吳珺華,楊 松
(1. 南昌航空大學(xué)土木建筑學(xué)院,江西南昌 330063; 2. 云南農(nóng)業(yè)大學(xué)水利學(xué)院,云南昆明 650201)
?
干濕循環(huán)下膨脹土裂隙發(fā)育與導(dǎo)電特性
吳珺華1,楊松2
(1. 南昌航空大學(xué)土木建筑學(xué)院,江西南昌330063; 2. 云南農(nóng)業(yè)大學(xué)水利學(xué)院,云南昆明650201)
摘要:干濕循環(huán)引起膨脹土裂隙開(kāi)展,進(jìn)而對(duì)土體的土水特性產(chǎn)生重要影響。首先進(jìn)行了不同干密度、含水率狀態(tài)下均質(zhì)無(wú)裂隙試樣的導(dǎo)電性能試驗(yàn),認(rèn)為試樣電導(dǎo)率與干密度、含水率呈線性關(guān)系,可采用多元線性函數(shù)進(jìn)行擬合。用遠(yuǎn)距離光學(xué)顯微鏡觀測(cè)了膨脹土裂隙發(fā)生發(fā)展過(guò)程,利用圖像灰度熵評(píng)價(jià)裂隙形態(tài),試驗(yàn)過(guò)程中同時(shí)測(cè)定了試樣的含水率和電導(dǎo)率,獲得了干濕循環(huán)下土體灰度熵-含水率-電導(dǎo)率的關(guān)系。結(jié)果表明:隨著含水率的降低,灰度熵逐漸增大,電導(dǎo)率逐漸減??;含水率對(duì)電導(dǎo)率的貢獻(xiàn)逐漸降低,裂隙對(duì)電導(dǎo)率的貢獻(xiàn)逐漸增大。當(dāng)失水到一定程度時(shí),裂隙對(duì)電導(dǎo)率的貢獻(xiàn)幾乎不變,此時(shí)表明裂隙已開(kāi)展穩(wěn)定;浸水過(guò)程中,裂隙部分閉合,灰度熵減小,電導(dǎo)率增大。經(jīng)歷多次干濕循環(huán)的試樣,灰度熵和電導(dǎo)率均有所降低,表明土體結(jié)構(gòu)產(chǎn)生了不可逆的改變。
關(guān)鍵詞:裂隙; 灰度熵; 電導(dǎo)率; 膨脹土
膨脹土具有強(qiáng)烈的濕脹干縮特性。蒸發(fā)條件下,膨脹土失水收縮;降雨時(shí),膨脹土吸水膨脹。干濕循環(huán)導(dǎo)致土體表面產(chǎn)生裂隙,結(jié)構(gòu)松散,工程性能差。裂隙的形成與含水率的變化密切相關(guān),含水率的變化使得膨脹土反復(fù)脹縮變形,進(jìn)而導(dǎo)致裂隙的不斷發(fā)育[1-2]。裂隙發(fā)育破壞了土體的完整性,對(duì)土體的強(qiáng)度、變形和滲流特性有顯著影響。因此有學(xué)者對(duì)干濕循環(huán)條件下膨脹土的裂隙開(kāi)展進(jìn)行了試驗(yàn)研究,以了解裂隙開(kāi)展過(guò)程中裂隙形態(tài)與土體相關(guān)參數(shù)的相互關(guān)系。龔永康等[3]利用電導(dǎo)測(cè)試技術(shù),采用人工方法模擬裂隙的發(fā)生發(fā)展,弄清了膨脹土裂隙開(kāi)展時(shí)的電導(dǎo)變化規(guī)律,一定程度上揭示了土體內(nèi)部結(jié)構(gòu)性的改變特征。袁俊平等[4]利用遠(yuǎn)距離光學(xué)顯微鏡對(duì)膨脹土試樣進(jìn)行觀測(cè),利用圖像灰度熵的概念來(lái)表征裂隙的發(fā)育程度。唐朝生等[5]在室內(nèi)試驗(yàn)基礎(chǔ)上,采用計(jì)算機(jī)圖片處理技術(shù)對(duì)黏性土干縮裂隙網(wǎng)絡(luò)進(jìn)行處理,探討了聚丙烯纖維對(duì)黏性土干縮裂隙的抑制作用和機(jī)理,提出了區(qū)面積裂隙率和裂隙網(wǎng)絡(luò)的分形維數(shù)可作為描述裂隙發(fā)育的指標(biāo)。G. W. Horgan等[6-7]通過(guò)設(shè)定若干與裂隙發(fā)展相關(guān)的幾何參數(shù)建立了土體裂隙生成模型模擬干縮裂隙的形成和發(fā)展過(guò)程。