745.
[6]夏俊芝,辛建保,白明.吲哚胺-2,3-雙加氧酶在非小細(xì)胞肺癌中的表達(dá)[J].華中科技大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2010,39(1):9-12.
[7]Sim SH,Ahn YO,Yoon J,et al.Influence of chemotherapy on nitric oxide synthase,indole-amine-2,3-dioxygenase and CD124 expression in granulocytes and monocytes ofnon-small cell lung cancer[J].Cancer Sci,2012,103(2):155-160.
[8]Suzuki Y,Suda T,F(xiàn)uruhashi K,et al.Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer[J].Lung Cancer,2010,67(3):361-365.
[9]項(xiàng)忠元,皮蘭敢,石志輝,等.血清吲哚氨2,3-雙加氧酶活性測定在肺癌診斷中的價(jià)值[J].臨床檢驗(yàn)雜志,2013,31(7):497-498.
[10]Soliman H,Rawal B,F(xiàn)ulp J,et al.Analysis of indoleamine 2-3 dioxygenase(IDO1)expression in breast cancer tissue by immunohistochemistry[J].Cancer Immunol Immunother,2013,62(5):829-837.
[11]Liu JT,Wei LJ,Yu JP,et al.Expression of indoleamine 2,3-ioxygenase and its correlation with prognosis in breast cancer patients[J].Zhonghua Zhong Liu Za Zhi,2011,33(7):513-516.
[12]Yu J,Sun J,Wang SE,et al.Upregulated expression of indoleamine 2,3-dioxygenase in primary breast cancer correlates with increase of infiltrated regulatory T cells in situ and lymph node metastasis[J].Clin Dev Immunol,2011,2011:469135.
[13]Isla Larrain MT,Rabassa ME,Lacunza E,et al.IDO is highly expressed in breast cancer and breast cancer-derived circulating microvesicles and associated to aggressive types of tumors by in silico analysis[J].Tumor Biol,2014,35(7):6511-6519.
[14]Li F,Huang J,Li S,et al.The subsets of dendritic cells and memory T cells correspond to indoleamine 2,3-dioxygenase in stomach tumor microenvironment[J].Tumor Biol,2014,35(9):8691-8698.
[15]Yang C,Zhou Y,Zhang L,et al.Expression and function analysis of indoleamine 2 and 3-dioxygenase in bladder urothelial carcinoma[J].Int J Clin Exp Pathol,2015,8(2):1768-1775.
[16]Folgiero V,Goffredo BM,F(xiàn)ilippini P,et al.Indoleamine 2,3-dioxygenase 1(IDO1)activity in leukemia blasts correlates with poor outcome in childhood acute myeloid leukemia[J].Oncotarget,2014,5(8):2052-2064.
[17]Ino K,Yamamoto E,Shibata K,et al.Inverse correlation between tumoral indoleamine 2,3-dioxygenase expression and tumor-infiltrating lymphocytes in endometrial cancer:its association with disease progression and survival[J]. Clin Cancer Res,2008,14(8):2310-2317.
[18]Munn DH,Sharma MD,Hou D,et al.Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes[J].J Clin Invest,2004,114(2):280-290.
[19]Hwu P,Du MX,Lapointe R,et al.Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation[J].J Immunol,2000,164(7):3596-3599.
[20]Frumento G,Rotondo R,Tonetti M,et al.Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase[J].J Exp Med,2002,196(4):459-468.
[21]Wek RC,Jiang HY,Anthony TG.Coping with stress:eIF2 kinases and translational control[J].Biochem Soc Trans, 2006,34(Pt 1):7-11.
[22]Munn DH,Sharma MD,Baban B,et al.GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase[J].Immunity,2005,22(5):633-642.
[23]Munn DH,Mellor AL.Indoleamine 2,3 dioxygenase and metabolic control of immune responses[J].Trends Immunol,2013,34(3):137-143.
[24]Fallarino F,Grohmann U,You S,et al.The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells[J].J Immunol,2006,176(11):6752-6761.
[25]Yu J,Du W,Yan F,et al.Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer[J].J Immunol,2013,190(7):3783-3797.
[26]Fallarino F,Grohmann U,Vacca C,et al.T cell apoptosis by tryptophan catabolism[J].Cell Death Differ,2002,9(10):1069-1077.
