• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      腫瘤微環(huán)境中的樹(shù)突狀細(xì)胞

      2016-03-17 20:53:21許瑩
      癌癥進(jìn)展 2016年2期
      關(guān)鍵詞:樹(shù)突抗原活化

      許瑩

      遼寧省沈陽(yáng)市中國(guó)醫(yī)科大學(xué)盛京醫(yī)院第一神經(jīng)內(nèi)科病房,沈陽(yáng)110000

      腫瘤微環(huán)境中的樹(shù)突狀細(xì)胞

      許瑩

      遼寧省沈陽(yáng)市中國(guó)醫(yī)科大學(xué)盛京醫(yī)院第一神經(jīng)內(nèi)科病房,沈陽(yáng)110000

      樹(shù)突狀細(xì)胞(dendritic cell,DC)是目前所知的機(jī)體內(nèi)功能最強(qiáng)大的抗原呈遞細(xì)胞(antigen presenting cell,APC),具有強(qiáng)大的抗原攝取和處理能力,很多學(xué)者認(rèn)為,基于樹(shù)突狀細(xì)胞的腫瘤疫苗可能是人類徹底戰(zhàn)勝腫瘤的希望。但是在病理?xiàng)l件下,DC的功能受到嚴(yán)重的抑制。腫瘤微環(huán)境中存在很多抑制性細(xì)胞因子可以作用于樹(shù)突狀細(xì)胞,導(dǎo)致其功能異常,從而使腫瘤細(xì)胞逃脫機(jī)體免疫系統(tǒng)的監(jiān)視。

      樹(shù)突狀細(xì)胞;腫瘤微環(huán)境;細(xì)胞因子

      樹(shù)突狀細(xì)胞是機(jī)體內(nèi)功能最強(qiáng)大的抗原呈遞細(xì)胞[1],具有強(qiáng)大的抗原攝取和處理能力,能夠向初始呈遞腫瘤抗原,刺激抗原特異的細(xì)胞毒性T淋巴細(xì)胞增殖(CTL),利用固有免疫細(xì)胞(如NK細(xì)胞)的細(xì)胞毒活性,引發(fā)針對(duì)腫瘤細(xì)胞的特異性免疫應(yīng)答[2]。研究者將DC負(fù)載腫瘤抗原,制成腫瘤疫苗,并過(guò)繼回輸至荷瘤宿主體內(nèi),這些DC能夠誘導(dǎo)針對(duì)腫瘤的特異性免疫應(yīng)答[3-5]。但是,從目前的臨床試驗(yàn)結(jié)果來(lái)看,該療法的治療效率還不盡人意,還有諸多問(wèn)題需要解決[5-6],尤其是腫瘤患者體內(nèi)微環(huán)境的改善。研究表明,腫瘤微環(huán)境中存在很多與DC功能相關(guān)的細(xì)胞因子,它們表達(dá)的改變會(huì)影響DC的功能。本文就目前腫瘤微環(huán)境下DC的功能變化進(jìn)行綜述。

      1 樹(shù)突狀細(xì)胞概述

      DC是目前所知的機(jī)體內(nèi)功能最強(qiáng)大的APC[1],它是由多種形態(tài)、表型和功能不完全相同的細(xì)胞組成的一個(gè)細(xì)胞體系。DC起源于骨髓CD34+造血干細(xì)胞。CD34+造血干細(xì)胞首先分化為不同的DC前體(precursor antigen presenting cell,pDC),然后離開(kāi)骨髓,通過(guò)血液或淋巴液進(jìn)入淋巴組織或非淋巴組織,并繼續(xù)分化為未成熟DC(immature antigen presenting cell,imDC)。imDC不斷識(shí)別、捕捉外界抗原,并被激活為成熟DC(mature antigen presenting cell,mDC),同時(shí)遷移到淋巴結(jié)。在淋巴結(jié)內(nèi),mDC可有效地誘導(dǎo)T細(xì)胞產(chǎn)生特異性免疫應(yīng)答[7]。有研究表明:免疫耐受可由成熟的,處于靜息狀態(tài)的DC引起,而完全被激活的DC能引起免疫反應(yīng)[2]。

