李東潔,吳 迪,張旭鄉(xiāng)
作者單位:(100053)中國北京市,首都醫(yī)科大學(xué)宣武醫(yī)院眼科
?
·文獻(xiàn)綜述·
糖尿病視網(wǎng)膜神經(jīng)節(jié)細(xì)胞損傷的研究進(jìn)展
李東潔,吳迪,張旭鄉(xiāng)
作者單位:(100053)中國北京市,首都醫(yī)科大學(xué)宣武醫(yī)院眼科
Research advance of diabetic retinal ganglion cell lesions
Dong-Jie Li, Di Wu, Xu-Xiang Zhang
Department of Ophthalmology,Xuanwu Hospital, Capital Medical University, Beijing 100053, China
Correspondence to:Xu-Xiang Zhang. Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.zhangxuxiang@vip.163.com
Received:2015-12-25Accepted:2016-03-16
Abstract
?Diabetic retinopathy (DR) is one of the severe complications of diabetes, which could lead to severe visual impairment. Retinal ganglion cell (RGC) apoptosis has been confirmed bothinvivoandinvitroprior to the definite micro-vascular damages. RGC impairment contributes to an early deterioration of vision. Hyperglycemia, oxidative stress, neuron growth factor deficiency and glutamate excitotoxicity were found to be involved in retinal ganglion cell apoptosis. Some neuron protective agents have been showed to prevent the apoptosis of RGC in experimental diabetic retinopathy. Clinical evidences about effectiveness and security also suggested potential treatments for the diabetic retinal neuron.
KEYWORDS:?diabetes;retinal ganglion cell;pathogenesis;treatment
Citation:Li DJ, Wu D, Zhang XX.Research advance of diabetic retinal ganglion cell lesions.GuojiYankeZazhi(IntEyeSci) 2016;16(4):670-672
摘要
糖尿病性視網(wǎng)膜病變(diabetic retinopathy,DR) 是糖尿病嚴(yán)重并發(fā)癥之一,可對(duì)患者造成嚴(yán)重視功能損害。在視網(wǎng)膜出現(xiàn)微血管病變之前,已經(jīng)出現(xiàn)視網(wǎng)膜神經(jīng)節(jié)細(xì)胞(retinal ganglion cell, RGC)的病變。神經(jīng)細(xì)胞的病理改變是糖尿病早期視功能障礙的重要因素。RGC的損傷機(jī)制可能與高血糖代謝紊亂、氧化應(yīng)激損傷、神經(jīng)營養(yǎng)因子缺乏以及谷氨酸興奮毒性有關(guān)。許多實(shí)驗(yàn)研究發(fā)現(xiàn)神經(jīng)元保護(hù)藥物能減少RGC凋亡,一些關(guān)于有效性和安全性的臨床研究為臨床治療糖尿病視網(wǎng)膜神經(jīng)細(xì)胞病變奠定重要基礎(chǔ)。
關(guān)鍵詞:糖尿??;視網(wǎng)膜神經(jīng)節(jié)細(xì)胞;損傷機(jī)制;治療
引用:李東潔,吳迪,張旭鄉(xiāng).糖尿病視網(wǎng)膜神經(jīng)節(jié)細(xì)胞損傷的研究進(jìn)展.國際眼科雜志2016;16(4):670-672
0引言
