高亞男 王加啟 李松勵(lì) 張養(yǎng)東 鄭 楠?(1.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部奶產(chǎn)品質(zhì)量安全風(fēng)險(xiǎn)評(píng)估實(shí)驗(yàn)室,北京100193;2.農(nóng)業(yè)部奶及奶制品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心,北京100193;3.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100193)
?
霉菌毒素影響腸道黏膜屏障功能
高亞男1,2,3王加啟1,2,3李松勵(lì)1,2,3張養(yǎng)東1,2,3鄭楠1,2,3?
(1.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,農(nóng)業(yè)部奶產(chǎn)品質(zhì)量安全風(fēng)險(xiǎn)評(píng)估實(shí)驗(yàn)室,北京100193;2.農(nóng)業(yè)部奶及奶制品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心,北京100193;3.中國(guó)農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動(dòng)物營(yíng)養(yǎng)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100193)
摘要:霉菌毒素是一類廣泛存在于飼料原料和人類食品中,對(duì)動(dòng)物和人類健康造成嚴(yán)重威脅的危害因子。作為機(jī)體抵御外來(lái)污染物的第1道屏障,腸道黏膜屏障主要由相互聯(lián)系的機(jī)械屏障、化學(xué)屏障、免疫屏障和生物屏障構(gòu)成。本文在國(guó)內(nèi)外已有的研究基礎(chǔ)上,對(duì)霉菌毒素對(duì)腸道黏膜屏障功能的影響及其作用機(jī)制進(jìn)行綜述。
關(guān)鍵詞:霉菌毒素;腸道黏膜;腸道屏障
霉菌毒素是由曲霉菌、青霉菌以及鐮刀菌等不同類型真菌產(chǎn)生的有毒次生代謝產(chǎn)物,廣泛存在于飼料與食物中[1-3],對(duì)動(dòng)物以及人類健康造成嚴(yán)重威脅[4]。作為機(jī)體抵御外來(lái)污染物的第1道屏障[5-6],腸道負(fù)責(zé)了機(jī)體70%的免疫防御[5]。而霉菌毒素主要通過(guò)腸道吸收,因此,腸道上皮細(xì)胞首先與高濃度的霉菌毒素接觸,造成腸道功能損傷[7]。脫氧雪腐鐮刀菌烯醇(deoxynivalenol,DON)、赭曲霉毒素A(ochratoxin A,OTA)、T-2毒素等霉菌毒素具有強(qiáng)烈的腸道致病性,易引起胃腸道功能紊亂、腹瀉、嘔吐和營(yíng)養(yǎng)不良等癥狀[8-9]。大量研究已經(jīng)表明,霉菌毒素會(huì)破壞細(xì)胞間的緊密連接,誘導(dǎo)腸道病變,調(diào)節(jié)腸道免疫應(yīng)答,改變腸道免疫屏障功能,破壞腸道微生物菌群穩(wěn)定性,引起腸道炎癥。本文就霉菌毒素對(duì)腸道黏膜屏障產(chǎn)生的影響及其作用機(jī)制進(jìn)行綜述,為今后在此領(lǐng)域開(kāi)展更深入的研究提供理論基礎(chǔ)。
腸道黏膜機(jī)械屏障,又稱為物理屏障,主要由腸上皮細(xì)胞和其間的緊密連接蛋白構(gòu)成,能有效阻止腸腔內(nèi)細(xì)菌、毒素、炎性介質(zhì)等有害物質(zhì)透過(guò)腸道黏膜進(jìn)入血液,維持腸道黏膜上皮屏障功能的完整[10-11]。