      2 腫瘤微環(huán)境下的樹(shù)突狀細(xì)胞

      基于DC的腫瘤疫苗被人們應(yīng)用于白血?。?]、前列腺癌[9]、膠質(zhì)瘤[10]、腸癌[11]、肺癌[12]、胰腺癌[13]、卵巢癌[14]和肝癌[15]等腫瘤的臨床試驗(yàn)治療。很多學(xué)者認(rèn)為,基于樹(shù)突狀細(xì)胞的腫瘤疫苗可能是人類徹底戰(zhàn)勝腫瘤的希望。但是在病理?xiàng)l件下,DC的功能受到嚴(yán)重的抑制[16]。腫瘤細(xì)胞中含有許多能夠被宿主免疫系統(tǒng)所識(shí)別的抗原,但是在許多腫瘤組織中腫瘤細(xì)胞并不被免疫系統(tǒng)識(shí)別,不能有效產(chǎn)生免疫應(yīng)答,對(duì)于腫瘤治療來(lái)說(shuō),DC是誘導(dǎo)和維持抗腫瘤免疫應(yīng)答的關(guān)鍵因素。

      2.1異常樹(shù)突狀細(xì)胞的分化和活化

      由于腫瘤對(duì)免疫識(shí)別的逃逸導(dǎo)致荷瘤宿主中的DC不能充分刺激免疫系統(tǒng)。腫瘤DC缺陷的根源可能是髓系細(xì)胞的異常分化,而這種異常分化可以導(dǎo)致功能正常的成熟DC數(shù)量減少,imDC的數(shù)量增加。

      2.1.1腫瘤宿主中的成熟DC有研究者發(fā)現(xiàn)早期乳腺癌患者的DC數(shù)量顯著減少[17]。而乳腺癌患者只有髓系DC的數(shù)量顯著減少,其祖細(xì)胞pDC的數(shù)量未受影響。腫瘤微環(huán)境對(duì)DC的功能具有顯著的影響[18]。腫瘤患者體內(nèi)功能正常的DC數(shù)量減少的結(jié)果說(shuō)明:APC數(shù)量的減少導(dǎo)致免疫刺激的效率低下,引起腫瘤微環(huán)境下免疫應(yīng)答功能受損。

      2.1.2腫瘤宿主中的未成熟DC在腫瘤患者體內(nèi)的DC具有未成熟DC的表型,研究發(fā)現(xiàn),在腎細(xì)胞癌或前列腺癌組織中提取的DC極少被活化,異體刺激能力也下降[19],這些DC不表達(dá)或低表達(dá)共刺激分子CD86和CD80,來(lái)源于大腸癌組織的DC不僅很少刺激T細(xì)胞增殖,反而誘導(dǎo)T細(xì)胞免疫耐受[20]。

      2.2腫瘤微環(huán)境中重要的細(xì)胞因子

      血管內(nèi)皮細(xì)胞生長(zhǎng)因子(vascular endothelial growth factor,VEGF)在體外抑制DC的分化和功能,這與mDC的數(shù)量減少和imDC數(shù)量增加有相關(guān)性[21]。VEGF是被首個(gè)發(fā)現(xiàn)對(duì)DC分化有抑制作用的腫瘤來(lái)源的影響因素。VEGF由許多腫瘤細(xì)胞分泌,對(duì)于腫瘤的血管形成起著至關(guān)重要的作用,并且VEGF是血管內(nèi)皮生長(zhǎng)因子超家族的一個(gè)成員[22],研究者發(fā)現(xiàn)腫瘤患者血清VEGF的表達(dá)水平與腫瘤進(jìn)展呈正相關(guān)[23]。VEGF在癌癥患者血漿中的濃度增加與其較差的預(yù)后密切相關(guān),有研究發(fā)現(xiàn),VEGF的表達(dá)水平與卵巢癌患者腫瘤組織和外周血中的DCs的數(shù)量呈負(fù)相關(guān),并且卵巢癌患者血漿中VEGF的表達(dá)越高,其預(yù)后也越差[24]。

      IL-10在體外抑制DC活化,在體內(nèi)減少mDC的數(shù)量[25]。許多腫瘤細(xì)胞可以分泌和釋放IL-10。經(jīng)過(guò)其處理的DC可以誘導(dǎo)CD4+和CD8+T細(xì)胞通過(guò)細(xì)胞間的接觸來(lái)抑制其他T細(xì)胞進(jìn)行抗原特異性增殖;也能通過(guò)減少共刺激分子的表達(dá)將imDC轉(zhuǎn)變成耐受原APC[26];IL-10也能阻斷單核細(xì)胞向DC分化,使其分化為成熟的巨噬細(xì)胞[27]。另外,IL-10還能抑制來(lái)源于CD14+或CD34+祖細(xì)胞的DC[28]功能。

