郭 江 高勝濤 權(quán)素玉 南雪梅 卜登攀,4?(1.湖南農(nóng)業(yè)大學(xué)動物科學(xué)技術(shù)學(xué)院,長沙410128;2.中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學(xué)國家重點(diǎn)實驗室,北京100193;3.中國農(nóng)業(yè)科學(xué)院與世界農(nóng)用林業(yè)中心農(nóng)用林業(yè)與可持續(xù)畜牧業(yè)聯(lián)合實驗室,北京100193;4.東北農(nóng)業(yè)大學(xué)食品安全與營養(yǎng)協(xié)同創(chuàng)新中心,哈爾濱150030)
?
miRNAs對熱應(yīng)激畜禽調(diào)控的分子機(jī)制
郭江1,2,3高勝濤2,3權(quán)素玉2,3南雪梅2,3卜登攀1,2,3,4?
(1.湖南農(nóng)業(yè)大學(xué)動物科學(xué)技術(shù)學(xué)院,長沙410128;2.中國農(nóng)業(yè)科學(xué)院北京畜牧獸醫(yī)研究所,動物營養(yǎng)學(xué)國家重點(diǎn)實驗室,北京100193;3.中國農(nóng)業(yè)科學(xué)院與世界農(nóng)用林業(yè)中心農(nóng)用林業(yè)與可持續(xù)畜牧業(yè)聯(lián)合實驗室,北京100193;4.東北農(nóng)業(yè)大學(xué)食品安全與營養(yǎng)協(xié)同創(chuàng)新中心,哈爾濱150030)
摘要:熱應(yīng)激改變動物行為和生理機(jī)能,miRNAs作為22個核苷酸左右的非編碼RNA,在轉(zhuǎn)錄后水平通過抑制靶基因參與機(jī)體的熱應(yīng)激調(diào)控。本文就miRNAs對熱應(yīng)激細(xì)胞生長、凋亡以及對熱應(yīng)激畜禽免疫、抗應(yīng)激、器官損傷、生長性能和繁殖性能等方面所起作用及其機(jī)制進(jìn)行綜述。
關(guān)鍵詞:miRNAs;熱應(yīng)激;畜禽;調(diào)控
隨著全球氣候變暖,熱應(yīng)激對畜牧業(yè)的影響越來越嚴(yán)重。而我國幅員遼闊,每年夏季大片區(qū)域受熱應(yīng)激影響,導(dǎo)致畜禽代謝紊亂、生產(chǎn)性能和繁殖性能降低,造成嚴(yán)重的經(jīng)濟(jì)損失[1-2]。熱應(yīng)激反應(yīng)是動物機(jī)體一種自我保護(hù)機(jī)制,相關(guān)基因和蛋白質(zhì)表達(dá)發(fā)生改變。而miRNAs作為一種轉(zhuǎn)錄后水平的調(diào)控因子,在哺乳動物基因的轉(zhuǎn)錄水平中只有1%~5%被編碼,卻調(diào)控超過60%的基因[3-5]。越來越多研究結(jié)果表明,miRNAs在畜禽抵御熱應(yīng)激方面發(fā)揮重要作用,如調(diào)控?zé)嵝菘说鞍祝℉SP)、氧化還原基因、免疫基因、細(xì)胞凋亡基因和相關(guān)代謝基因等[6-7]。本文旨在對近些年熱應(yīng)激條件下相關(guān)miRNAs的研究進(jìn)行綜述,以期為畜禽熱應(yīng)激研究提供幫助。
miRNAs作為一種轉(zhuǎn)錄后水平調(diào)控的非編碼RNA,對動物機(jī)體調(diào)控起到重要作用[8]。通過線蟲胚胎發(fā)育時間控制缺陷型遺傳篩選試驗發(fā)現(xiàn)最早miRNAs家族成員lin-4[9-10],從此miRNAs受到廣泛關(guān)注。成熟miRNAs形成過程包含以下幾個步驟:miRNAs基因轉(zhuǎn)錄后形成長鏈的原miRNA (pri-miRNA),pri-miRNA經(jīng)Doarsha酶切,形成前體miRNA(pre-miRNA),由Exportin-5蛋白質(zhì)轉(zhuǎn)運(yùn)至細(xì)胞質(zhì),經(jīng)Dicer酶切而形成成熟miRNAs[11]。miRNAs通過復(fù)合物RNA誘導(dǎo)沉默復(fù)合體(RISC)調(diào)控基因的表達(dá):mRNA剪切和翻譯抑制[12-13]。在這個過程中,miRNAs可能有多個靶基因,靶基因也可能受多個miRNAs調(diào)控[14]。
2.1對熱應(yīng)激細(xì)胞生長和凋亡的調(diào)控