腸道上皮細(xì)胞具有快速增殖和再生能力,可維持腸道黏膜機(jī)械屏障功能[12]。Goossens等[13]發(fā)現(xiàn),DON、T-2毒素處理豬腸道上皮IPEC-J2細(xì)胞后,以劑量依賴方式使腸道上皮細(xì)胞存活率顯著降低,但低濃度DON和T-2毒素并未使腸道上皮細(xì)胞存活率發(fā)生顯著變化。Ivanova等[14]研究表明,高濃度(25 μmol/ L)恩鐮孢菌素B (enniatin B,ENB)使人結(jié)腸癌細(xì)胞Caco-2細(xì)胞周期停滯在G2/ M時(shí)期,細(xì)胞發(fā)生壞死。動(dòng)物試驗(yàn)表明,與飼喂正常飼料的對(duì)照組相比,小鼠或仔豬口服DON后,腸道上皮細(xì)胞區(qū)的絨毛高度顯著降低[15-16]。Kolf-Clauw等[17]離體試驗(yàn)表明,暴露于DON 4 h后,4~5周齡和9~13周齡豬空腸外植體的絨毛長(zhǎng)度顯著減小,但低濃度(0.3 mg/ kg)DON 對(duì)4~5周齡豬空腸外植體的絨毛長(zhǎng)度無(wú)顯著影響。上述結(jié)果表明在短期飼養(yǎng)條件下,動(dòng)物年齡是霉菌毒素影響機(jī)體的主要因素之一,且動(dòng)物機(jī)體對(duì)低劑量霉菌毒素具有一定的耐受力。
腸上皮細(xì)胞間的緊密連接具有維持腸道黏膜機(jī)械屏障完整性的功能。Diesing等[18]表明,高濃度(2 000 ng/ mL)DON作用于豬腸道上皮IPEC-1、IPEC-J2細(xì)胞后,緊密連接蛋白ZO-1表達(dá)量減少,腸道黏膜機(jī)械屏障完整性破壞;但低濃度(200 ng/ mL)DON不僅沒(méi)有表現(xiàn)出毒性作用,反而促進(jìn)細(xì)胞的增殖。結(jié)果提示,破壞腸道黏膜機(jī)械屏障完整性可能是霉菌毒素發(fā)揮毒性的途徑之一,且不同劑量的霉菌毒素對(duì)腸道黏膜機(jī)械屏障有不同的作用機(jī)制。Pinton等[19]發(fā)現(xiàn),DON作用于IPEC-1細(xì)胞,抑制緊密連接蛋白claudin-4的合成,破壞腸道黏膜機(jī)械屏障完整性的作用機(jī)制為激活絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信號(hào)通路中的細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)。霉菌毒素對(duì)緊密連接蛋白的破壞作用在動(dòng)物試驗(yàn)也得到證實(shí)。6~7周齡B6C3F1雄性小鼠口服DON后,腸道緊密連接蛋白claudins mRNA表達(dá)量升高且在小腸遠(yuǎn)端的分布發(fā)生改變[15];5周齡仔豬連續(xù)攝食低劑量(3 mg/ kg)DON或低劑量(6 mg/ kg)伏馬菌素B1(fumonisin B1,F(xiàn)B1)污染的飼糧5周后,小腸緊密連接蛋白o(hù)ccludin表達(dá)量顯著降低[20]。
以上研究表明,當(dāng)腸道黏膜受到短期、低濃度霉菌毒素侵害時(shí),可以依靠自身調(diào)節(jié)能力來(lái)維持腸道黏膜機(jī)械屏障的完整性;但當(dāng)腸道黏膜機(jī)械屏障受到的損害超過(guò)自身調(diào)節(jié)能力時(shí),腸上皮細(xì)胞發(fā)生病變,緊密連接蛋白表達(dá)量下降,腸道機(jī)械屏障受到損傷。值得注意的是,動(dòng)物長(zhǎng)期暴露于低劑量霉菌毒素也會(huì)對(duì)機(jī)體腸道產(chǎn)生不良影響。因此,在實(shí)際生產(chǎn)中設(shè)計(jì)動(dòng)物飼糧的霉菌毒素最低檢測(cè)量時(shí),不僅要考慮毒素劑量的影響,還要考慮動(dòng)物的飼養(yǎng)期。