H. J. Vogel等[8-9]通過(guò)試驗(yàn)研究了黏性土干縮裂隙形成過(guò)程的動(dòng)力學(xué)特征,建立了裂隙發(fā)育的動(dòng)力學(xué)模型。N. Lecocq等[10]通過(guò)試驗(yàn)獲得了裂隙寬度的一般規(guī)律及影響因素。馬佳等[11]進(jìn)行了重塑土的裂隙演化試驗(yàn),對(duì)試驗(yàn)過(guò)程中土體裂隙開(kāi)展及土性參數(shù)進(jìn)行了研究。吳珺華等[12-13]對(duì)干濕循環(huán)下膨脹土脹縮性能進(jìn)行了大量試驗(yàn)研究,并對(duì)試驗(yàn)過(guò)程中土體的結(jié)構(gòu)性變化進(jìn)行了分析。
可以看出,已有研究大都集中在裂縫網(wǎng)絡(luò)的定量分析和幾何模型建立方面,關(guān)于裂隙發(fā)育過(guò)程中裂隙形態(tài)變化規(guī)律及其與土體相關(guān)參數(shù)之間的關(guān)系尚不多見(jiàn),定量觀測(cè)干濕循環(huán)條件下土體裂隙的發(fā)育過(guò)程更鮮見(jiàn)報(bào)道。為了研究干濕循環(huán)條件下膨脹土裂隙發(fā)育過(guò)程,本文在試驗(yàn)基礎(chǔ)上,采用電導(dǎo)測(cè)試技術(shù)和圖像處理,對(duì)干濕循環(huán)過(guò)程中不同時(shí)刻的裂隙形態(tài)進(jìn)行分析,獲得裂隙開(kāi)展過(guò)程中含水率、電導(dǎo)率與裂隙之間的關(guān)系,為后續(xù)研究提供試驗(yàn)基礎(chǔ)。
1試驗(yàn)方法
1.1觀測(cè)設(shè)備和儀器
圖1 遠(yuǎn)距離光學(xué)顯微鏡觀測(cè)系統(tǒng)Fig.1 Long-distance microscope system
本文采用河海大學(xué)巖土工程研究所自行設(shè)計(jì)的遠(yuǎn)距離光學(xué)顯微鏡觀測(cè)系統(tǒng)進(jìn)行膨脹土裂隙開(kāi)展過(guò)程的動(dòng)態(tài)觀測(cè)。該設(shè)備通過(guò)對(duì)不同時(shí)刻試樣表面的觀測(cè),可以進(jìn)行連續(xù)、非擾動(dòng)、動(dòng)態(tài)觀測(cè)試樣在不同荷載狀態(tài)下微觀結(jié)構(gòu)的變化。試驗(yàn)儀器見(jiàn)圖1,主要裝置包括:美國(guó)QUESTAR公司生產(chǎn)的Questar_QM100型長(zhǎng)距離顯微鏡,工作范圍15~35 cm,用于放大試樣表面;三軸位移平臺(tái),放置顯微鏡等觀測(cè)儀器及調(diào)整顯微鏡與試樣之間距離;試樣承放平臺(tái),放置試樣;壓力加載系統(tǒng),用于試驗(yàn)中試樣的加載;CCD攝像儀和視頻監(jiān)視器,信噪比為30 Db,分辨率500 L,用于試樣裂隙的觀測(cè)和跟蹤;電腦,用于存儲(chǔ)CCD攝像頭拍攝到的微細(xì)結(jié)構(gòu)圖像。輔助設(shè)備包括電源、光源和應(yīng)力位移采集儀器等。
1.2試驗(yàn)前準(zhǔn)備
圖2 電導(dǎo)率法率定試驗(yàn)裝置Fig.2 Test device using conductivity method
試驗(yàn)前,首先要獲得無(wú)裂隙土體的電導(dǎo)率特性,進(jìn)行了不同干密度、含水率下均質(zhì)試樣的電導(dǎo)率試驗(yàn)。需要說(shuō)明的是,試樣由不同初始含水率的土樣壓制而成,并不是經(jīng)歷干濕循環(huán)后的試樣,這樣做的目的是為了剔除裂隙發(fā)育后含水率對(duì)試樣電導(dǎo)的貢獻(xiàn)值,認(rèn)為實(shí)測(cè)值與計(jì)算值的差值即為裂隙對(duì)電導(dǎo)率的貢獻(xiàn)。土樣取自南水北調(diào)中線一期工程總干渠膨脹土試驗(yàn)段工程,基本參數(shù)為:液限42.7%,塑限19.2%,自由膨脹率56.8%,最大干密度1.81 g/cm3,相對(duì)密度2.74。試樣為環(huán)刀樣(Ф=61.8 mm,H=20 mm)。每個(gè)試樣上沿著直徑方向?qū)ΨQ插上兩枚大頭針,間距30 mm,深度約為18 mm,用于測(cè)量試樣電導(dǎo)率(圖2)。