      巨噬細(xì)胞集落刺激因子M-CSF和IL-6抑制DC分化成熟。M-CSF和IL-6涉及腫瘤細(xì)胞介導(dǎo)的DC分化調(diào)控,M-CSF和IL-6的特異抗體能夠消除腎細(xì)胞癌條件培養(yǎng)基對(duì)DC分化的負(fù)面影響,使CD34+祖細(xì)胞分化為DC。骨髓瘤患者血清抑制DC的產(chǎn)生,IL-6特異抗體可中和這種抑制效果,IL-6在體內(nèi)抑制DC的成熟[29]。

      TGFβ1是TGFβ超家族的一個(gè)重要成員,具有復(fù)雜的生物學(xué)功能,是能夠調(diào)控IL-12表達(dá)和機(jī)體免疫耐受的細(xì)胞因子。在腫瘤微環(huán)境中,它既能加速腫瘤生長(zhǎng),也能抑制腫瘤生長(zhǎng)[30],當(dāng)細(xì)胞暴露于TGFβ1時(shí),可觸發(fā)細(xì)胞產(chǎn)生許多不同的應(yīng)答,包括抑制細(xì)胞生長(zhǎng)、遷移、分化和凋亡[30]。腫瘤細(xì)胞表達(dá)的TGFβ1對(duì)DC具有復(fù)雜的影響,它可將浸潤(rùn)于腫瘤的DC束縛于腫瘤組織內(nèi),阻止其從腫瘤組織向引流淋巴結(jié)遷移[31],可見(jiàn)TGFβ1是腫瘤逃脫免疫攻擊的一個(gè)關(guān)鍵性因素。TGFβ1能抑制正常角化細(xì)胞的生長(zhǎng)和分化,同時(shí),它又能刺激腫瘤細(xì)胞增殖,使腫瘤細(xì)胞比其他非轉(zhuǎn)化細(xì)胞更具生長(zhǎng)優(yōu)勢(shì)[32]。

      3 樹(shù)突狀細(xì)胞異常分化通路

      具有酪氨酸激酶活性和以信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化因子(signal transducer and activation transcription,STAT)為底物的非受體型蛋白酪氨酸激酶(janus kinase,JAK)家族,JAK家族是不同信號(hào)轉(zhuǎn)導(dǎo)路徑的關(guān)鍵環(huán)節(jié),這些路徑活躍于細(xì)胞存活、增殖、分化和凋亡等功能活動(dòng)中。在大多數(shù)腫瘤中發(fā)現(xiàn)了STAT3的連續(xù)活化,腫瘤細(xì)胞STAT3的連續(xù)活化抑制腫瘤產(chǎn)生,如腫瘤壞死因子(tumour necrosis factor,TNF)、干擾素β(interferon-β,IFN-β)和CC趨化因子配體5(CC chemokines ligand 5,CCL5)等炎性介導(dǎo)因子,從而引起免疫抑制[33]。在體外,存在STAT3連續(xù)活化的腫瘤細(xì)胞條件培養(yǎng)基,可抑制DC的功能成熟。

      核轉(zhuǎn)錄因子κB(nuclear factor-κB,NF-κB)的活化可以由來(lái)自于細(xì)胞表面多種不同的刺激所誘導(dǎo),NF-κB對(duì)DC分化是必需的[34]。青藤堿、己酮可可堿均可通過(guò)NF-κB途徑抑制單核細(xì)胞來(lái)源的DC分化[35]。STAT3和NF-κB間有可能存在一種直接聯(lián)系,STAT3可以結(jié)合NF-κB的p65亞單位,并抑制NF-κB的活性[34]。

      絲裂原活化蛋白激酶通路(mitogen activated protein kinase,MAPK)也是DC生存和成熟的重要參與者,它參與許多細(xì)胞因子的釋放和免疫細(xì)胞功能[36]。與其他MAPK蛋白通路相比,p38MAPK對(duì)上游刺激起著重要作用,阻斷p38MAPK通路會(huì)抑制DC成熟[37]。

      綜上所述,若腫瘤特異的免疫應(yīng)答受到了抑制,最終將導(dǎo)致腫瘤逃脫免疫系統(tǒng)的控制。這些機(jī)制提示,改善腫瘤患者體內(nèi)微環(huán)境因素的各種免疫抑制因素可能會(huì)改善腫瘤的治療,也可能會(huì)有助于基于DC的腫瘤疫苗的臨床應(yīng)用。

      [1]Steinman RM.Decisions about dendritic cells:past,present,and future[J].Annu Rev Immunol,2012,30(4):1-22.

      [2]Tel J,Aarntzen EH,Baba T,et al.Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients[J].Cancer Res,2013,73(3):1063-1065.

      [3]Steinman RM,Banchereau J.Taking dendritic cells into medicine[J].Nature,2007,449(9):419-426.