[27]Chen W,Liang X,Peterson AJ,et al.The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation[J].J Immunol,2008,181(8):5396-5404.
[28]Sharma MD,Baban B,Chandler P,et al.Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase[J].J Clin Invest,2007,117(9):2570-2582.
[29]Curti A,Pandolfi S,Valzasina B,et al.Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25-into CD25+T regulatory cells[J]. Blood,2007,109(7):2871-2877.
[30]Brody JR,Costantino CL,Berger AC,et al.Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival[J].Cell Cycle,2009,8(12):1930-1934.
[31]Witkiewicz A,Williams TK,Cozzitorto J,et al.Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection[J].J Am Coll Surg,2008,206(5):849-854.
[32]Yu J,Sun J,Wang SE,et al.Upregulated expression of indoleamine 2,3-dioxygenase in primary breast cancer correlates with increase of infiltrated regulatory T cells in situ and lymph node metastasis[J].Clin Dev Immunol,2011,2011:469135.
[33]Moretti S,Menicali E,Voce P,et al.Indoleamine 2,3-dioxygenase 1(IDO1)is up-regulated in thyroid carcinoma and drives the development of an immunosuppressant tumor microenvironment[J].J Clin Endocrinol Metab,2014,99(5):E832-E840.
[34]Takamatsu M,Hirata A,Ohtaki H,et al.Inhibition of indoleamine 2,3-dioxygenase 1 expression alters immune response in colon tumor microenvironment in mice[J]. Cancer Sci,2015,106(8):1008-1015.
[35]Balachandran VP,Cavnar MJ,Zeng S,et al.Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido[J].Nat Med,2011,17(9):1094-1100.
[36]Casazza A,Laoui D,Wenes M,et al.Impeding macrophage entry into hypoxic tumor areas by Sema3A/Nrp1 signaling blockade inhibits angiogenesis and restores antitumor immunity[J].Cancer Cell,2013,24(6):695-709.
[37]王險(xiǎn)峰,王昊,張帆,等.吲哚胺加雙氧酶的表達(dá)調(diào)控THP-1巨噬細(xì)胞的極化[J].細(xì)胞與分子免疫學(xué)雜志,2014,30(9):901-905.
[38]Peng YP,Zhang JJ,Liang WB,et al.Elevation of MMP-9 and IDO induced by pancreatic cancer cells mediates natural killer cell dysfunction[J].BMC Cancer,2014,14:738.
[39]Yu J,Wang Y,Yan F,et al.Noncanonical NF-κB activation mediates STAT3-stimulated IDO upregulation in myeloid-derived suppressor cells in breast cancer[J].J Immunol,2014,193(5):2574-2586.
[40]Sun Y,Chin YE,Weisiger E,et al.Cutting edge:Negative regulation of dendritic cells through acetylation of the nonhistoneproteinSTAT-3[J].JImmunol,2009,182(10):5899-5903.
[41]He YW,Wang HS,Zeng J,et al.Sodium butyrate inhibits interferon-gamma induced indoleamine 2,3-dioxygenase expression via STAT1 in nasopharyngeal carcinoma cells[J].Life Sci,2013,93(15):509-515.
[42]CampiaI,BuondonnoI,CastellaB,etal.AnAutocrineCytokine/JAK/STAT-Signaling Induces Kynurenine Synthesis in Multidrug Resistant Human Cancer Cells[J].PLoS ONE,2015,10(5):e0126159.
[43]Koorella C,Nair JR,Murray ME,et al.Novel regulation of CD80/CD86-induced phosphatidylinositol 3-kinase signaling by NOTCH1 protein in interleukin-6 and indoleamine 2,3-dioxygenase production by dendritic cells[J].J Biol Chem,2014,289(11):7747-7762.
[44]Ogasawara N,Oguro T,Sakabe T,et al.Hemoglobin induces the expression of indoleamine 2,3-dioxygenase in dendritic cells through the activation of PI3K,PKC,and NF-κB and the generation of reactive oxygen species[J].J Cell Biochem,2009,108(3):716-725.
R730.3
A
10.11877/j.issn.1672-1535.2016.14.02.11
2015-09-05)
國家自然科學(xué)基金(81473627);上海市自然科學(xué)基金(14ZR1439000);上海中醫(yī)藥大學(xué)預(yù)算內(nèi)項(xiàng)目(2014YSN57)#
(corresponding author),郵箱:18916767226@163.com