腸道黏膜上皮細(xì)胞分泌的黏液、消化液及腸腔內(nèi)正常菌群產(chǎn)生的抑菌物質(zhì)等化學(xué)物質(zhì)也具有屏障功能,稱之為化學(xué)屏障[11]。黏液層位于上皮細(xì)胞腔的表面,主要由杯狀細(xì)胞產(chǎn)生和分泌的糖基化黏蛋白(mucins,MUC)組成,對(duì)腸道黏膜屏障阻止外來(lái)污染物進(jìn)入深層組織發(fā)揮了重要作用[6]。Bae等[21]研究表明,DON可誘導(dǎo)人體組織淋巴癌細(xì)胞(U937細(xì)胞)和小鼠單核巨噬細(xì)胞(RAW264.7細(xì)胞)MUC等蛋白合成降低。Wan等[6]研究證明,DON、玉米赤酶烯酮(zearalenone,ZEA)、雪腐鐮刀菌烯醇(nivalenol,NIV)、FB1,單獨(dú)或混合作用于人腸道上皮細(xì)胞后,能夠顯著改變MUC5AC、MUC5B mRNA的表達(dá)量?;贛UC5AC、MUC5B基因?qū)γ咕舅刈鞒龅念愃妻D(zhuǎn)錄反應(yīng),霉菌毒素對(duì)MUC5AC、MUC5B可能存在一個(gè)共同的調(diào)節(jié)機(jī)制。Pinton等[22]研究表明,MUC表達(dá)量的降低依賴于ERK以及MAPKp38的活化途徑。
哺乳動(dòng)物腸道上皮細(xì)胞可產(chǎn)生大量的抗菌肽(antimicrobial peptides,AMPs)以應(yīng)對(duì)腸道的復(fù)雜微生物環(huán)境,其中最多的是防御素[23]。Wan等[24]體外試驗(yàn)研究發(fā)現(xiàn),單獨(dú)或混合作用的鐮刀菌毒素(DON、NIV、ZEA、FB1)可顯著提高豬腸道上皮IPEC-J2細(xì)胞β-防御素1(pBD-1)、β-防御素2 (pBD-2)mRNA表達(dá)水平,但分泌蛋白豐度無(wú)顯著變化。mRNA表達(dá)水平與蛋白豐度之間的差異可以解釋為:1)可能受到防御素分子轉(zhuǎn)錄后或翻譯后調(diào)控機(jī)制,以及蛋白質(zhì)降解途徑的影響[25];2)應(yīng)用于蛋白質(zhì)定量試驗(yàn)技術(shù)的靈敏度沒(méi)有轉(zhuǎn)錄水平測(cè)定mRNA含量的靈敏度高[26]。動(dòng)物試驗(yàn)證明,在添加DON的飼料中補(bǔ)充復(fù)合抗菌肽(composite antimicrobial peptides,CAP),可顯著提高仔豬外周血淋巴細(xì)胞增殖,顯著增加血小板數(shù),提高血清過(guò)氧化氫酶含量,降低丙二醛含量,表明CAP可改善腸道形態(tài),提高機(jī)體免疫功能和抗氧化功能,減輕器官損傷,從而修復(fù)DON誘發(fā)的腸道損傷[27]。
以上利用不同物種(鼠、豬、人)進(jìn)行不同試驗(yàn)?zāi)P停?xì)胞培養(yǎng)、體內(nèi)試驗(yàn))得出的結(jié)果表明,霉菌毒素可以激活機(jī)體腸道黏膜化學(xué)屏障,發(fā)揮防御機(jī)制,保護(hù)機(jī)體。然而,其確切的作用機(jī)制尚未清楚。今后應(yīng)利用分子生物學(xué)等方法,將轉(zhuǎn)錄組學(xué)與蛋白質(zhì)組學(xué)有機(jī)結(jié)合,進(jìn)一步闡述霉菌毒素對(duì)腸道黏膜化學(xué)屏障功能的影響機(jī)制。