圖3 不同干密度、含水率與電導(dǎo)率關(guān)系Fig.3 Dry density, water content and conductivity relationships
圖3是土體電導(dǎo)率與干密度、含水率的關(guān)系。這里采用的試樣是重塑樣,可認(rèn)為是均質(zhì)完整無(wú)裂隙的??梢钥闯觯馏w的電導(dǎo)率隨著含水率和干密度的增大而增大。含水率越大,孔隙水傳播電流的途徑越多,且孔隙水中溶解的正負(fù)離子越多,導(dǎo)電能力越強(qiáng),電導(dǎo)率越大;干密度越大,土顆粒之間接觸越緊密,接觸面積越大,傳播電流的途徑增多,導(dǎo)電能力增強(qiáng),電導(dǎo)率也增大。對(duì)試驗(yàn)結(jié)果進(jìn)行多元線性回歸,擬合結(jié)果可寫(xiě)成如下形式:
(1)
圖4 試樣實(shí)物Fig.4 Physical sample for testing
1.3試樣制備
試樣初始干密度為1.54 g/cm3。將土樣重塑后制備飽和小三軸樣,然后用細(xì)鋼絲鋸沿半開(kāi)膜中縫處切開(kāi)試樣。將其中一半試樣放置于半圓柱橡皮筒內(nèi),沿試樣高度方向?qū)ΨQ地插入一枚大頭針,針頭間距70 mm,距離上下兩端面各5 mm,深度18 mm,針頭兩端用導(dǎo)線連接至電導(dǎo)儀,獲得裂隙發(fā)育過(guò)程中電導(dǎo)率的變化。制備好的試樣實(shí)物見(jiàn)圖4。
1.4試驗(yàn)方法
先稱量橡膠半開(kāi)模、大頭針等與試樣直接接觸的物體質(zhì)量。試驗(yàn)過(guò)程中,每拍攝一次,稱量包括試樣在內(nèi)的總體質(zhì)量以計(jì)算試樣的含水率,同時(shí)記錄相應(yīng)的電導(dǎo)率。當(dāng)試樣質(zhì)量不變時(shí),則采用小型噴壺對(duì)試樣進(jìn)行噴灑,噴灑應(yīng)少量多次,時(shí)間間隔不宜過(guò)長(zhǎng),直至水分不再滲入。用密封袋將其包住,密封時(shí)間不少于24 h。至此一個(gè)干濕循環(huán)過(guò)程結(jié)束。本次試驗(yàn)中,共進(jìn)行了3次干濕循環(huán),歷時(shí)近1個(gè)月。
1.5圖像處理
為了避免邊界對(duì)裂縫發(fā)育的影響,并保證不同時(shí)刻獲得的圖像一致,拍攝區(qū)域選取試樣的正中間部分(20 mm×20 mm)為處理圖像。本文采用圖像灰度熵[4]的概念來(lái)定量描述裂隙形態(tài),其表達(dá)式為:
(2)
式中:H為圖像灰度熵;Pi為每級(jí)灰度i出現(xiàn)的頻率。關(guān)于采用圖像灰度熵來(lái)定量描述裂隙形態(tài)的可行性及物理意義,已有文獻(xiàn)進(jìn)行系統(tǒng)研究[4,10],在此不再贅述。
2試驗(yàn)結(jié)果與分析
圖5和6分別為試樣經(jīng)歷不同干濕循環(huán)次數(shù)后在失水條件下,灰度熵、電導(dǎo)率與含水率的關(guān)系。由于采用自然吸水方式進(jìn)行試樣增濕,故在第2,3次吸水后,其含水率均小于初始狀態(tài)時(shí)的含水率。可以看出,對(duì)同一脫濕路徑下的試樣,隨著含水率的不斷降低,灰度熵總體上呈現(xiàn)增大趨勢(shì),電導(dǎo)率呈現(xiàn)減小趨勢(shì)。而經(jīng)歷吸水后再脫濕的試樣,灰度熵和電導(dǎo)率均有所降低。由于放大倍數(shù)大,微小裂隙的產(chǎn)生都會(huì)對(duì)圖像灰度產(chǎn)生影響,導(dǎo)致灰度熵不斷增大。經(jīng)歷1次干濕循環(huán)后,脹縮效應(yīng)導(dǎo)致土體內(nèi)部結(jié)構(gòu)變得松散,表面裂隙逐漸模糊,從而導(dǎo)致灰度熵降低,電導(dǎo)率也減小。第2和3次失水條件下試樣電導(dǎo)率的變化規(guī)律與首次失水條件下的相似,變化幅度逐漸減小。