糖尿病性視網(wǎng)膜病變(diabetic retinopathy,DR) 是糖尿病嚴(yán)重并發(fā)癥之一,可造成嚴(yán)重的視力損害。據(jù)統(tǒng)計(jì),2012年全球約9 300萬糖尿病視網(wǎng)膜病變的患者[1]。DR被看成是視網(wǎng)膜微血管的病理改變,目前認(rèn)為DR的發(fā)病機(jī)制與高血糖、多元醇代謝異常、蛋白質(zhì)非酶糖基化、細(xì)胞凋亡、細(xì)胞因子及自由基作用等多種因素相關(guān)。越來越多的研究發(fā)現(xiàn)早在微血管病變之前,已經(jīng)出現(xiàn)視網(wǎng)膜神經(jīng)病變。DR主要是內(nèi)層視網(wǎng)膜神經(jīng)元——視網(wǎng)膜神經(jīng)節(jié)細(xì)胞的病變,視網(wǎng)膜神經(jīng)節(jié)細(xì)胞(retinal ganglion cell, RGC)是視覺傳導(dǎo)通路上的第二級(jí)神經(jīng)元,整合視網(wǎng)膜的視覺信息,通過動(dòng)作電位傳到視覺中樞,神經(jīng)元的損害與早期糖尿病患者的視功能下降密切相關(guān)。早期發(fā)現(xiàn)DR神經(jīng)元病變,早期治療,有助于提高糖尿病患者的生活質(zhì)量,我們就糖尿病視網(wǎng)膜神經(jīng)節(jié)細(xì)胞病變研究進(jìn)展進(jìn)行綜述分析。
1糖尿病視網(wǎng)膜神經(jīng)節(jié)細(xì)胞及視神經(jīng)病變
1962年,Bloodworth[2]研究糖尿病患者尸眼發(fā)現(xiàn)視網(wǎng)膜神經(jīng)節(jié)細(xì)胞呈現(xiàn)核破碎、核固縮等細(xì)胞凋亡的特征改變。1988年,Barber等[3]也發(fā)現(xiàn),在出現(xiàn)典型眼底微血管病變之前,已經(jīng)出現(xiàn)視網(wǎng)膜神經(jīng)元退行性改變,缺口末端標(biāo)記法(TUNEL)染色陽性的細(xì)胞與內(nèi)皮細(xì)胞標(biāo)記物von Willebrand 因子標(biāo)記的位置不重疊,凋亡的細(xì)胞并非血管內(nèi)皮細(xì)胞。光學(xué)相干斷層掃描發(fā)現(xiàn),糖尿病患者出現(xiàn)黃斑區(qū)神經(jīng)節(jié)細(xì)胞層(ganglion cell layer, GCL)和視盤周圍神經(jīng)纖維層(retinal nerve fiber layer, RNFL)變薄,且與糖尿病病程相關(guān)[4-6]。多項(xiàng)研究發(fā)現(xiàn),在出現(xiàn)糖尿病視網(wǎng)膜微血管病變之前,神經(jīng)活動(dòng)及穩(wěn)定性已經(jīng)出現(xiàn)變化,提示內(nèi)層神經(jīng)視網(wǎng)膜病變[7]。
視神經(jīng)由RGC的軸突組成,易受缺血缺氧及代謝紊亂損害,糖尿病視神經(jīng)病變與DR可能存在一定聯(lián)系,但兩者并不完全平行。病程1~5a的糖尿病患者發(fā)病率約5%,6~10a發(fā)病率約8%。其臨床表現(xiàn)較多樣,目前對(duì)其確切定義、診斷、分期及分型尚無統(tǒng)一標(biāo)準(zhǔn)[8]。糖尿病患者VEP振幅下降和潛伏期延長。
目前糖尿病動(dòng)物模型只能模擬人類早期DR病變和增殖期新生血管病變,通過藥物誘導(dǎo)模型和自發(fā)性糖尿病模型是常用的模型。遺傳性模型易受環(huán)境或基因突變等影響,發(fā)病程度不一。注射藥物鏈脲佐菌素(streptozotocin, STZ)可以選擇性破壞胰島β細(xì)胞,制備糖尿病動(dòng)物模型,高血糖,此模型可以表現(xiàn)DR的早期病理改變,廣泛應(yīng)用于發(fā)病機(jī)制及藥物試驗(yàn)。STZ誘導(dǎo)的大鼠[9]和小鼠糖尿病模型[10]均出現(xiàn)不同程度內(nèi)層視網(wǎng)膜改變,包括視網(wǎng)膜厚度變薄、RGC凋亡,因?qū)嶒?yàn)方案不同,出現(xiàn)病變的程度及時(shí)間存在一定差異。自發(fā)糖尿病模型如GK大鼠、NOD小鼠、db/db小鼠及Ins2(Akita)小鼠中也出現(xiàn)視網(wǎng)膜神經(jīng)細(xì)胞凋亡,BB/W大鼠RGC軸突萎縮[11]。視神經(jīng)出現(xiàn)脫髓鞘改變,膠質(zhì)細(xì)胞增生,血管和結(jié)締組織相對(duì)增加[12]。不同模型各有優(yōu)劣,探尋接近人類DR的理想動(dòng)物模型極為關(guān)鍵,深入研究早期神經(jīng)元損傷的機(jī)制,為臨床治療提供可靠依據(jù)。
2視覺電生理和心理物理學(xué)的改變