腸道黏膜選擇性允許腸腔內(nèi)容物中食物、藥物等進(jìn)入,而阻止細(xì)菌等外源危害物的進(jìn)入,這不僅與腸道黏膜機(jī)械屏障有關(guān),還與腸道黏膜免疫屏障有關(guān)[28]。目前,腸道黏膜免疫屏障已逐步成為研究的焦點(diǎn)。腸道黏膜免疫屏障主要由腸道相關(guān)淋巴組織(gut-associated lymphatic tissue,GALT)、腸系膜淋巴結(jié)等腸道組織和腸道漿細(xì)胞分泌的分泌型免疫球蛋白A(secretory Immunoglobulin A,S-IgA)構(gòu)成[29-30]。GALT主要由派伊氏結(jié)(peyer’patch,PP)、腸系膜淋巴結(jié)和腸上皮中大量淋巴細(xì)胞組成[31]。S-IgA不僅具有中和內(nèi)毒素、與細(xì)菌上的特異性抗原結(jié)合形成抗原抗體復(fù)合物、刺激腸道黏液分泌、加速黏液在黏液表面流動(dòng)、抵御病原菌在黏膜上皮黏附等作用[32-34],還具有免疫調(diào)節(jié)、免疫排斥、調(diào)節(jié)腸道微生物、促進(jìn)抗菌因子生成等功能[35]。He等[36]研究表明,與對(duì)照組相比,添加0.3 mg/ kg黃曲霉毒素B1(aflatoxin B1,AFB1)可降低雄性肉雞腸道中免疫球蛋白A陽(yáng)性(IgA+)細(xì)胞數(shù)量以及S-IgA、免疫球蛋白A(IgA)、免疫球蛋白G(IgG)、免疫球蛋白M (IgM)含量。S-IgA數(shù)量減少,增加了腸道細(xì)菌和內(nèi)毒素與黏膜上皮細(xì)胞相互作用的機(jī)會(huì),促進(jìn)了細(xì)菌易位和內(nèi)毒素吸收,這可能是腸道免疫功能下降的原因之一[37]。Li等[38]研究發(fā)現(xiàn),飼喂肉雞含霉菌毒素的飼料可顯著降低血清IgA含量。腸道黏膜免疫是由IgA介導(dǎo)的,IgA能使病毒等抗原在細(xì)胞內(nèi)被中和,并可將其產(chǎn)物返回腸腔,防止上皮細(xì)胞因細(xì)胞裂解而受損。IgA含量的降低,可導(dǎo)致腸道黏膜免疫反應(yīng)的缺失。研究證實(shí),霉菌毒素可通過(guò)降低免疫球蛋白的表達(dá),損傷腸道黏膜免疫屏障。Grenier等[39]發(fā)現(xiàn),DON和FB1可降低仔豬血清中IgG含量和淋巴細(xì)胞的增殖。IgG為炎癥反應(yīng)的第2道防線[40],IgG含量的降低,可導(dǎo)致腸道免疫反應(yīng)的失衡,從而破壞腸道黏膜免疫屏障。但Swamy等[41]研究表明,飼喂雄性肉雞含高水平鐮刀菌毒素(8. 2 mg/ kg DON,0.56 mg/ kg ZEA)的谷物56 d后,血清中免疫球蛋白含量并未發(fā)生顯著變化。原因可能是霉菌毒素種類、濃度不同,暴露時(shí)間長(zhǎng)短不同,試驗(yàn)動(dòng)物的種類、年齡、性別不同,導(dǎo)致血清中免疫球蛋白對(duì)霉菌毒素的反應(yīng)不同。
淋巴細(xì)胞可分泌多種細(xì)胞因子及炎癥介質(zhì),通過(guò)發(fā)揮抗感染體液免疫和細(xì)胞毒性細(xì)胞免疫,刺激與調(diào)控腸道免疫功能,以防止致病性抗原對(duì)腸道的傷害[11,29]。Mahmoodi等[42]研究表明,在胃上皮AGS細(xì)胞系和人結(jié)腸腺癌SW742細(xì)胞系中,F(xiàn)B1以劑量依賴方式顯著促進(jìn)巨噬細(xì)胞趨化因子和促炎細(xì)胞因子的表達(dá)。Kadota等[43]在Caco-2細(xì)胞上的研究表明,DON可刺激白細(xì)胞介素-8 (IL-8)的分泌。在IPEC-1細(xì)胞中,ZEA可增加IL-8和白細(xì)胞介素-10(IL-10)的合成[44]。Taranu等[45]發(fā)現(xiàn),ZEA單獨(dú)作用于IPEC-1細(xì)胞,細(xì)胞因子的表達(dá)量并無(wú)顯著變化,但當(dāng)ZEA與大腸桿菌混合作用后,干擾素-γ(IFN-γ)、IL-10和腫瘤壞死因子-α(TNF-α)的分泌量均顯著增加。以上研究結(jié)果表明,霉菌毒素不僅對(duì)腸道具有直接促炎作用,而且可通過(guò)腸道功能的改變間接引起腸道炎癥[46]。霉菌毒素使促炎性細(xì)胞因子分泌量增多,導(dǎo)致腸道緊密連接降低,腸道通透性增加,使腸腔內(nèi)危害因子更容易通過(guò)腸道進(jìn)入血液[47]。