圖5 灰度熵與含水率關(guān)系Fig.5 Relationships between gray level entropy and water content
圖6 電導(dǎo)率與含水率關(guān)系Fig.6 Relationships between conductivity and water content
圖7 含水率、裂隙對(duì)電導(dǎo)率的影響Fig.7 Effects of water content and cracks on conductivity
為剔除含水率對(duì)電導(dǎo)率的影響,利用式(1)計(jì)算無(wú)裂隙條件下,當(dāng)前含水率、干密度對(duì)應(yīng)的電導(dǎo)率。由于裂隙的存在,實(shí)際電導(dǎo)率應(yīng)比計(jì)算值小,其差值即可認(rèn)為是裂隙對(duì)電導(dǎo)率的貢獻(xiàn)。式(1)并不適用于干濕循環(huán)后的試樣,故此處只計(jì)算首次脫濕條件下的結(jié)果(見(jiàn)圖7)??梢钥闯?,隨著含水率的降低,試樣裂隙逐漸開(kāi)展,裂隙對(duì)電導(dǎo)率的貢獻(xiàn)逐漸增大,含水率對(duì)電導(dǎo)率的貢獻(xiàn)顯著降低。當(dāng)含水率降低到一定程度時(shí),裂隙對(duì)電導(dǎo)率的貢獻(xiàn)幾乎不變,說(shuō)明此時(shí)裂隙已開(kāi)展穩(wěn)定。由于試樣較小,裂隙發(fā)育不明顯,對(duì)電導(dǎo)率的貢獻(xiàn)有限,此時(shí)含水率對(duì)電導(dǎo)率的貢獻(xiàn)仍占主導(dǎo)。
3結(jié)語(yǔ)
本文采用遠(yuǎn)距離光學(xué)顯微鏡觀測(cè)系統(tǒng)進(jìn)行了試樣裂隙開(kāi)展過(guò)程的動(dòng)態(tài)觀測(cè),同時(shí)利用電導(dǎo)率法測(cè)定了試樣裂隙開(kāi)展過(guò)程中電導(dǎo)率值,結(jié)果如下:
(1)土體的電導(dǎo)率與干密度、含水率呈線性關(guān)系,在較高含水率條件下,可用多元線性函數(shù)進(jìn)行擬合。
(2)隨著含水率的降低,灰度熵逐漸增大,電導(dǎo)率逐漸減小。經(jīng)吸水后再脫濕的試樣,灰度熵和電導(dǎo)率均有所降低。經(jīng)歷一次干濕循環(huán)后,脹縮效應(yīng)導(dǎo)致土體內(nèi)部結(jié)構(gòu)變得松散,表面裂隙逐漸模糊,從而導(dǎo)致灰度熵降低,電導(dǎo)率也減小。多次失水條件下試樣電導(dǎo)率的變化規(guī)律與初次失水條件下的相似,變化幅度逐漸減小。
(3)隨著含水率的降低,試樣裂隙逐漸開(kāi)展,裂隙對(duì)電導(dǎo)率的貢獻(xiàn)逐漸增大,含水率對(duì)電導(dǎo)率的貢獻(xiàn)顯著降低。當(dāng)含水率降低到一定程度時(shí),裂隙對(duì)電導(dǎo)率的貢獻(xiàn)幾乎不變。裂隙規(guī)模較小時(shí),含水率對(duì)電導(dǎo)率的貢獻(xiàn)較大;反之,裂隙規(guī)模對(duì)電導(dǎo)率的貢獻(xiàn)較大。
參考文獻(xiàn):
[1]繆林昌, 劉松玉. 論膨脹土的工程特性及工程措施[J]. 水利水電科技進(jìn)展, 2001, 21(2): 37- 40, 48. (MIAO Lin-chang, LIU Song-yu. Engineering characteristics of expansive soil and engineering measures[J]. Advances in Science and Technology of Water Resources, 2001, 21(2): 37- 40, 48. (in Chinese))