細(xì)胞暴露在高溫環(huán)境會受到損傷,細(xì)胞內(nèi)DNA、RNA和蛋白質(zhì)被抑制[15]。體外培養(yǎng)的細(xì)胞在熱應(yīng)激條件下生長停滯,并誘發(fā)其凋亡[16]。熱應(yīng)激誘導(dǎo)奶牛乳腺上皮細(xì)胞,先是熱應(yīng)答、DNA修復(fù)和蛋白質(zhì)修復(fù)有關(guān)基因上調(diào),之后凋亡相關(guān)基因上調(diào)[17]。miRNAs作為單鏈非編碼小分子,調(diào)控細(xì)胞增殖、分化和凋亡[8]。miR-17-5p作用于自噬相關(guān)基因(ULK1),抑制細(xì)胞自噬的發(fā)生[18]。miR-71直接作用于pdk-1和cdc-25.1,影響DNA損傷修復(fù)信號通路[19]。Wilmink等[20]觀察高溫誘導(dǎo)表皮成纖維細(xì)胞應(yīng)激反應(yīng)時發(fā)現(xiàn),有83個miRNAs表達(dá)量下調(diào)和40個miRNAs表達(dá)量上調(diào),靶基因分析發(fā)現(xiàn)差異表達(dá)的miR-138、miR-196a 與HSP家族HSPA4L和HSPH1有關(guān);熱應(yīng)激條件下有3類miRNAs進(jìn)行調(diào)控,在大部分應(yīng)激表達(dá)miRNAs,如miR125b、miR-222、miR-22和let-7c;只在高溫誘導(dǎo)下表達(dá)miRNAs,如miR-452、miR-382和miR-378;和在應(yīng)激條件下表達(dá)下調(diào)的miRNAs。高溫抑制miRNA-24的表達(dá),降低奶牛乳腺上皮細(xì)胞凋亡發(fā)生率,促進(jìn)細(xì)胞的生長發(fā)育[21]。熱應(yīng)激刺激CYP2e基因生產(chǎn)大量活性氧自由基[22],造成細(xì)胞內(nèi)限速酶肌肉磷酸果糖激酶(PFKm)表達(dá)量上升,糖酵解加快,乳酸濃度升高;長期應(yīng)激會使乳酸在細(xì)胞內(nèi)堆積,導(dǎo)致微環(huán)境的酸中毒,使細(xì)胞凋亡。而miR-320a靶向調(diào)控PFKm,抑制糖酵解[23]。
熱應(yīng)激能影響細(xì)胞內(nèi)HSP表達(dá),進(jìn)行急性穩(wěn)態(tài)反應(yīng),如HSP和相關(guān)基因表達(dá)改變[15]。有研究發(fā)現(xiàn)HSP70和HSP90與Ago2(RISC重要組成部分,對miRNAs修飾作用)有關(guān),可能HSP還參與miRNA的基因沉默[24]。但Fukuoka等[25]發(fā)現(xiàn)miRNAs的表達(dá)水平不變情況下,熱應(yīng)激能使基因沉默活性加強(qiáng);HSP90對miRNAs基因沉默沒有作用,HSP1也不參與miRNAs介導(dǎo)的基因沉默;認(rèn)為內(nèi)源miRNAs基因沉默在抑制熱變性蛋白可能只起輔助的作用。
2.2對熱應(yīng)激畜禽免疫和抗應(yīng)激的調(diào)控
熱應(yīng)激反應(yīng)是機(jī)體通過啟動自身防御體系,以避免機(jī)體損傷的一種非特異性防御反應(yīng),但強(qiáng)度過大、時間過長,機(jī)體出現(xiàn)病理、器官衰竭甚至死亡[26]。研究發(fā)現(xiàn)熱應(yīng)激促使泛素-蛋白酶體通路表達(dá)上調(diào),清除嚴(yán)重受損蛋白質(zhì)[27];機(jī)體下丘腦-垂體-腎上腺素軸活性加強(qiáng),加強(qiáng)機(jī)體抗應(yīng)激能力。Zheng等[28]研究熱應(yīng)激奶牛血液中miRNAs表達(dá)譜發(fā)現(xiàn),有7個miRNAs涉及應(yīng)激和免疫有關(guān);其中表達(dá)上調(diào)miR-19a和miR-19b通過對靶基因HSP家族調(diào)控,參與熱應(yīng)激調(diào)節(jié)。在急性應(yīng)激下大鼠循環(huán)血中HSP72濃度上調(diào)和miR-142-5P、miR-203下調(diào)[29]。miR-142-5P通過調(diào)控白細(xì)胞介素(IL)- 6受體進(jìn)行免疫反應(yīng);miR-203能抑制細(xì)胞因子信號傳導(dǎo)抑制蛋白-3(SOCS3),進(jìn)而調(diào)控促炎癥的細(xì)胞因子[30]。蔡明成等[31]研究熱應(yīng)激對紅安格斯母牛外周血miRNAs的影響發(fā)現(xiàn)有118個miRNAs表達(dá)上調(diào),197個miRNAs表達(dá)下調(diào);將表達(dá)量顯著上調(diào)和下調(diào)的10個miRNAs進(jìn)行靶基因預(yù)測發(fā)現(xiàn),miRNAs表達(dá)上調(diào)的靶基因主要參與細(xì)胞增殖、凋亡的調(diào)節(jié),miRNAs表達(dá)下調(diào)的靶基因主要參與機(jī)體免疫功能的調(diào)節(jié)。其中,miR-98靶向調(diào)控IL-6基因的表達(dá)[32],miR-31靶向調(diào)控核轉(zhuǎn)錄因子kappa B (NF-κB)誘導(dǎo)激酶(NIK)的表達(dá),調(diào)節(jié)炎癥反應(yīng)[33]。以上研究表明,在熱應(yīng)激條件下畜禽可通過miRNAs調(diào)控靶基因表達(dá),參與機(jī)體免疫和抗應(yīng)激反應(yīng)。