腸道菌群是腸道黏膜的重要生物屏障,以腸道專性厭氧菌為優(yōu)勢(shì)菌群,對(duì)病原體的入侵起屏障作用,具有抵抗其他致病菌黏附或定植的能力。如果腸道厭氧菌數(shù)量減少,微生物菌群穩(wěn)定性遭到破壞,定植抵抗力下降,外源病原菌就會(huì)黏附于腸道黏膜,導(dǎo)致腹瀉、腸炎等一系列腸道疾病[10,32]。Niderkorn等[48]研究表明,胃腸道內(nèi)發(fā)酵菌群可以與ZEA、FB1結(jié)合,有效降低其毒性。Young等[49]利用液相色譜-紫外質(zhì)譜監(jiān)測(cè)法研究表明,腸道菌群可通過(guò)脫乙酰方式降解單端孢霉菌毒素。Wachéy等[50]利用毛細(xì)管電泳單鏈構(gòu)象多樣性方法觀察到,暴露于DON的動(dòng)物腸道菌群發(fā)生動(dòng)態(tài)變化。
腸道是機(jī)體抵御外來(lái)污染物入侵的第1道屏障,包括機(jī)械屏障、化學(xué)屏障、免疫屏障和生物屏障4部分,這4部分是一個(gè)相互聯(lián)系的整體,任何一部分的損傷,均可導(dǎo)致腸道黏膜屏障功能的損傷。研究表明,霉菌毒素可破壞腸道上皮細(xì)胞屏障功能,誘導(dǎo)動(dòng)物和人類腸道病變。為保護(hù)動(dòng)物和人體健康,實(shí)際生產(chǎn)中應(yīng)注意控制霉菌毒素的產(chǎn)生,做好防霉和脫毒工作。目前,有關(guān)霉菌毒素影響腸道黏膜屏障功能的研究主要集中在人和單胃動(dòng)物,對(duì)反芻動(dòng)物的研究較少。且有關(guān)霉菌毒素介導(dǎo)的腸道黏膜屏障損傷作用機(jī)制,如免疫屏障中免疫球蛋白的表達(dá)調(diào)控機(jī)制研究甚少。因此,在今后的研究中,我們可以結(jié)合分子生物學(xué)、毒理基因組學(xué)等技術(shù)方法,從分子水平上探究霉菌毒素對(duì)腸道黏膜屏障的損傷機(jī)理,形成一套完整的理論基礎(chǔ)。
參考文獻(xiàn):
[1] JESTOI M,ROKKA M,YLI-MATTILA T,et al.Presence and concentrations of the Fusarium-related mycotoxins beauvericin,enniatins and moniliformin in finnish grain samples[J]. Food Additives and Contaminants,2004,21(8):794-802.
[2] MECA G,RUIZ M J,SORIANO J M,et al.Isolation and purification of enniatins A,A1,B,B1,produced by Fusarium tricinctum in solid culture,and cytotoxicity effects on Caco-2 cells[J].Toxicon,2010,56(3):418-424.
[3] MALACHOVA A,DZUMAN Z,VEPRIKOVA Z,et al. Deoxynivalenol,deoxynivalenol-3-glucoside,and enniatins:the major mycotoxins found in cereal-based products on the Czech market[J].The Journal of Agricultural and Food Chemistry,2011,59(24):12990-12997.