[2]袁俊平. 非飽和膨脹土的裂隙概化模型與邊坡穩(wěn)定研究[D]. 南京: 河海大學(xué), 2003. (YUAN Jun-ping. Generalized model of fissures distribution and slope stability analysis for unsaturated expansive soils[D]. Nanjing: Hohai University, 2003. (in Chinese))
[3] 龔永康, 陳亮, 武廣繁. 膨脹土裂隙電導(dǎo)特性[J]. 河海大學(xué)學(xué)報(bào):自然科學(xué)版, 2009, 37(3): 323- 326. (GONG Yong-kang, CHEN Liang, WU Guang-fan. Electric conductance characteristics of fissures of expansive soil[J]. Journal of Hohai University (Natural Sciences), 2009, 37(3): 323- 326. (in Chinese))
[4]袁俊平, 殷宗澤, 包承綱. 膨脹土裂隙的量化手段與度量指標(biāo)研究[J]. 長(zhǎng)江科學(xué)院院報(bào), 2003, 20(6): 27- 30. (YUAN Jun-ping, YIN Zong-ze, BAO Cheng-gang. Quantitative description method and index for fissures in expansive soils[J]. Journal of Yangtze River Scientific Research Institute, 2003, 20(6): 27- 30. (in Chinese))
[5]唐朝生, 施斌, 劉春, 等. 影響?zhàn)ば酝帘砻娓煽s裂隙結(jié)構(gòu)形態(tài)的因素及定量分析[J]. 水利學(xué)報(bào), 2007, 38(10): 1186- 1193. (TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186- 1193. (in Chinese))
[6]HORGAN G W, YOUNG I M. An empirical stochastic model for the geometry of two-dimensional crack growth in soil[J]. Geoderma, 2000, 96(4): 263- 267.
[7]CHERTKOV V Y. Modelling cracking stages of saturated soils as they dry and shrink[J]. European Journal of Soil Science, 2002, 53(1): 105- 118.
[8]VOGEL H J, HOFFMANN H, ROTH K. Studies of crack dynamics in clay soil Ι. Experimental methods, results and morphological quantification[J]. Geoderma, 2005, 125(3): 203- 211.
[9]VOGEL H J, HOFFMANN H, LEOPOLD A, et al. Studies of crack dynamics in clay soil Ⅱ. A physically based model for crack formation[J]. Geoderma, 2005, 123(3): 213- 223.