2.3對熱應(yīng)激畜禽器官損傷的調(diào)控
2.3.1腸道
熱應(yīng)激畜禽腸道缺血缺氧,造成腸道黏膜損傷[22]。miRNAs在此過程發(fā)揮重要作用。McKenna等[34]對小鼠空腸組織黏膜層采用高通量測序,檢測到1 094個成熟miRNAs,其中有65個是小腸黏膜特異性表達(dá)的miRNAs;當(dāng)Dicer1酶(miRNAs合成酶)基因缺失,小鼠腸上皮組織紊亂,腸屏障功能受損,發(fā)生炎癥反應(yīng)。Yu等[7]研究熱應(yīng)激引起大鼠小腸損傷發(fā)現(xiàn),有18個miRNAs(含miR-34a、miR-34b、miR-140、miR-375、miR-500)的表達(dá)量上調(diào)和11個miRNAs(含miR-31)的表達(dá)量下調(diào)。miR-500能靶向已糖激酶2(hexokinase 2,HK2)mRNA的3′UTR區(qū)域,通過降低HK2的活性,抑制小腸葡萄糖的吸收[35]。miR-375作用于IL-13,調(diào)控T細(xì)胞2中促上皮細(xì)胞因子胸腺基質(zhì)淋巴細(xì)胞生成素(TSLP)的表達(dá),使抵抗素樣分子家族β(RELMβ)表達(dá)降低,使腸道黏膜免疫力缺失[36]。miR-34a、miR-34b可靶向作用于凋亡基因(p53),調(diào)控DNA損傷修復(fù)、細(xì)胞周期阻滯、細(xì)胞凋亡[37]。miR-140調(diào)節(jié)機(jī)體的炎癥反應(yīng)[38]。miR-31在炎癥反應(yīng)時表達(dá)量下調(diào),與細(xì)胞生長、死亡和細(xì)胞通信的相關(guān)基因有關(guān)[39]。
熱應(yīng)激能導(dǎo)致腸道脂多糖(LPS)顯著上升和腸黏膜屏障受損,LPS進(jìn)入肝臟卻無法全部被消除,進(jìn)而進(jìn)入循環(huán)系統(tǒng),進(jìn)行全身炎癥反應(yīng)[40-41]。LPS會通過NF-κB信號通路激活腫瘤壞死因子-α (TNF-α)和IL-6,通過SOCS3導(dǎo)致肝臟胰島素耐受和產(chǎn)生高胰島素血癥,胰島素信號通路與炎癥因子的信號傳導(dǎo)存在交叉作用[42-43]。當(dāng)LPS刺激時,IL-6分泌和miR-181b表達(dá)呈負(fù)相關(guān)[44]。腸道黏膜的miR-146a表達(dá)量上調(diào),通過抑制Toll樣受體(TLR)信號通路中IL-1受體相關(guān)激酶1 (IRAK1),保護(hù)腸道免受損傷[45]。miR-140作為細(xì)胞因子信號抑制蛋白3(SOCS3)的作用靶標(biāo),調(diào)控LPS引起炎癥反應(yīng)[46]??傊跓釕?yīng)激條件下腸道產(chǎn)生大量的LPS,通過TLR和NF-κB信號通路刺激促炎癥因子的釋放,引起炎癥反應(yīng);而miRNAs通過調(diào)控TLR和NF-κB信號通路上相關(guān)基因,保護(hù)腸道健康。
2.3.2肝臟
熱應(yīng)激容易導(dǎo)致肝臟氧化損傷。而肝臟中谷胱甘肽過氧化物酶(GSH-Px)、過氧化氫酶(CAT)和超氧化物歧化酶(SOD)能清除氧自由基,減小熱應(yīng)激對肝臟氧化損傷[47]。miR-214靶向作用谷胱甘肽S-轉(zhuǎn)移酶(MGST1),調(diào)節(jié)抗氧化能力[47]。另外,肝細(xì)胞中線粒體是呼吸鏈氧自由基的主要產(chǎn)生部位,miR-93和miR-214靶向調(diào)控肝臟細(xì)胞色素c復(fù)合物(UQCRC1),起保護(hù)肝功能的作用[48-49]。
2.4對熱應(yīng)激畜禽生產(chǎn)性能的調(diào)控