      [4]Schreiber,RD,Old LJ,Smyth MJ.Cancer immunoediting:integrating immunity's roles in cancer suppression and promotion[J].Science,2011,331(6024):1565-1570.

      [5]Palucka K,Banchereau J.Cancer immunotherapy via dendritic cells[J].Nat Rev Cancer,2012,12(4):265-277.

      [6]Radford KJ,Tullett KM,Lahoud MH.Dendritic cells and cancer immunotherapy[J].Curr Opin Immunol,2014,7(27):26-32.

      [7]Zanoni I,Granucci F,F(xiàn)oti M,et al.Self-tolerance,dendritic cell(DC)-mediated activation and tissue distribution of natural killer(NK)cells[J].Immunol Lett,2007,110(1):6-17.

      [8]Lim JH,Park CJ,Kim MJ,et al.Generation of lymphocytes potentiated against leukemic lymphoblasts by stimulation using leukemic cell lysate-pulsed dendritic cells in patients with acute lymphoblastic leukemia and measurement of in vitro anti-leukemic cytotoxicity[J].Hematology,2012,17(1):15-22.

      [9]Draube A,Klein-González N,Mattheus S,et al.Dendritic cell based tumour vaccination in prostate and renal cell cancer:a systematic review and meta-analysis[J].PLoS One 6,2011,6(4):e18801.

      [10]Chang CN,Huang YC,Yang DM,et al.A phaseⅠ/Ⅱclinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumour vac-cine in patients with malignant glioma[J].J Clin Neurosci,2011,18(8):1048-1054.

      [11]Sakakibara M,Kanto T,Hayakawa M,et al.Comprehensive immunological analyses of colorectal cancer patients in the phaseⅠ/Ⅱstudy of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide[J]. Cancer Immubol.Immunother,2011,60(11):1565-1575.

      [12]Perroud MW Jr,Honma HN,Barbeiro AS,et al.Mature autologus dendritic cell vaccines in advanced non-small cell lung cancer:a phaseⅠpilot study[J].J Exp Clin Cancer Res,2011,30(1):65-72.

      [13]Suso EM,Dueland S,Rasmussen AM,et al.hTERTmRNA dendritic cell vaccination:complete response ina pancreatic cancer patient associated with response against several hTERTepitopes[J].CancerImmunol.Immunother,2011,60(6):809-818.

      [14]Chiriva-Internati M,Cobos E,Cannon MJ.Prospects and challenges for immunotherapy of ovarian cancer-what can we learn from the tumor microenviroment?[J].Int Rev Immunol,2011,30(2-3):67-70.

      [15]Wirth TC.Spontaneous and therapeutic immune responses in hepatocellular carcinoma:implications for current and future immunotherapies[J].Expert Rev Gastroenterol Hepatol,2014,8(1):101-110.

      [16]Rabinovich GA,Gabrilovich D,Sotomayor EM.Immunosupressive strategies that are mediated by tumor cells[J]. Annu Rev Immunol,2007,25(2):267-296.

      [17]Ghirelli C,Reyal F,Jeanmougin M,et al.Breast cancer cell-derived GM-CSF licenses regulatory Th2 induction by plasmacytoid pre-dendritic cells in aggressive disease subtypes[J].Cancer Res,2015,75(14):1-13.

      [18]Katz T,Avivi I,Benyamini N.Dendritic cell cancer vaccines:from the bench to the bedside[J].Rambam Maimonides Med J,2014,5(4):e0024.

      [19]Xi HB,Wang GX,F(xiàn)u B,et al.Survivin and PSMA loaded dendritic cell vaccine for the treatment of prostate cancer[J].Biol Pharm Bull,2015,38(6):827-835.

      [20]CiavarraRP,HoltermanDA,BrownRR,etal.Prostatetumor microenvironment alters immune cells and prevents longterm survival orlhotopic mouse model following FLT3-ligand/CD40-ligandimmunotherapy[J].JImmunpther,2004,27(1):13-26.

      [21]Lin A,Schildknecht A,Nguyen LT,et al.Dendritic cells integrate signals from the tumor microenvironment to modulate immunity and tumor growth[J].Immunol Lett,2010,127(2):77-84.

      [22]Gabrilovich DI,Chen HL,Girgis KR,et al.Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells[J].Nat Med,1996,2(10):1096-1103.

      [23]Minura K,Kono K,Takahashi A,et al.Vascular endothelial growth factor inhibits the function of human mature dendritic cells mediated by VEGF receptor-2[J].Cancer Immunol Immunother,2007,56(6):761-770.