[10]LECOCQ N, VANDEWALLE N. Dynamics of crack opening in a one-dimensional desiccation experiment[J]. Physica A: Statistical Mechanics and its Applications, 2003, 321(3- 4): 431- 441.
[11]馬佳, 陳善雄, 余飛, 等. 裂土裂隙演化過(guò)程試驗(yàn)研究[J]. 巖土力學(xué), 2007, 28(10): 2203- 2208. (MA Jia, CHEN Shan-xiong, YU Fei, et al. Experimental research on crack evolution process in fissured clay[J]. Rock and Soil Mechanics, 2007, 28(10): 2203- 2208. (in Chinese))
[12]吳珺華, 袁俊平, 楊松, 等. 膨脹土濕脹干縮特性試驗(yàn)[J]. 水利水電科技進(jìn)展, 2012, 32(3): 28- 31. (WU Jun-hua, YUAN Jun-ping, YANG Song, et al. Experimental study on swell-shrink performance of expansive soil[J]. Advances in Science and Technology of Water Resources, 2012, 32(3): 28- 31. (in Chinese))
[13]吳珺華, 袁俊平, 楊松, 等. 干濕循環(huán)下膨脹土脹縮性能試驗(yàn)[J]. 水利水電科技進(jìn)展, 2013, 33(1): 62- 65. (WU Jun-hua, YUAN Jun-ping, YANG Song, et al. Experimental study on swell-shrinking performance of expansive soil under wetting-drying cycles[J]. Advances in Science and Technology of Water Resources, 2013, 33(1): 62- 65. (in Chinese))
Crack growth and electro-conductive properties of expansive soil under drying-wetting cycles
WU Jun-hua1, YANG Song2
(1.CollegeofCivilEngineeringandArchitecture,NanchangHangkongUniversity,Nanchang330063,China; 2.CollegeofWaterConservancy,YunnanAgriculturalUniversity,Kunming650201,China)
Abstract:The soil-water characteristics of expansive soil are influenced by cracks caused by drying-wetting cycles. Electrical conductivity tests were carried out to obtain the soil conductivity without cracks and electrical conductivity had a linear positive correlation with soil dry density and water content. A linear multivariate function was obtained to describe their relationships. A long-distance microscope system was used in observing the crack growth of the expansive soil dynamically under the conditions of drying-wetting cycles and the gray level entropy of image with the cracks was used to evaluate the crack shape. The soil water content and conductivity were obtained and the gray level entropy-water content-conductivity relationship of soil was established under the conditions of the drying-wetting cycles. The gray level entropy increased and conductivity decreased with the crack growth due to water loss. The impacts of water content on the soil conductivity decreased and impacts of cracks on the soil conductivity increased gradually. The impacts of cracks on the soil conductivity kept constant under drying to a certain degree, and the shape of cracks remained stable; the cracks were closed partially due to water absorption. The gray level entropy decreased and the soil conductivity increased. The gray level entropy and the soil conductivity decreased to some extent under the drying-wetting cycles. It was shown that the soil structure was changed irreversibly.
Key words:cracks; gray level entropy; conductivity; expansive soil
中圖分類號(hào):TU443
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1009-640X(2016)01-0058-05
作者簡(jiǎn)介:吳珺華(1985—),男,江西吉安人,講師,博士,主要從事非飽和土及邊坡穩(wěn)定研究。E-mail: wjh0796@163.com
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51408291, 51209182);江西省教育廳科技項(xiàng)目(GJJ14547);江西省交通運(yùn)輸廳科技項(xiàng)目(2013C0006)
收稿日期:2015-03-15
DOI:10.16198/j.cnki.1009-640X. 2016.01.009
吳珺華, 楊松. 干濕循環(huán)下膨脹土裂隙發(fā)育與導(dǎo)電特性[J]. 水利水運(yùn)工程學(xué)報(bào), 2016(1): 58-62. (WU Jun-hua, YANG Song. Crack growth and electro-conductive properties of expansive soil under drying-wetting cycles[J]. Hydro-Science and Engineering, 2016(1): 58-62.)