在熱應(yīng)激條件下,畜禽增加排汗、加快心跳和呼吸頻率來維持機(jī)體的穩(wěn)態(tài),但影響畜禽的生產(chǎn)性能[50]。如熱應(yīng)激奶牛采食量下降,營養(yǎng)物質(zhì)攝入量不足,引起奶牛能量負(fù)平衡,導(dǎo)致產(chǎn)奶量降低[51]。Baumgard等[51]報道熱應(yīng)激奶牛出現(xiàn)能量負(fù)平衡,將葡萄糖優(yōu)先在組織中進(jìn)行代謝利用而非泌乳。miR-143通過抑制胰島素及下游因子蛋白激酶B(AKT)的活性,調(diào)控葡萄糖的穩(wěn)態(tài)[53]。Fatima等[54]采用基因芯片技術(shù)檢測能量負(fù)平衡狀態(tài)奶牛肝臟miRNAs表達(dá)時發(fā)現(xiàn),有miR-17-5p、miR-31、miR-140、miR-1281和miR-2885這5個miRNAs表達(dá)上調(diào),其中miR-31的靶基因肝細(xì)胞核因子3-γ(HNF3-γ)和轉(zhuǎn)錄因子(TF)涉及胰島素樣生長因子-1(IGF-1)表達(dá)調(diào)控,與葡萄糖代謝的穩(wěn)態(tài)有關(guān)。營養(yǎng)缺乏時,miR-80表達(dá)量下調(diào),直接靶向CRBE-1和調(diào)控胰島素信號通路調(diào)節(jié)機(jī)體能量代謝[55]。由此可見,熱應(yīng)激畜禽可通過miRNAs作用調(diào)控機(jī)體能量代謝,進(jìn)而影響采食量。
熱應(yīng)激影響畜禽產(chǎn)品的質(zhì)量。熱應(yīng)激降低牛奶中乳蛋白和酪蛋白濃度,產(chǎn)生“熱應(yīng)激乳蛋白降低征”[56-58]。張凡建等[59]發(fā)現(xiàn)不同熱應(yīng)激程度對牛奶品質(zhì)的影響也不同;中度熱應(yīng)激奶牛乳蛋白率極顯著低于輕度熱應(yīng)激,而重度熱應(yīng)激奶牛乳脂率顯著低于輕度熱應(yīng)激。miR-199a-3p能通過調(diào)控AKT/雷帕霉素靶蛋白(mTOR)信號通路來調(diào)控蛋白的合成[60]。miR-15a靶向作用于生長激素受體,能抑制乳腺上皮細(xì)胞增殖和酪蛋白的分泌[61]。miR-200a靶向作用于乳脂合成關(guān)鍵基因信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄活化蛋白4(STAT4),調(diào)控乳脂合成[62]。miR-142-3P靶向作用于催乳素受體,可調(diào)控乳腺上皮細(xì)胞酪蛋白和甘油三酯的分泌[63]。熱應(yīng)激降低畜禽骨骼肌中脂肪含量,提高腹部脂肪含量,引起肌肉組織中不飽和脂肪酸氧化,產(chǎn)生異味,降低肉品質(zhì)[64]。miR-130能靶向調(diào)控過氧化物酶體增殖物激活受體γ(PPARγ),調(diào)節(jié)脂肪細(xì)胞分化和脂肪沉積[65]。miR-27b通過靶向作用于脂蛋白脂肪酶(LPL)基因和調(diào)控絲裂原活化蛋白激酶(MAPK)、Wnt等信號通路抑制肉牛肌內(nèi)脂肪的沉積[66]。
2.5對熱應(yīng)激家畜繁殖性能的調(diào)控
熱應(yīng)激影響畜禽精子活力,降低受胎率,導(dǎo)致胚胎早亡和增加流產(chǎn)率[67]。Ji等[68]研究高溫和氧化應(yīng)激能降低精子的miR-15表達(dá)量,并通過靶向結(jié)合HSPA1B的3′UTR區(qū)域,減小應(yīng)激對精子產(chǎn)生的損傷。研究發(fā)現(xiàn)miRNAs對機(jī)體繁殖發(fā)育起到重要作用,從單細(xì)胞分裂增殖形成4-細(xì)胞期時,miRNAs經(jīng)歷先減少后增加的過程;其中miR-290家簇上調(diào)15倍,通過抑制靶基因Dickkopf相關(guān)蛋白1(Dkk-1)激活Wnt信號通路,為機(jī)體的胚胎形成、發(fā)育和干細(xì)胞分化發(fā)揮重要作用[69-70]。Nehammer等[71]研究發(fā)現(xiàn)熱應(yīng)激影響產(chǎn)蛋率;與野生型相比,miR-80突變型秀麗隱桿線蟲的產(chǎn)蛋率28℃時顯著降低,而miR-71、miR-80和miR-239突變型秀麗隱桿線蟲在30℃時幾乎不產(chǎn)蛋;并認(rèn)為在高溫下,miRNAs基因缺失型秀麗隱桿線蟲減少產(chǎn)蛋原因可能是特性miRNAs損傷可以使性腺變得敏感或者缺失特異性miRNAs的胚胎在高溫下無法生存。上述研究證實,畜禽可通過miRNAs作用緩解熱應(yīng)激對繁殖性能的損害。
miRNAs作為一種轉(zhuǎn)錄后調(diào)控機(jī)制,在熱應(yīng)激條件miRNAs在細(xì)胞生長、凋亡,機(jī)體免疫和抗應(yīng)激反應(yīng)、生長性能和繁殖性能等多方面發(fā)揮重要的調(diào)控作用。因此,探討miRNAs在熱應(yīng)激條件下對機(jī)體調(diào)控作用,差異表達(dá)miRNAs、miRNAs家族的協(xié)調(diào)作用及其靶基因的調(diào)控網(wǎng)絡(luò)或信號通路,有助于利用熱應(yīng)激分子特征研究,緩解熱應(yīng)激對機(jī)體造成損傷。