視網(wǎng)膜電圖(electroretinography,ERG)反映視網(wǎng)膜神經(jīng)元電活動(dòng)的變化,可能檢測糖尿病早期神經(jīng)元損害,很難特異的對(duì)某一神經(jīng)元的病理變化作出判斷。在糖尿病早期可出現(xiàn)暗適應(yīng)ERG的振蕩電位(oscillatory potentials,OPs)振幅下降,主要與內(nèi)層視網(wǎng)膜循環(huán)障礙有關(guān),OPs波幅異常可作為預(yù)測非增殖性DR進(jìn)展為增殖性DR的敏感指標(biāo)[13]。與正常同齡人比較,糖尿病患者圖形視網(wǎng)膜電圖N95波的波幅顯著下降,出現(xiàn)DR患者與未出現(xiàn)視網(wǎng)膜病變患者比較也有顯著差異[13]。糖尿病患者視網(wǎng)膜電圖的b波潛伏期延長,而且隨病程進(jìn)展有延長趨勢[14]。多焦視網(wǎng)膜電圖(multifocal electroretinography,mfERG)可檢測局部視網(wǎng)膜神經(jīng)元功能的變化,潛伏期的改變可預(yù)測患者發(fā)生DR風(fēng)險(xiǎn),對(duì)病變早期發(fā)現(xiàn)、治療及隨訪具有良好的應(yīng)用價(jià)值[15]。視覺誘發(fā)電位反映視網(wǎng)膜受刺激后在枕葉視皮質(zhì)產(chǎn)生電活動(dòng),是研究視神經(jīng)病變的重要工具,在出現(xiàn)視網(wǎng)膜病變之前,糖尿病患者VEP振幅下降和潛伏期延長[13]。另外,短波長視野計(jì)發(fā)現(xiàn)視野缺損、對(duì)比敏感度下降和色覺異常也提示著視網(wǎng)膜神經(jīng)元的損傷[16]。臨床上應(yīng)加強(qiáng)對(duì)糖尿病早期視網(wǎng)膜神經(jīng)元功能的評(píng)估,發(fā)現(xiàn)隱匿的病變,及早采取措施防治。
3視網(wǎng)膜神經(jīng)元損傷機(jī)制及治療
糖尿病視網(wǎng)膜神經(jīng)元的損害是多因素相互協(xié)同、多途徑和多階段的過程,而且其損傷是代謝紊亂導(dǎo)致的原發(fā)性損傷還是繼發(fā)于糖尿病視網(wǎng)膜微血管病變?nèi)源嬖跔幾h。目前許多藥物在動(dòng)物研究中證實(shí)能減少RGC凋亡,少數(shù)關(guān)于有效性和安全性的臨床研究也為防治糖尿病視網(wǎng)膜神經(jīng)細(xì)胞病變奠定重要基礎(chǔ)。
3.1高血糖及代謝紊亂Meta分析結(jié)果發(fā)現(xiàn),密集胰島素治療和胰島素泵治療的1型糖尿病患者較每天多次胰島素注射的患者,DR進(jìn)展速度減慢[17]。動(dòng)物研究發(fā)現(xiàn),胰島素控制血糖可以延緩糖尿病視網(wǎng)膜神經(jīng)元的凋亡[3]。但良好的血糖控制并不能保證不發(fā)生視網(wǎng)膜病變,胰島素強(qiáng)化治療早期可能導(dǎo)致視網(wǎng)膜病變惡化[18]。
高血糖激活異常代謝途徑,如多元醇代謝途徑可產(chǎn)生山梨醇,山梨醇在胞內(nèi)蓄積導(dǎo)致滲透壓升高、細(xì)胞腫脹破裂,同時(shí)胞內(nèi)葡萄糖水平升高可通過多元醇途徑激活氧化應(yīng)激,加重細(xì)胞損傷[19]。醛糖還原酶是山梨醇通路的關(guān)鍵酶,醛糖還原酶抑制劑可減輕視網(wǎng)膜氧化應(yīng)激損傷,減少RGC凋亡[20]。
高血糖導(dǎo)致蛋白質(zhì)非酶糖基化產(chǎn)生大量糖基化終末產(chǎn)物(advanced glycation end products, AGE),AGE可與細(xì)胞表面的AGE受體結(jié)合,誘導(dǎo)細(xì)胞凋亡[21]。AGE抑制劑能減少視網(wǎng)膜神經(jīng)元凋亡[22]。
3.2氧化應(yīng)激損傷在糖尿病患者及動(dòng)物模型中證實(shí)高血糖可激活氧化應(yīng)激反應(yīng),使視網(wǎng)膜氧自由基增加以及抗氧化清除降低導(dǎo)致細(xì)胞凋亡[9, 23]。 氧化應(yīng)激升高后,自由基破壞線粒體脂質(zhì)膜,能量代謝障礙,胞外的鈣離子內(nèi)流,自由基還可攻擊細(xì)胞DNA[24],進(jìn)而導(dǎo)致細(xì)胞凋亡。體內(nèi)抗氧化清除系統(tǒng)包括酶類如超氧化物歧化酶和非酶類如維生素C/E、GSH,能清除自由基,保護(hù)RGC[9]。
越來越多的實(shí)驗(yàn)研究發(fā)現(xiàn),清除自由基或增加視網(wǎng)膜的抗氧化能力可以減少糖尿病RGC凋亡,抗氧化應(yīng)激損傷有很好的應(yīng)用前景。常見的抗氧化劑維生素C和E能保護(hù)脂質(zhì)過氧化,Ⅱ期臨床研究發(fā)現(xiàn)口服抗氧化劑對(duì)非增殖期糖尿病視網(wǎng)膜病變有保護(hù)作用[25]。其他抗氧化劑如蝦青素、白藜蘆醇、黃酮類(如燈盞花素)等可通過清除氧自由基、增強(qiáng)抗氧化清除,從而對(duì)損傷的RGC起保護(hù)作用[26-28]。