[4] TATAY E,MECA G,F(xiàn)ONT G,et al. Interactive effects of zearalenone and its metabolites on cytotoxicity and metabolization in ovarian CHO-K1 cells[J]. Toxicology in Vitro,2014,28(1):95-103.
[5] OSWALD I P,MARIN D E,BOUHET S,et al.Immunotoxicological risk of mycotoxins for domestic animals[J].Food Additives and Contaminants,2005,22 (4):354-360.
[6] WAN L Y M,ALLEN K J,TURNER P C,et al.Modulation of mucin mRNA(MUC5AC and MUC5B)expression and protein production and secretion in Caco-2/ HT29-MTX co-cultures following exposure to individual and combined Fusarium mycotoxins[J].Toxicological Sciences,2014,139(1):83-98.
[7] BOUHET S,OSWALD I P.The effects of mycotoxins,fungal food contaminants,on the intestinal epithelial cell-derived innate immune response[J].Veterinary Immunology and Immunopathology,2005,108(1/ 2):199-209.
[8] MARESCA M,YAHI N,YOUNèS-SAKR L,et al. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium:stimulation of interleukin-8 secretion,potentiation of interleukin-1β effect and increase in the transepithelial passage of commensal bacteria[J].Toxicology and Applied Pharmacology,2008,228(1):84-92.
[9] 計(jì)成.霉菌毒素對(duì)家禽的危害及降解技術(shù)[J].中國(guó)家禽,2014,36(2):40-42.
[10] 朱翠,師子彪,蔣宗勇,等.乳酸桿菌在調(diào)節(jié)腸道屏障功能中的作用[J].中國(guó)畜牧獸醫(yī),2012,39(9):118-122.
[11] 胡紅蓮,高民.腸道屏障功能及其評(píng)價(jià)指標(biāo)的研究進(jìn)展[J].中國(guó)畜牧雜志,2012,48(17):78-82.
[12] BOOTH C,POTTEN C S. Gut instincts:thoughts on intestinal epithelial stem cells[J].The Journal of Clinical Investigation,2000,105(11):1493-1499.
[13] GOOSSENS J,PASMANS F,VERBRUGGHE E,et al.Porcine intestinal epithelial barrier disruption by the Fusarium mycotoxins deoxynivalenol and T-2 toxin promotes transepithelial passage of doxycycline and paromomycin[J].BMC Veterinary Research,2012,8 (1):245.
[14] IVANOVA L,EGGE-JACOBSEN W M,SOLHAUG A,et al.Lysosomes as a possible target of enniatin B-induced toxicity in Caco-2 cells[J]. Chemical Research in Toxicology,2012,25(8):1662-1674.
[15] AKBARI P,BRABER S,GREMMELS H,et al. Deoxynivalenol:a trigger for intestinal integrity breakdown[J].The FASEB Journal,2014,28(6):2414-2429.
[16] PINTON P,TSYBULSKYY D,LUCIOLI J,et al. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine:differential effects on morphology,barrier function,tight junction proteins,and mitogen-activated protein kinases[J]. Toxicological Sciences,2012,130(1):180-190.
[17] KOLF-CLAUW M,CASTELLOTE J,JOLY B,et al. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol:histopathological analysis[J].Toxicology in Vitro,2009,23(8):1580-1584.
[18] DIESING A K,NOSSOL C,PANTHER P,et al.Mycotoxin deoxynivalenol(DON)mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2[J]. Toxicology Letters,2011,200(1/2):8-18.
[19] PINTON P,BRAICU C,NOUGAYREDE J P,et al. Deoxynivalenol impairs porcine intestinal barrier func-tion and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism[J]. The Journal of Nutrition,2010,140 (11):1956-1962.
[20] BRACARENSE A P F L,LUCIOLI J,GRENIER B,et al.Chronic ingestion of deoxynivalenol and fumonisin,alone or in interaction,induces morphological and immunological changes in the intestine of piglets[J]. The British Journal of Nutrition,2012,107(12):1776-1786.
[21] BAE H K,PESTKA J J.Deoxynivalenol induces p38 interaction with the ribosome in monocytes and macrophages[J]. Toxicological Sciences,2008,105(1):59-66.