參考文獻(xiàn):
[1] 黃茹華,張巧娥,蘇嘉羽,等.寧夏地區(qū)不同季節(jié)牛乳成分的比較[J].黑龍江畜牧獸醫(yī):科技版,2013 (12):77-79.
[2] 宋代軍,何欽,姚焰礎(chǔ).熱應(yīng)激對不同泌乳階段奶牛生產(chǎn)性能和血清激素濃度的影響[J].動物營養(yǎng)學(xué)報,2013,25(10):2294-2302.
[3] FRIEDMAN J R,KAESTNER K H.Thefoxafamily of transcription factors in development and metabolism [J]. Cellular and Molecular Life Sciences CMLS,2006,63(19/20):2317-2328.
[4] FRIEDMAN R C,F(xiàn)ARH K K H,BURGE C B,et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Research,2009,19(1):92 -105.
[5] SUN W,LI Y S J,HUANG H D,et al.MicroRNA:a master regulator of cellular processes for bioengineering systems[J].Annual Review of Biomedical Engineering,2010,12:1-27.
[6] YU J,YIN P,LIU F,et al.Effect of heat stress on the porcine small intestine:a morphological and gene expression study[J]. Comparative Biochemistry and Physiology-Part A:Molecular and Integrative Physiology,2010,156(1):199-128.
[7] YU J,LIU FH,YIN P,et al. IntegratingmiRNA and mRNA expression profiles in response to heat stressinduced injury in rat small intestine[J]. Functional &Integrative Genomics,2011,11(2):203-213.
[8] FILIPOWICZ W,BHATTACHARYYA S N,SONENBERGN. Mechanisms of post-transcriptional regulation by microRNAs:are the answers in sight [J].Nature Reviews Genetics,2008,9(2):102-114.
[9] AMBROSV.MicroRNA pathways in flies and worms:growth,death,fat,stress,and timing[J]. Cell,2003,113(6):673-676.
[10] LEE R C,F(xiàn)EINBAUM R L,AMBROSV. The Celegansheterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
[11] HAN J J,LEE Y,YEOM K H,et al. The Drosha-DGCR8 complex in primary microRNA processing [J]. Genes&Development,2004,18(24):3016 -3027.
[12] KIM V N.MicroRNA precursors in motion:exportin-5 mediates their nuclear export[J].Trends in Cell Biology,2004,14(4):156-159.
[13] ZENG Y. Principles of micro-RNA production and maturation[J].Oncogene,2006,25(46):6156-6162.
[14] BAEK D,VILLéN J,SHIN C,et al. The impact of microRNAs on protein output[J]. Nature,2008,455 (7209):64-71.