3.3神經(jīng)營養(yǎng)因子缺乏糖尿病微循環(huán)障礙可能使神經(jīng)纖維軸漿流運(yùn)送神經(jīng)生長因子受阻[29],導(dǎo)致神經(jīng)元發(fā)生退行性病變,補(bǔ)充神經(jīng)營養(yǎng)因子可能有一定的預(yù)防和治療作用。動(dòng)物研究發(fā)現(xiàn),補(bǔ)充腦源性神經(jīng)生長因子(BDNF)、神經(jīng)生長因子(NGF)可減少RGC凋亡[30-31]。注射促紅細(xì)胞生成素(EPO)能有效減少糖尿病視網(wǎng)膜神經(jīng)元凋亡[32]。色素上皮衍生因子(PEDF)的缺乏,導(dǎo)致RGC凋亡[33]。眼內(nèi)注射PEDF或者多肽滴眼液對(duì)糖尿病動(dòng)物模型的RGC起保護(hù)作用[34-35]。神經(jīng)生長因子種類多,補(bǔ)充外源性神經(jīng)營養(yǎng)因子需要進(jìn)一步臨床研究證實(shí)其有效性和安全性。
3.4谷氨酸興奮毒性實(shí)驗(yàn)研究發(fā)現(xiàn),糖尿病時(shí),視網(wǎng)膜缺血缺氧以及Müller細(xì)胞功能障礙導(dǎo)致細(xì)胞外谷氨酸升高,N-甲基-D天門冬氨酸(NMDA)受體表達(dá)增加,鈣離子內(nèi)流進(jìn)而激活一氧化氮合酶合成大量一氧化氮(NO),誘導(dǎo)神經(jīng)元凋亡[36]。因此,降低谷氨酸水平或抑制NMDA受體可能減少視網(wǎng)膜神經(jīng)元凋亡。美金剛是一種有效、副作用少的NMDA受體抑制劑,可以降低NMDA誘導(dǎo)的NO合成,減少視網(wǎng)膜谷氨酸介導(dǎo)的氧化應(yīng)激損傷,減輕糖尿病模型的視網(wǎng)膜病變,減少RGC丟失[36]。青光眼的Ⅲ期臨床試驗(yàn)并不證實(shí)美金剛的神經(jīng)保護(hù)作用,其對(duì)糖尿病視網(wǎng)膜神經(jīng)元的保護(hù)作用需要臨床研究證明。
3.5缺血預(yù)適應(yīng)缺血預(yù)適應(yīng)(ischemic preconditioning,IPC)是對(duì)一個(gè)器官進(jìn)行缺血預(yù)處理,使機(jī)體產(chǎn)生對(duì)缺血的保護(hù),減少后續(xù)嚴(yán)重缺血事件引起的損傷。IPC是多種作用機(jī)制共同作用的過程,對(duì)缺血后視網(wǎng)膜神經(jīng)細(xì)胞損傷起保護(hù)作用[37]。視網(wǎng)膜缺血預(yù)適應(yīng)可減輕糖尿病視網(wǎng)膜大鼠ERG的a波、b波、OP振幅降低[38],減輕視神經(jīng)軸突損傷、髓鞘丟失和膠質(zhì)細(xì)胞增生[39];減輕視網(wǎng)膜的氧化應(yīng)激損傷[40]。Przyklen等[41]通過對(duì)一個(gè)器官實(shí)施短暫缺血而誘導(dǎo)對(duì)另一個(gè)器官的缺血耐受,稱之為遠(yuǎn)隔器官缺血預(yù)適應(yīng)(remote ischemic preconditioning, RIPC)。而對(duì)缺血缺氧極其敏感的重要器官,如視網(wǎng)膜,RIPC具有更重要的臨床應(yīng)用價(jià)值。肢體缺血適應(yīng)可使ERG的a波、b波振幅升高14%[42]。RIPC對(duì)大鼠RGC缺血/再灌注損傷起保護(hù)作用,可能與抗氧化應(yīng)激蛋白Nrf2、HO-1的表達(dá)上調(diào)有關(guān)[43]。RIPC在動(dòng)物實(shí)驗(yàn)中證實(shí)一定的效果,尚無臨床應(yīng)用的報(bào)道,其簡單、無創(chuàng)的特點(diǎn),可能成為糖尿病視網(wǎng)膜神經(jīng)細(xì)胞的保護(hù)措施。
綜上所述,糖尿病早期出現(xiàn)微血管并發(fā)癥之前已經(jīng)RGC凋亡,視網(wǎng)膜神經(jīng)細(xì)胞的損傷機(jī)制錯(cuò)綜復(fù)雜,近年來的基礎(chǔ)研究結(jié)果為其損傷機(jī)制及治療奠定了基礎(chǔ),深入認(rèn)識(shí)糖尿病RGC凋亡機(jī)制及發(fā)生的時(shí)間,尋找其中的關(guān)鍵靶點(diǎn),是研究的重點(diǎn)和難點(diǎn)之一,這將有助于更好保護(hù)糖尿病患者的視功能。
參考文獻(xiàn)
1 Yau JW, Rogers SL, Kawasaki R,etal. Global prevalence and major risk factors of diabetic retinopathy.DiabetesCare2012;35(3):556-564
2 Bloodworth JM.Diabetic retinopathy.Diabetes1962;11(1):1-22
3 Barber AJ, Lieth E, Khin SA,etal.Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin.JClinInvest1998;102(4):783-791