[22] PINTON P,GRAZIANI F,PUJOL A,et al.Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule β[J].Molecular Nutrition&Food Research,2015,59(6):1076-1087.
[23] 任曼.支鏈氨基酸調(diào)控仔豬腸道防御素表達(dá)和免疫屏障功能的研究[D].博士學(xué)位論文.北京:中國(guó)農(nóng)業(yè)大學(xué),2014.
[24] WAN M L Y,WOO C S J,ALLEN K J,et al.Modulation of porcine β-defensins 1 and 2 upon individual and combined Fusarium toxin exposure in a swine jejunal epithelial cell line[J].Applied and Environmental Microbiology,2013,79(7):2225-2232.
[25] GANZ T.Biosynthesis of defensins and other antimicrobial peptides[M]/ / MARSH J,GOODE J A.Ciba foundation symposium 186-antimicrobial peptides.Ciba Foundation Symposium,2007,186:62-71.
[26] GREENBAUM D,COLANGELO C,WILLIAMS K,et al.Comparing protein abundance and mRNA expression levels on a genomic scale[J].Genome Biology,2003,4(9):117.
[27] XIAO H,WU M M,TAN B E,et al.Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol:Ⅰ.Growth performance,immune function,and antioxidation capacity[J]. The Journal of Animal Science,2013,91(10):4772 -4780.
[28] 吳國(guó)豪.腸道屏障功能[J].腸外與腸內(nèi)營(yíng)養(yǎng),2004,11(1):44-47.
[29] 戈娜,袁慧.腸道免疫屏障功能損傷的研究進(jìn)展[J].廣東畜牧獸醫(yī)科技,2008,33(1):9-11.
[30] 徐凱進(jìn),李蘭娟.腸道正常菌群與腸道免疫[J].國(guó)外醫(yī)學(xué):流行病學(xué)傳染病學(xué)分冊(cè),2005,32(3):181-183.
[31] 佘銳萍,高齊瑜,王彩虹.腸相關(guān)性淋巴樣組織研究概況[J].動(dòng)物醫(yī)學(xué)進(jìn)展,2002,23(4):29-33.
[32] 蔡元坤,秦新裕.D-乳酸與腸道屏障功能[J].國(guó)外醫(yī)學(xué):外科學(xué)分冊(cè),2004,31(6):331-335.
[33] CORTHéSY B.Roundtrip ticket for secretory IgA:role in mucosal homeostasis?[J].The Journal of Immunology,2007,178(1):27-32.
[34] 于曉明,金宏,糜漫天.腸屏障功能的損傷與營(yíng)養(yǎng)素防護(hù)[J].解放軍預(yù)防醫(yī)學(xué)雜志,2006,24(1):68-70.
[35] WOOF J M,KERR M A. The function of immunoglobulin A in immunity[J].The Journal of Pathology,2006,208(2):270-282.
[36] HE Y,F(xiàn)ANG J,PENG X,et al.Effects of sodium selenite on aflatoxin B1-induced decrease of ileal IgA+cell numbers and immunoglobulin contents in broilers [J]. Biological Trace Element Research,2014,160 (1):49-55.
[37] 羅治彬,吳嘉惠,徐采樸.中毒劑量鋅對(duì)大鼠小腸黏膜抗體產(chǎn)生的影響[J].世界華人消化雜志,2000,8 (3):363-364.
[38] LI Z,YANG Z B,YANG W R,et al.Effects of feedborne Fusarium mycotoxins with or without yeast cell wall adsorbent on organ weight,serum biochemistry,and immunological parameters of broiler chickens[J]. Poultry Science,2012,91(10):2487-2495.
[39] GRENIER B,LOUREIRO-BRACARENSE A P,LUCIOLI J,et al.Individual and combined effects of subclinical doses of deoxynivalenol and fumonisins in piglets[J]. Molecular Nutrition&Food Research,2011,55(5):761-771.
[40] CERUTTI A. IgA changes the rules of memory[J]. Science,2010,328(5986):1646-1647.
[41] SWAMY H V L N,SMITH T K,COTTER P F,et al. Effects of feeding blends of grains naturally contaminated with Fusarium mycotoxins on production and metabolism in broilers[J]. Poultry Science,2002,81 (7):966-975.