[15] RHOADS R P,BAUMGARD L H,SUAGEE J K,et al. Nutritional interventions to alleviate the negative consequences of heat stress[J]. Advances in Nutrition,2013,4(3):267-276.
[16] LI X R,CAI M J. Recovery of the yeast cell cycle from heat shock-induced G1Arrest involves a positive regulation of G1cyclin expression by the S phase cyclin Clb5[J]. Journal of Biological Chemistry,1999,274(34):24220-24231.
[17] COLLIER R J,STIENING C M,POLLARD B C,et al.Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle[J].Journal of Animal Science,2006,84:1-13.
[18] 湯建中,張濤,丁淑琴,等.pSicoR/ miR-17-5p靶向調(diào)控UNC-51樣激酶1(ULK1)及其對細(xì)胞自噬的影響[J].臨床檢驗雜志,2014,3(3):698-704.
[19] BOULIAS K,HORVITZ H R.The C.elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/ FOXO [J].Cell Metabolism,2012,15(4):439-450.
[20] WILMINK G J,ROTH C L,IBEY B L,et al.Identification of microRNAs associated with hyperthermia-induced cellular stress response[J]. Cell Stress and Chaperones,2010,15(6):1027-1038.
[21] 李惠俠,王振云,張震,等.高溫條件下miRNA-24對奶牛乳腺上皮細(xì)胞增殖與凋亡的影響[J].中國農(nóng)業(yè)科學(xué),2010,43(22):4732-4738.
[22] MURAKAMI A E,SAKAMOTO M I,NATALI M R M,et al.Supplementation of glutamine and vitamin E on the morphometry of the intestinal mucosa in broiler chickens[J].Poultry Science,2007,86(3):488-495.
[23] TANG H B,LEE M,SHARPE O,et al. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems[J].The FASEB Journal,2012,26(11):4710-4721.
[24] IWASAKI S,KOBAYSHI M,YODA M,et al.Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes[J].Molecular Cell,2010,39(2):292-299.
[25] FUKUOKA M,YOSHIDA M,EDA A,et al.Gene silencing mediated by endogenous microRNAs under heat stress conditions in mammalian cells[J]. PLoS One,2014,9(7):e103130.
[26] 劉麗莉,謝紅兵,楊永生,等.基因芯片篩選畜禽熱應(yīng)激差異表達(dá)基因的研究進(jìn)展[J].動物營養(yǎng)學(xué)報,2012,24(12):2287-2294.
[27] KOLLI V,UPADHYAY R C,SINGH D. Peripheral blood leukocytes transcriptomic signature highlights the altered metabolic pathways by heat stress in zebu cattle[J]. Research in Veterinary Science,2014,96 (1):102-110.
[28] ZHENG Y,CHEN K L,ZHENG X M,et al.Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal Holstein cows[J].Cell Stress and Chaperones,2014,19(6):973-981.
[29] BENINSON L A,BROWN P N,LOUGHRIDGE A B,et al.Acute stressor exposure modifies plasma exosome-associated heat shock protein 72(Hsp72)and microRNA(miR-142-5p and miR-203)[J]. PLoS One,2014,9(9):e108748.
[30] RU P,STEELE R,HSUEH E C,et al.Anti-miR-203 upregulatesSOCS3 expression in breast cancer cells and enhances cisplatinchemosensitivity[J]. Genes &Cancer,2011,2(7):720-727.
[31] 蔡明成.熱應(yīng)激對肉牛生理生化指標(biāo)及外周血microRNA表達(dá)水平的影響[D].碩士學(xué)位論文.重慶:西南大學(xué),2014.
[32] WONG P K K,CAMPBELL I K,EGAN P J,et al. The role of the interleukin-6 family of cytokines in inflammatory arthritis and bone turnover[J].Arthritis&Rheumatism,2003,48(5):1177-1189.
[33] THU Y M,RICHMOND A.NF-κB inducing kinase:a key regulator in the immune system and in cancer[J]. Cytokine&Growth Factor Reviews,2010,21(4):213-226.
[34] MCKENNA L B,SCHUG J,VOUREKA S A,et al. MicroRNAs control intestinal epithelial differentiation,architecture,and barrier function[J]. Gastroenterology,2010,139(5):1654-1664.
[35] 金曉露,楊建香,李真,等.乳腺發(fā)育及泌乳相關(guān)miRNA研究進(jìn)展[J].遺傳,2013,35(6):695-702.
[36] BITON M,LEVIN A,SLYPER M,et al.Epithelial microRNAs regulate gut mucosal immunity via epithelium-T cell crosstalk[J].Nature Immunology,2011,12 (3):239-246.
[37] ANTONINI D,RUSSO M T,DE ROSAL,et al.Transcriptional repression of miR-34 family contributes to p63-mediated cell cycle progression in epidermal cells [J].Journal of Investigative Dermatology,2010,130 (5):1249-1257.