4 Chen X, Nie C, Gong Y,etal. Peripapillary retinal nerve fiber layer changes in preclinical diabetic retinopathy:a meta-analysis.PLoSOne2015;10(5):e0125919
5 van Dijk HW, Verbraak FD, Kok PH,etal. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes.InvestOphthalmolVisSci2010;51(7):3660-3665
6 Chhablani J,Sharma A,Goud A,etal. Neurodegeneration in Type 2 Diabetes:Evidence From Spectral-Domain Optical Coherence Tomography.InvestOphthalmolVisSci2015;56(11):6333-6338
7 Fletcher EL, Phipps JA, Ward MM,etal. Neuronal and glial cell abnormality as predictors of progression of diabetic retinopathy.CurrPharmDes2007;13(26):2699-2712
8丁小燕, 歐杰雄,馬紅婕.糖尿病性視神經(jīng)病變的臨床分析.中國實(shí)用眼科雜志2005;23(12):1269-1274
9 Li X, Zhang M,Zhou H.The morphological features and mitochondrial oxidative stress mechanism of the retinal neurons apoptosis in early diabetic rats.JDiabetesRes2014;2014:678123
10 Yang Y, Mao D, Chen X,etal. Decrease in retinal neuronal cells in streptozotocin-induced diabetic mice.MolVis2012;18:1411-1420
11 Lai AK,Lo AC. Animal models of diabetic retinopathy:summary and comparison.JDiabetesRes2013;2013:106594
12 Fernandez DC, Pasquini LA, Dorfman D,etal. Early distal axonopathy of the visual pathway in experimental diabetes.AmJPathol2012;180(1):303-313
13 Pescosolido N, Barbato A, Stefanucci A,etal. Role of Electrophysiology in the Early Diagnosis and Follow-Up of Diabetic Retinopathy.JDiabetesRes2015;2015:319692
14 Jansson RW,Raeder MB,Krohn J. Photopic full-field electroretinography and optical coherence tomography in type 1 diabetic retinopathy.GraefesArchClinExpOphthalmol2015;253(7):989-997
15 Bearse MA,Ozawa GY. Multifocal electroretinography in diabetic retinopathy and diabetic macular edema.CurrDiabRep2014;14(9):526
16 Jindal V. Neurodegeneration as a primary change and role of neuroprotection in diabetic retinopathy.MolNeurobiol2015;51(3):878-884
17 Virk SA, Donaghue KC, Wong TY,etal.Interventions for Diabetic Retinopathy in Type 1 Diabetes:Systematic Review and Meta-Analysis.AmJOphthalmol2015;160(5):1055-1064
18 Zhao C, Wang W, Xu D,etal.Insulin and risk of diabetic retinopathy in patients with type 2 diabetes mellitus:data from a meta-analysis of seven cohort studies.DiagnPathol2014;9:130