[42] MAHMOODI M,ALIZADEH A M,SOHANAKI H,et al.Impact of fumonisin B1on the production of inflammatory cytokines by gastric and colon cell lines [J].Iranian Journal of Allergy,Asthma and Immunology,2012,11(2):165-173.
[43] KADOTA T,F(xiàn)URUSAWA H,HIRANO S,et al. Comparativestudyofdeoxynivalenol,3-acetyldeoxynivalenol,and 15-acetyldeoxynivalenol on intestinal transport and IL-8 secretion in the human cell line Caco-2[J]. Toxicology in Vitro,2013,27 (6):1888-1895.
[44] MARIN D E,MOTIU M,TARANU I.Food contaminant zearalenone and its metabolites affect cytokine synthesis and intestinal epithelial integrity of porcine cells[J].Toxins,2015,7(6):1979-1988.
[45] TARANU I,MARIN D E,PISTOL G C,et al.Induction of pro-inflammatory gene expression by Escherichia coli and mycotoxin zearalenone contamination and protection by a Lactobacillus mixture in porcine IPEC-1 cells[J].Toxicon,2015,97:53-63.
[46] 郭佳怡,陳潔,何潤(rùn)霞,等.嘔吐毒素和其他B型單端孢霉烯族毒素對(duì)腸道影響研究進(jìn)展[J].畜牧與獸醫(yī),2015,47(5):147-150.
[47] CANO P M,SEEBOTH J,MEURENS F,et al. Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases:an emerging hypothesis through possible modulation of Th17-mediated response[J].PLoS One,2013,8(1):e53647.
(責(zé)任編輯李慧英)
[48] NIDERKORN V,BOUDRA H,MORGAVI D P,et al.Binding of Fusarium mycotoxins by fermentative bacteria in vitro[J].The Journal of Applied Microbiology,2006,101(4):849-856.
[49] YOUNG J C,ZHOU T,YU H,et al.Degradation of trichothecene mycotoxins by chicken intestinal microbes[J].Food and Chemical Toxicology,2007,45 (1):136-143.
[50] WACHéY J,VALAT C,POSTOLLEC G,et al. Impact of deoxynivalenol on the intestinal microflora of pigs[J].International Journal of Molecular Sciences,2009,10(1):1-17.
Effects of Mycotoxins on Intestinal Mucosal Barrier Function
GAO Yanan1,2,3WANG Jiaqi1,2,3LI Songli1,2,3ZHANG Yangdong1,2,3ZHENG Nan1,2,3?
(1.Ministry of Agriculture-Milk Risk Assessment Laboratory,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,China;2. Ministry of Agriculture-Milk and Dairy Product Inspection Center,Beijing 100193,China;3. State Key Laboratory of Animal Nutrition,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,China)
Abstract:Mycotoxins widely exist in feed ingredients and human food,posing a serious threat to animals and human health. As the first barrier between the body and external contaminants,intestinal barriers mucosal mainly constitute four interrelated functional barriers which are mechanical barrier,chemical barrier,immune barrier as well as biological barrier. This review summarized the effects of mycotoxins on intestinal mucosal barrier and its mechanisms based on the previous study.[Chinese Journal of Animal Nutrition,2016,28(3):674-679]
Key words:mycotoxins;intestinal mucosa;intestinal barrier
Corresponding author?,associate professor,E-mail:wangjiaqinmqc@126.com
通信作者:?鄭 楠,副研究員,E-mail:wangjiaqinmqc@126.com
作者簡(jiǎn)介:高亞男(1992—),女,山東威海人,碩士研究生,從事動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)研究。E-mail:gyn758521@126.com
基金項(xiàng)目:國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(2011CB100805);現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金(nycytx-04-01);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程(ASTIP-IAS12);國(guó)家自然科學(xué)基金資助項(xiàng)目(31501399)
收稿日期:2015-10-13
doi:10.3969/ j.issn.1006-267x.2016.03.006
中圖分類號(hào):S859.8
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-267X(2016)03-0674-06
動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)2016年3期