[38] QIN H W,NIYONGERE S A,LEE S J,et al.Expression and functional significance of SOCS-1 and SOCS-3 in astrocytes[J].The Journal of Immunology,2008,181(5):3167-3176.
[39] NAEEM A,ZHONG K,MOISá S J,et al.Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis[J].Journal of Dairy Science,2012,95(11):6397-6408.
[40] PLAIZIER J C,KHAFIPOURE,LIS,et al.Subacuteruminal acidosis(SARA),endotoxins and health consequences[J]. Animal Feed Science and Technology,2012,172(1/2):9-21.
[41] KHAFIPOUR E,KRAUSE D O,PLAIZIER J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation[J]. Journal of Dairy Science,2009,92(3):1060-1070.
[42] BABON J J,VARGHESE L N,NICOLA N A.Inhibition of IL-6 family cytokines by SOCS3[J].Seminars in Immunology,2014,26(1):13-19.
[43] 尤巧英,李成江.部分炎癥因子與胰島素抵抗[J].國外醫(yī)學(xué)內(nèi)分泌學(xué)分冊,2004,24(3):183-185.
[44] ZHANG W J,SHEN X J,XIE L Y,et al.MicroRNA-181b regulates endotoxin tolerance by targeting IL-6 in macrophage RAW264.7 cells[J]. Journal of Inflammation,2015,12:18.
[45] CHASSIN C,KOCUR M,POTT J,et al. MiR-146a mediates protective innate immune tolerance in the neonate intestine[J].Cell Host&Microbe,2010,8(4):358-368.
[46] QIN H W,NIYONGERE S A,LEE S J,et al.Expression and functional significance of SOCS-1 and SOCS-3 in astrocytes[J].The Journal of Immunology,2008,181(5):3167-3176.
[47] 王菲,黃毅,李延森,等.Keap1/ Nrf2/ ARE通路相關(guān)基因在熱誘導(dǎo)的氧化應(yīng)激小鼠肝臟中的表達(dá)[J].中國生物化學(xué)與分子生物學(xué)報,2014,30(3):284-290.
[48] VANBALKOM B W M,DE JONG O G,SMITSM,et al.Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells[J].Blood,2013,121(19):3997-4006.
[49] MAES O C,AN J,SAROJINI H,et al. Murine microRNAs implicated in liver functions and aging process[J].Mechanisms of Ageing and Development,2008,129(9):534-541.
[50] KADZERE C T,MURPHY M R,SILANIKOVE N,et al.Heat stress in lactating dairycows:a review[J]. Livestock Production Science,2002,77(1):59-91.
[51] WHEELOCK J B,RHOADS R P,VANBAALE M J,et al.Effects of heat stress on energetic metabolism in lactating Holstein cows[J].Journal of Dairy Science,2010,93(2):644-655.
[52] BAUMGARD L H,ABUAJAMIEH M K,STOAKES S K,et al. Feeding and managing cows to minimize heat stress[C]/ / Proceedings of the 23rd Tri-State Dairy Nutrition Conference,F(xiàn)ort Wayne,Indiana,USA,14-16 April 2014.Columbo:Ohio State University,2014:61-74.
[53] JORDANS D,KRüGER M,WILLMES D M,et al.O-besity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nature Cell Biology,2011,13(4):434-446.
[54] FATIMA A,WATERS S,O’BOYLE P,et al.Alterations in hepatic miRNA expression during negative energy balance in postpartum dairy cattle[J].BMC Genomics,2014,15:28.
[55] JIANG Y,LANGLEY B,LUBIN F D,et al.Epigenetics in the nervous system[J].The Journal of Neuroscience,2008,28(46):11753-11759.
[56] BERNABUCCI U,BASIRICò L,MORERA P,et al. Effect of summer season on milk protein fractions in Holstein cows[J].Journal of Dairy Science,2015,98 (3):1815-1827.
[57] COWLEY F C,BARBER D G,HOULIHAN A V,et al.Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism[J].Journal of Dairy Science,2015,98(4):2356-2368.
[58] 程建波,王偉宇,鄭楠,等.自然生產(chǎn)條件下熱應(yīng)激周期變化揭示泌乳中期奶牛出現(xiàn)“熱應(yīng)激乳蛋白降低征”[J].中國畜牧獸醫(yī),2014,41(10):73-84.
[59] 張凡建,徐聰,翁曉剛,等.不同程度熱應(yīng)激對泌乳中期奶牛產(chǎn)奶量和乳成分的影響[J].中國獸醫(yī)學(xué)報,2014,34(10):1686-1688.