19 Obrosova IG,Kador PF. Aldose reductase / polyol inhibitors for diabetic retinopathy.CurrPharmBiotechnol2011;12(3):373-385
20 Ding Y, Yuan S, Liu X,etal. Protective effects of astragaloside IV on db/db mice with diabetic retinopathy.PLoSOne2014;9(11):e112207
21 Milne R,Brownstein S. Advanced glycation end products and diabetic retinopathy.AminoAcids2013;44(6):1397-1407
22 Li G, Tang J, Du Y,etal. Beneficial effects of a novel RAGE inhibitor on early diabetic retinopathy and tactile allodynia.MolVis2011;17:3156-3165
23 Negi G, Kumar A, Joshi RP,etal. Oxidative stress and Nrf2 in the pathophysiology of diabetic neuropathy:old perspective with a new angle.BiochemBiophysResCommun2011;408(1):1-5
24 Wakabayashi Y, Usui Y, Shibauchi Y,etal.Increased levels of 8-hydroxydeoxyguanosine in the vitreous of patients with diabetic retinopathy.DiabetesResClinPract2010;89(3):e59-61
25 Rodriguez-Carrizalez AD, Castellanos-Gonzalez JA, Martinez-Romero EC,etal. The effect of ubiquinone and combined antioxidant therapy on oxidative stress markers in non-proliferative diabetic retinopathy:A phase IIa, randomized, double-blind, and placebo-controlled study.RedoxRep2015;publish online
26 Dong LY, Jin J, Lu G,etal. Astaxanthin attenuates the apoptosis of retinal ganglion cells in db/db mice by inhibition of oxidative stress.MarDrugs2013;11(3):960-974
27 Kim YH, Kim YS, Kang SS,etal. Resveratrol inhibits neuronal apoptosis and elevated Ca2+/calmodulin-dependent protein kinase II activity in diabetic mouse retina.Diabetes2010;59(7):1825-1835
28 Ola MS, Ahmed MM, Ahmad R,etal. Neuroprotective Effects of Rutin in Streptozotocin-Induced Diabetic Rat Retina.JMolNeurosci2015;56(2):440-448
29 Whitmire W,Al-Gayyar MM, Abdelsaid M,etal. Alteration of growth factors and neuronal death in diabetic retinopathy:what we have learned so far.MolVis2011;17:300-308
30 Mantelli F, Lambiase A, Colafrancesco V,etal. NGF and VEGF effects on retinal ganglion cell fate:new evidence from an animal model of diabetes.EurJOphthalmol2014;24(2):247-253
31 Bikbova G,Oshitari T,Baba T,etal. Neurotrophic factors for retinal ganglion cell neuropathy - with a special reference to diabetic neuropathy in the retina.CurrDiabetesRev2014;10(3):166-176