      [24]Masoumi MS,Amini A,Morris DL,et al.Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer[J].Cancer Metastasis Rev,2012,31(1-2):143-162.

      [25]Yang AS,Lattime EC.Tumor induced interleukin 10 suppressed the ability of splenic dendritic cells to stimulate CD4 and CD8 T cell responses[J].Cancer Res,2003,63(9):2150-2157.

      [26]Steinbrink K,Graulich E,Kubsch S,et al.CD4+and CD8+anergic T cells induced by interfeukin-10 treated human dendritic cells display antigen specific suppressor activity[J].Blood,2002,99(7):2468-2476.

      [27]Gardner JK,Mamotte CD,Patel P,et al.Mesothelioma tumor cells modulate dendritic cell lipid content,phenotype and function[J].PLoS One,2015,10(4):e0123563.

      [28]Quan S,Kim HJ,Dukala D,et al.Impaired dendritic cell function in a spontaneous autoimmune polyneuropathy[J]. J Immunol,2015,194(9):4175-4184.

      [29]Campia I,Buondonno I,Castella B,et al.An autocrine cytokine/JAK/STAT-signaling induces kynurenine synthesis in multidrug resistant human cancercells[J].PLoS One,2015,10(5):e0126159.

      [30]Sánchez-Capelo A.Dual role for TGF-β1 in apoptosis[J]. Cytokine&Growth Factors Reviews,2005,16(1):15-34.

      [31]Weber F,Byrne SN,Le S,et al.Transforming growth factor-β1 immobilises dendritic cells within skin tumors and facilitate tumour escape from the immune system[J].Cancer Immunol Immunother,2005,54(9):898-906.

      [32]Draghiciu O,Lubbers J,Nijman HW,et al.Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy[J].Oncoimmunology,2015,4(1):e954829.

      [33]Francois G,Lionel A,F(xiàn)rank H,et al.Links between innate and cognate tumor immunityv[J].Current Opinion in Immunology,2007,19(2):224-231.

      [34]Nishio H,Yaguchi T,Sugiyama J,et al.Immunosuppression through constitutively activated NF-κB signalling in human ovarian cancer and its reversal by an NF-κB inhibitor[J].Br J Cancer,2014,110(12):2965-2974.

      [35]Zhao Y,Li J,Yu K,et al.Sinomenine inhibits maturation of monocyte-derived dendritic cells through blocking activation of NF-kappa B[J].Int Immunopharmacol,2007,7(5):637-645.

      [36]Boisleve F,Kerdine-Romer S,Pallardy M.Implication of the MAPK pathways in the maturation of human dendritic cells induced by nickel and TNF-alpha[J].Toxicology,2005,206(2):233-44.

      [37]Swafford D,Manicassamy S.Wnt signaling in dendritic cells:its role in regulation of immunity and tolerance[J]. Discov Med,2015,19(105):303-310.

      R730.3

      A

      10.11877/j.issn.1672-1535.2016.14.02.07

      2015-04-12)

      猜你喜歡
      樹(shù)突抗原活化
      無(wú)Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
      科學(xué)家揭示大腦連接的真實(shí)結(jié)構(gòu) 解決了樹(shù)突棘保存難題
      海外星云(2021年6期)2021-10-14 07:20:40
      小學(xué)生活化寫作教學(xué)思考
      siRNA干預(yù)樹(shù)突狀細(xì)胞CD40表達(dá)對(duì)大鼠炎癥性腸病的治療作用
      梅毒螺旋體TpN17抗原的表達(dá)及純化
      結(jié)核分枝桿菌抗原Lppx和MT0322人T細(xì)胞抗原表位的多態(tài)性研究
      樹(shù)突狀細(xì)胞疫苗抗腫瘤免疫研究進(jìn)展
      APOBEC-3F和APOBEC-3G與乙肝核心抗原的相互作用研究
      徽章樣真皮樹(shù)突細(xì)胞錯(cuò)構(gòu)瘤三例
      鹽酸克倫特羅人工抗原的制備與鑒定
      徐州市| 莫力| 尉犁县| 马关县| 博白县| 蒲江县| 西畴县| 长沙市| 武威市| 孟村| 安多县| 会理县| 扶绥县| 四会市| 阳山县| 武穴市| 中方县| 岳阳县| 崇仁县| 永春县| 庆安县| 顺平县| 浦县| 繁昌县| 唐海县| 通道| 岑溪市| 连山| 高要市| 和硕县| 磐安县| 大港区| 嘉禾县| 津南区| 阜宁县| 丽江市| 石台县| 淳化县| 公主岭市| 射洪县| 前郭尔|