[60] SHEN L,SUN C M,LI Y Y,et al.MicroRNA-199a-3p suppresses glioma cell proliferation by regulating the AKT/ mTOR signaling pathway[J].Tumor Biology,2015,36(9):6929-6938.
[61] LI H M,WANG C M,LI Q Z,et al.MiR-15a decreases bovine mammary epithelial cell viability and lactation and regulates growth hormone receptor expression [J].Molecules,2012,17(10):12037-12048.
[62] 張犁蘋,羅軍,林先滋,等.miR-200家族在西農(nóng)薩能奶山羊乳腺組織中的表達(dá)分析[J].畜牧獸醫(yī)學(xué)報,2013,44(6):944-951.
[63] 李慧銘.miR-142-3p對小鼠乳腺發(fā)育和泌乳重要功能基因Prlr的表達(dá)調(diào)控[D].博士學(xué)位論文.哈爾濱:東北農(nóng)業(yè)大學(xué),2013.
[64] 馮躍進(jìn),顧憲紅.熱應(yīng)激對豬肉品質(zhì)的影響及其機(jī)制的研究進(jìn)展[J].中國畜牧獸醫(yī),2013,40(2):96-99.
[65] 李虹儀,習(xí)欠云,張永亮.miR-130a在豬皮下脂肪細(xì)胞分化中的調(diào)節(jié)作用[J].中國生物化學(xué)與分子生物學(xué)報,2014,30(12):1216-1222.
[66] 汪海洋,鄭月,李惠俠,等.西門塔爾牛肌內(nèi)和皮下脂肪miRNA表達(dá)譜及miR-27b靶基因分析[J].中國農(nóng)業(yè)科學(xué),2013,46(18):3894-3900.
[67] DE RENSIS F,GARCIA-ISPIERTO I,LóPEZ-GATIUS F. Seasonalheat stress:clinical implications and hormone treatments for the fertility of dairy cows[J]. Theriogenology,2015,84(5):659-666.
[68] JI Z L,LU R J,MOU L S,et al.Expressions of miR-15a and its target gene HSPA1B in the spermatozoa of patients with varicocele[J]. Reproduction,2014,147 (5):693-701.
[69] TANG F C,KANEDA M,CARROLL D O,et al.Maternal microRNAs are essential for mouse zygotic development[J]. Genes&Development,2007,21(6):644-648.
(責(zé)任編輯武海龍)
[70] ZOVOILIS A,SMORAG L,PANTAZI A,et al.Members of the miR-290 cluster modulate in vitro differentiation of mouse embryonic stem cells[J].Differentiation,2009,78(2/3):69-78.
[71] NEHAMMER C,PODOLSKA A,MACKOWIAK S D,et al. Specific microRNAs regulate heat stress responses in Caenorhabditiselegans[J]. Scientific Reports,2015,5:8866.
Anti-Heatstress Mechanism of miRNAs in Livestock and Poultry
GUO Jiang1,2,3GAO Shengtao2,3QUAN Suyu2,3NAN Xuemei2,3BU Dengpan1,2,3,4?
(1. College of Animal Science and Technology,Hunan Agricultural University,Changsha 410128,China;2. State Key Laboratory of Animal Nutrition,Institute of Animal Science,Chinese Academy of Agricultural Sciences,Beijing 100193,China;3. CAAS-ICRAF Joint Laboratory on Agroforestry and Sustainable Animal Husbandry,Beijing 100193,China;4. Synergetic Innovation Center of Food Safety and Nutrition,Harbin 150030,China)
Abstract:Animal behavior and physiological function were changed under heat stress. miRNAs contained approximately 22 nucleotides in length regulated target gene of heat-stressed animal at the post-transcriptional level. This article mainly reviewed the effects of differential miRNAs expression on growth and apoptosis of heat stress cell,and the regulation of miRNAs on immunity,anti-stress responses,organic damage,performance and fertility,etc,and their mechanisms.[Chinese Journal of Animal Nutrition,2016,28(3):652-658]
Key words:miRNAs;heat stress;livestock and poultry;regulation
Corresponding author?,professor,E-mail:budengpan@126.com
通信作者:?卜登攀,研究員,碩士生導(dǎo)師,E-mail:budengpan@126.com
作者簡介:郭 江(1986—),男,福建三明人,博士研究生,研究方向為動物生理學(xué)。E-mail:zhouhui163521@163.com
基金項目:國家自然科學(xué)基金(31372341);十二五國家科技支撐計劃(2012BAD12B02-05);動物營養(yǎng)學(xué)國家重點(diǎn)實驗室自主課題(2004DA125184G1103)
收稿日期:2015-10-13
doi:10.3969/ j.issn.1006-267x.2016.03.003
中圖分類號:S811.3
文獻(xiàn)標(biāo)識碼:A
文章編號:1006-267X(2016)03-0652-07