32 Wang Q, Gorbey S, Pfister F,etal. Long-term treatment with suberythropoietic Epo is vaso- and neuroprotective in experimental diabetic retinopathy.CellPhysiolBiochem2011;27(6):769-782
33 Unterlauft JD, Claudepierre T, Schmidt M,etal. Enhanced survival of retinal ganglion cells is mediated by Muller glial cell-derived PEDF.ExpEyeRes2014;127:206-214
34 Yoshida Y, Yamagishi S, Matsui T,etal. Protective role of pigment epithelium-derived factor (PEDF) in early phase of experimental diabetic retinopathy.DiabetesMetabResRev2009;25(7):678-686
35 Liu Y,Leo LF,McGregor C,etal. Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2(Akita) mice.MolMed2012;18:1387-1401
36 Kusari J, Zhou S, Padillo E,etal. Effect of memantine on neuroretinal function and retinal vascular changes of streptozotocin-induced diabetic rats.InvestOphthalmolVisSci2007;48(11):5152-5159
37 Roth S, Li B, Rosenbaum PS,etal. Preconditioning provides complete protection against retinal ischemic injury in rats.InvestOphthalmolVisSci1998;39(5):777-785
38 Fernandez DC, Sande PH, Chianelli MS,etal. Induction of ischemic tolerance protects the retina from diabetic retinopathy.AmJPathol2011;178(5):2264-2274
39 Fernandez DC, Pasquini LA, Dorfman D,etal.Ischemic conditioning protects from axoglial alterations of the optic pathway induced by experimental diabetes in rats.PLoSOne2012;7(12):e51966
40 Salido EM, Dorfman D, Bordone M,etal. Ischemic conditioning protects the rat retina in an experimental model of early type 2 diabetes.ExpNeurol2013;240:1-8
41 Przyklen K, Bauer B, Ovize M,etal. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion.Circulation1993;87(3):893-899
42 Brandli A,Stone J. Remote ischemia influences the responsiveness of the retina:observations in the rat.InvestOphthalmolVisSci2014;55(4):2088-2096
43 Zhang X, Jizhang Y, Xu X,etal. Protective effects of remote ischemic conditioning against ischemia/reperfusion-induced retinal injury in rats.VisNeurosci2014;31(3):245-252
DOI:10.3980/j.issn.1672-5123.2016.4.20
收稿日期:2015-12-25 修回日期: 2016-03-16
通訊作者:張旭鄉(xiāng),女,主任醫(yī)師,研究方向:神經(jīng)眼科.zhangxuxiang@vip.163.com
作者簡介:李東潔,女,首都醫(yī)科大學(xué)宣武醫(yī)院在讀碩士研究生。